JPH02284214A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPH02284214A
JPH02284214A JP1104590A JP10459089A JPH02284214A JP H02284214 A JPH02284214 A JP H02284214A JP 1104590 A JP1104590 A JP 1104590A JP 10459089 A JP10459089 A JP 10459089A JP H02284214 A JPH02284214 A JP H02284214A
Authority
JP
Japan
Prior art keywords
voltage
heater
temperature
amplitude
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1104590A
Other languages
Japanese (ja)
Inventor
Tomoatsu Imamura
友厚 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1104590A priority Critical patent/JPH02284214A/en
Publication of JPH02284214A publication Critical patent/JPH02284214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Control Of Temperature (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To precisely control impressed AC power to a heater to always keep the power constant correspondingly to the fluctuation of power source voltage to eliminate the unevenness of heating by executing the duty control of the heater with use of phase control data. CONSTITUTION:The zero cross detector 11 of AC voltage to be impressed to the heater 2 from an AC power source 4 is used for detecting the variation of frequency, and the peak detector 12 of the AC voltage is used for detecting the fluctuation of amplitude. The phase control data corresponding to AC volt age is stored previously in the ROM 92 of a control part 9. Namely, a time from the zero cross point of the AC voltage to a solid state relay 5 is triggered by a trigger singal TRG is stored previously as a table. In this case, a CPU 90 outputs the trigger signal TRG based on the amplitude and the frequency of the AC voltage and the termperature detected voltage of a heating roller 1 by a thermistor 3 through a buffer circuit 10. Thus, the precise duty control for the fluctuation of the AC input voltage can be realized, and the unevenness of the heating never appears.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複写機、レーザープリンタ、FAX等の定着
部における温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature control device in a fixing section of a copying machine, a laser printer, a facsimile machine, etc.

(従来の技術) 従来の定着部における温度制御は、加熱素子であるヒー
タを内蔵した加熱ローラの表面温度を。
(Prior Art) Conventional temperature control in a fixing section controls the surface temperature of a heating roller that has a built-in heater, which is a heating element.

サーミスタなどの温度検出素子により検出した電圧と、
予め設定した温度基準電圧を比較し、その定められた設
定温度範囲内に収まるよう、制御部によりソリッド・ス
テート・リレー(S S R)をオン/オフし、ヒータ
の動作を制御していた。
The voltage detected by a temperature detection element such as a thermistor,
A preset temperature reference voltage is compared, and a control unit turns on/off a solid state relay (SSR) to control the operation of the heater so that the temperature falls within the predetermined set temperature range.

また、複写機等を使用する地域によって定着部のヒータ
に印加される電源電圧(交流入力)は異なり、例えばA
 C100〜120V 171場合と、AC200〜2
40vの場合がある。ヒータを両立流入力に対し共通に
使用するため、従来はA C200〜240vの場合、
交流入力を半波おきに供給するようにして、AC100
〜120vの場合と同一電力を供給するようにしていた
(特開昭62−40482号参照)。
In addition, the power supply voltage (AC input) applied to the heater of the fixing section varies depending on the region where the copying machine is used.
C100~120V 171 case and AC200~2
In some cases, it is 40v. Conventionally, in the case of AC 200-240v, since the heater is commonly used for both compatible current inputs,
AC100 by supplying AC input every half wave.
The same power as in the case of ~120V was supplied (see Japanese Patent Laid-Open No. 62-40482).

(発明が解決しようとする課題) 上記従来技術でのべた前者のヒータ制御は、設定温度範
囲内に収まるよう、SSRによってヒータをオン/オフ
制御するので、電源電圧の変動により振幅9周波数が僅
かに変っても、それに対応してきめ細かく制御がされず
、ヒータに対する印加交流電力が常に一定ではなく、加
熱ムラの原因となっている。
(Problem to be Solved by the Invention) In the former heater control described in the above-mentioned prior art, the heater is controlled on/off by SSR to keep the temperature within the set temperature range, so the amplitude 9 frequency may vary slightly due to fluctuations in the power supply voltage. However, even if the temperature changes, the AC power applied to the heater is not always constant, causing uneven heating.

また、後者のヒータ制御は、AC100〜120vとA
 C200〜240vの印加電圧比は1対2となり、設
定温度範囲に達するまでに時間差が生じ、かつ交流入力
を半波おきに供給する場合は間隔が空き過ぎ加熱ムラが
生じる可能性があり、ヒータの共通化は難しかった。
In addition, the latter heater control is AC100-120v and A
The applied voltage ratio of C200 to 240V is 1:2, and there is a time difference until the set temperature range is reached, and if AC input is supplied every half wave, there is too much space between them, which may cause uneven heating. It was difficult to standardize the

本発明は、上記AC100V系及びAC200V系のヒ
ータの共通化を可能とし、両受流入力電圧系において更
に電源電圧の変動に対応して、きめ細かくヒータに対す
る印加交流電力を常に一定とすることを目的とする。
The purpose of the present invention is to make it possible to share the heaters of the AC 100V system and AC 200V system, and to finely keep the applied AC power to the heater constant at all times in response to fluctuations in the power supply voltage in both receiving input voltage systems. shall be.

(構成および作用) 本発明は上記目的を達成するため、温度検出素子の出力
を温度基準電圧と比較し、設定温度範囲に制御する装置
において、加熱素子に印加する交流入力電圧の振幅及び
周波数を検出する手段と、その検出出力に対応した複数
の位相制御データを予め格納しておく手段と、前記交流
入力電圧の振幅7周波数と温度検出素子からの温度情報
を基に前記予め格納した位相制御データを選択する手段
と、該位相制御データにより前記加熱素子のデユーティ
−制御を行なう手段とからなることを特徴とする。
(Structure and operation) In order to achieve the above object, the present invention includes a device that compares the output of a temperature detection element with a temperature reference voltage and controls the temperature within a set temperature range. means for detecting, means for pre-storing a plurality of phase control data corresponding to the detected output, and the pre-stored phase control based on the amplitude 7 frequency of the AC input voltage and temperature information from the temperature detection element. The heating element is characterized by comprising means for selecting data, and means for controlling the duty of the heating element based on the phase control data.

本発明は、温度検出素子で検出した加熱ローラの表面温
度(電圧)と温度基準電圧を比較することで設定温度を
超えたか否かを判定してその判定出力を制御部へ送る。
The present invention compares the surface temperature (voltage) of the heating roller detected by a temperature detection element with a temperature reference voltage to determine whether or not the set temperature has been exceeded, and sends the determination output to the control section.

制御部の記憶素子には複数の交流入力電圧に対応した位
相制御データが格納されている。この位相制御データは
交流入力電圧のゼロクロス点からSSRをトリガするま
での時間であって、交流入力電圧の振幅2周波数及び温
度検出素子からの検出電圧をもとに、加熱素子をオン/
オフするSSRをトリガして、常に加熱素子に対する印
加交流電圧が一定となるようにして加熱ムラがないよう
にしたものである。
Phase control data corresponding to a plurality of AC input voltages are stored in the memory element of the control section. This phase control data is the time from the zero crossing point of the AC input voltage to the triggering of the SSR, and is based on the amplitude and frequency of the AC input voltage and the detected voltage from the temperature detection element to turn on/off the heating element.
By triggering the SSR to turn off, the alternating current voltage applied to the heating element is always constant, thereby preventing uneven heating.

(実施例) 第1図は本発明が実施された定着部の構造図を示し、(
1)は側面図、(2)は正面図である。図に示すように
加熱ローラ1の円筒中心部にヒータ2を備え1両端部2
a(片端部のみ示す)に交流電圧が印加され、加熱ロー
ラ1を内部から発光加熱する。
(Example) FIG. 1 shows a structural diagram of a fixing unit in which the present invention is implemented, and (
1) is a side view, and (2) is a front view. As shown in the figure, a heater 2 is provided at the cylindrical center of a heating roller 1.
An alternating current voltage is applied to a (only one end is shown), and the heating roller 1 is heated by emitting light from inside.

3は加熱ローラ1の周表面に接触して表面温度を検知す
るサーミスタである。
3 is a thermistor that comes into contact with the circumferential surface of the heating roller 1 to detect the surface temperature.

第2図は本発明の一実施例の温度制御回路を示し、4は
交流電源、5はヒータ2をオン/オフするソリッド・ス
テート、リレー(S S R)でヒータと直列接続され
る。6は可変抵抗でサーミスタ3とで電圧Vを分圧する
。7は基準電源、8は設定温度比較器で、前記基+!!
電源7の基$電圧とサースタ3の検知電圧を比較し制御
部9へ出力する。
FIG. 2 shows a temperature control circuit according to an embodiment of the present invention, in which 4 is an AC power supply, 5 is a solid state relay (SSR) for turning on/off the heater 2, and the temperature control circuit is connected in series with the heater. A variable resistor 6 divides the voltage V with the thermistor 3. 7 is a reference power supply, 8 is a set temperature comparator, and the base +! !
The base voltage of the power source 7 and the detected voltage of the servo starter 3 are compared and outputted to the control section 9.

】0はバッファ回路で、制御部9のマイクロコンピュー
タ(CP U)90からのトリガ信号(TRG)を前記
5SR5に加えオン/オフ制御する。
0 is a buffer circuit which applies a trigger signal (TRG) from a microcomputer (CPU) 90 of the control section 9 to the 5SR5 for on/off control.

上記構成は従来と同様に設定温度範囲内に収まるように
作動する各素子である。次に、11は交流電源4からヒ
ータ2に印加される交流電圧のゼロクロス検出器で、周
波数変動の検知に用いられる。
In the above configuration, each element operates so as to stay within a set temperature range, as in the conventional case. Next, 11 is a zero-cross detector of the AC voltage applied to the heater 2 from the AC power source 4, and is used to detect frequency fluctuations.

12は同じく交流電圧のピーク検出器で、振幅変動の検
知に用いられ、雨検出器11.12は交流電源4に並列
接続される。制御部9の91はA/Dコンバータ、92
はROMで温度制御に必要なプログラムのほか、交流入
力電圧(100V系、 200V系)に対応した位相制
御データ(TD値・・・第6図参照)を格納しである。
Reference numeral 12 designates an AC voltage peak detector, which is used to detect amplitude fluctuations, and rain detectors 11 and 12 are connected in parallel to the AC power source 4. 91 of the control unit 9 is an A/D converter, 92
In addition to the programs necessary for temperature control, the ROM stores phase control data (TD value...see Figure 6) corresponding to the AC input voltage (100V system, 200V system).

即ち交流電圧のゼロクロス点から5SR5をトリガ信号
(TRG)でトリガするまでの時間(TD値)がテーブ
ルとして格納されている。93はRAMで、データ処理
用のバッファメモリとして使用される。
That is, the time (TD value) from the zero-crossing point of the AC voltage until the 5SR5 is triggered by the trigger signal (TRG) is stored as a table. A RAM 93 is used as a buffer memory for data processing.

上記構成は本発明の主要部で、前記構成部と協動する。The above structure is the main part of the present invention and cooperates with the above structure.

次に第2図の5SR5、ゼロクロス検出器11.ピーク
検出器12の各具体例をのべる。
Next, 5SR5 and zero cross detector 11 in FIG. Each specific example of the peak detector 12 will be described.

第3図は5SR5の回路構成側図を示し、発光ダイオー
ド(L E D)50と2個のホトトライアック(PO
T)51.52及び抵抗53.54からなる。
Figure 3 shows a side view of the circuit configuration of 5SR5, which includes a light emitting diode (LED) 50 and two phototriacs (PO).
T) 51.52 and resistor 53.54.

これは、トリガ信号(TRG)が11 L I+になる
と電圧VによってLED50が発光し、その発光を受光
して、ホトトライアック51が導通し、抵抗53を通し
てホトトライアック52がトリガされオン状態となる。
This is because when the trigger signal (TRG) becomes 11 L I+, the LED 50 emits light due to the voltage V, and upon receiving the light emission, the phototriac 51 becomes conductive, and the phototriac 52 is triggered through the resistor 53 and becomes on state.

この結果、ホトトライアック52の端子52aに接続さ
れたヒータ2が端子52bに接続された交流電源4と回
路が構成され、加熱を開始する。
As a result, a circuit is formed between the heater 2 connected to the terminal 52a of the phototriac 52 and the AC power supply 4 connected to the terminal 52b, and heating starts.

またTRGが“H”になると次のゼロクロス点でヒータ
2がSSRでオフされる。
Further, when TRG becomes "H", the heater 2 is turned off by SSR at the next zero cross point.

第4図(1)はゼロクロス検出器11の回路構成側図を
、同図(2)はそのタイムチャートを示す。これは交流
電源4からの交流電圧(ア)が抵抗R1対Ri (Rx
 = R2、R3= R4)に分圧され、比較器110
に入力される。比較器の出力は方形波(イ)となり。
FIG. 4(1) shows a side view of the circuit configuration of the zero-cross detector 11, and FIG. 4(2) shows its time chart. This means that the AC voltage (A) from the AC power supply 4 is applied to the resistor R1 vs. Ri (Rx
= R2, R3 = R4), and the comparator 110
is input. The output of the comparator becomes a square wave (A).

ゼロクロス点(x)は、この方形波の立上り、立下りエ
ツジをパルス(つ)として制御部9へ出力し。
The zero crossing point (x) outputs the rising and falling edges of this square wave as pulses to the control section 9.

CPU90がこのパルスを判別し、周波数変動を検知す
る。
The CPU 90 discriminates this pulse and detects frequency fluctuations.

第5図はピーク検出器12の回路構成側図を示し。FIG. 5 shows a side view of the circuit configuration of the peak detector 12.

これは、交流電源4からの交流電圧(第4図(ア))が
抵抗R,,R,及びR7で分圧されダイオードD1に加
えられ直流化して、並列接続されたコンデンサC7と抵
抗R6に交流電圧の振幅に対応したアナログ電圧(第6
図(2)参照)が得られるようにする。
This is because the AC voltage from AC power supply 4 (Figure 4 (A)) is divided by resistors R, , R, and R7, is applied to diode D1, becomes DC, and is applied to capacitor C7 and resistor R6, which are connected in parallel. Analog voltage corresponding to the amplitude of AC voltage (6th
(See Figure (2)).

次に本実施例の動作を第6図のタイムチャート及び第7
図の位相制御データ(TD値)にもとづいて説明する。
Next, the operation of this embodiment will be explained in the time chart of FIG. 6 and the time chart of FIG. 7.
The explanation will be based on the phase control data (TD value) shown in the figure.

まず、交流電源4から何Vの交流入力電圧(第6図(1
))がヒータ2に印加されているか、ピーク検出器12
(第5図)で検出する(第6図(2))。この検出電圧
は制御部9のA/Dコンバータ91に入力され、ここで
A/D変換し、電圧値がCPU90によってRAM93
に記憶させる。即ち、ここで交流入力電圧(振幅)の認
識が制御部9において行なわれる。
First, what AC input voltage from the AC power supply 4 (Fig. 6 (1)
)) is applied to the heater 2 or the peak detector 12
(Fig. 5) to detect (Fig. 6 (2)). This detected voltage is input to the A/D converter 91 of the control unit 9, where it is A/D converted, and the voltage value is stored in the RAM 93 by the CPU 90.
to be memorized. That is, the recognition of the AC input voltage (amplitude) is performed in the control section 9 here.

次に交流入力電圧のゼロクロス点(X)をゼロクロス検
出器11(第4図(1))で検出しく第4図(2)の(
イ)、(つ)及び第6図(3))、制御部9のCPU9
0へ送り、交流電圧の周波数が認識される。
Next, the zero-crossing point (X) of the AC input voltage is detected by the zero-crossing detector 11 (Fig. 4 (1)).
A), (T) and FIG. 6 (3)), CPU 9 of the control unit 9
0 and the frequency of the alternating voltage is recognized.

一方、加熱ローラ1の表面温度は、サーミスタ3で監視
し、その検出電圧と基準電源7の電圧を設定温度比較器
8で比較し、設定温度Tを超えたか否かを判定しく第6
図(4))、超えていれば“HI+を制御部9のCPU
90へ送る。
On the other hand, the surface temperature of the heating roller 1 is monitored by a thermistor 3, and the detected voltage is compared with the voltage of the reference power source 7 by a set temperature comparator 8, and it is determined whether or not the set temperature T is exceeded.
Figure (4)), if it exceeds “HI+”, the CPU of the control unit 9
Send to 90.

制御部9のROM92には上記交流入力電圧に対応した
TD値、つまり第6図(6)に示すように交流電圧がゼ
ロクロス点(X)から5SR5をトリガ信号(TRG)
でトリガするまでの時間(肥)をテーブルとして格納し
である。そこで、CPU90は交流入力電圧の振幅(第
6図(2))、周波数(第6図(3))及びで加熱ロー
ラ1の温度検出電圧(第6図(4))をもとに5SR5
をトリガするトリガ信号(TRG・・・第6図(5))
をバッファ回路10を介して出力する6 即ち、既に第3図で5SR5についてのべたようにトリ
ガ信号(TRG)がL”になると、SSRがオン状態と
なり、ヒータ2に交流電源4から交流電圧が印加され(
第6図(6)の実線)、′H”になると次にゼロクロス
点で5SR5がオフ状態となり、ヒータ2に交流電圧が
印加されず(第6図(6)の破線)、ヒータ2には交流
入力の各半サイクルにおいてデユーティ−制御が行なわ
れる。第6図(6)の中央部破線は比較器8の出力が゛
′H″状態でTRG信号がJ(H”となり、ヒータ2は
オフ状態にある。また、このデユーティ−制御は、ヒー
タ2に対する印加電圧が常に一定となるよう、次のよう
に制御される。
In the ROM 92 of the control unit 9, a TD value corresponding to the AC input voltage, that is, a trigger signal (TRG) for 5SR5 from the zero cross point (X) of the AC voltage as shown in FIG.
The time until the trigger is triggered is stored as a table. Therefore, the CPU 90 uses the 5SR5 based on the amplitude (Fig. 6 (2)) and frequency (Fig. 6 (3)) of the AC input voltage and the temperature detection voltage of the heating roller 1 (Fig. 6 (4)).
Trigger signal that triggers (TRG...Figure 6 (5))
6 through the buffer circuit 10. That is, as already described for 5SR5 in FIG. applied (
(solid line in Figure 6 (6)), 5SR5 turns off at the next zero cross point, and no AC voltage is applied to heater 2 (broken line in Figure 6 (6)). Duty control is performed in each half cycle of AC input.The broken line in the center of FIG. This duty control is performed as follows so that the voltage applied to the heater 2 is always constant.

交流入力電圧の実効値がv■の正弦波とすると、5SR
5の導通角がθの時、抵抗値Rのヒータ2に印加される
交流電圧Pは次式で表わされる。
If the effective value of AC input voltage is a sine wave of v■, 5SR
When the conduction angle of 5 is θ, the AC voltage P applied to the heater 2 having a resistance value R is expressed by the following equation.

=RVIN 、f、’sin”θdθ =じ’  VIN  f’ (1−con2θ)dθ=
シLv1J〔θ−+5in2θ〕r町・・(1)ここで
、実効値がvIN=85vの時に100%デユーティ−
即ち、θ=πとすると、(1)式より=+85” (θ
−TSlnθ)a  −・−・(2)1 。
=RVIN, f, 'sin'θdθ =ji' VIN f' (1-con2θ)dθ=
SI Lv1J [θ-+5in2θ] r town... (1) Here, when the effective value is vIN=85v, the duty is 100%.
That is, if θ=π, then from equation (1) = +85'' (θ
−TSlnθ)a −・−・(2)1.

となり、M=85 vlo        “−°−(3)とおくと、(2
)、 (3)式より 1  。
So, if we set M=85 vlo “−°−(3), then (2
), 1 from equation (3).

θ= −s l n 2θ= M2K    −−(4
)となる。
θ= −s l n 2θ= M2K −−(4
).

第7図は式(4)のθをパラメータとした時の1   
Figure 7 shows 1 when θ in equation (4) is taken as a parameter.
.

θ: −T−S l n 2θ値を左の縦軸、また、こ
の時の値になるM2πを右の縦軸に示す。図面の破線で
示すように交流入力電圧v1Nが例えば105■の時は
、θ無0.58πとなり、50 H2の時においては。
θ: −T−S l n The 2θ value is shown on the left vertical axis, and the value M2π at this time is shown on the right vertical axis. As shown by the broken line in the drawing, when the AC input voltage v1N is, for example, 105■, θ is zero and 0.58π, and when it is 50H2.

T D = to(+−」」むL)=4.殆・・・・・
・(5)となる。
T D = to(+-''L)=4. Almost...
・It becomes (5).

上述した(5)式に例示する位相制御データ(TD値)
をROM92に格納しである。
Phase control data (TD value) illustrated in equation (5) above
is stored in the ROM92.

(発明の効果) 以上説明したように本発明は、温度検出素子で加熱ロー
ラの表面温度(電圧)と温度基準電圧を比較して制御部
で加熱素子のオン/オフを制御する場合、該加熱素子に
加わる交流入力電圧の振幅。
(Effects of the Invention) As explained above, the present invention provides a temperature detecting element that compares the surface temperature (voltage) of the heating roller with a temperature reference voltage to control the heating element on/off in the control section. The amplitude of the AC input voltage applied to the element.

周波数も検出し、その検出出力に対応して位相制御デー
タにより、加熱素子のオン/オフ制御を行なう結果、交
流入力電圧の変動に対するきめ細かいデユーティ−制御
を行なうことができる。したがって加熱ムラの発生がな
い。
The frequency is also detected, and the heating element is controlled on/off using phase control data corresponding to the detected output. As a result, fine duty control can be performed with respect to fluctuations in the AC input voltage. Therefore, uneven heating does not occur.

また、 toov系及び200v系の両方に加熱素子を
共用する場合も、上記制御により常に一定の電力を供給
でき、設定温度範囲に達するまでの時間差がなく、加熱
ムラの発生がない。
Further, even when a heating element is shared by both the TOOV system and the 200V system, constant power can always be supplied by the above control, there is no time difference until the set temperature range is reached, and uneven heating does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が実施される定着部の構造図、第2図は
本発明の一実施例の温度制御回路図、第3図は第2図の
ソリッド・ステート・リレー(SSR)5の回路構成例
図、第4図(1)は第2図のゼロクロス検出器11の回
路構成例図、第4図(2)はそのタイムチャートを示す
図、第5図は第2図のピーク検出器の回路構成例図、第
6図は第2図の動作を説明するためのタイムチャートを
示す図、第7図は位相制御データ(TD値)を説明する
図である。 1 ・・・加熱ローラ、 2 ・・ ヒータ、 3サー
ミスタ、 4 ・・・交流電源、 5・・ソリッド・ス
テート・リレー(S S R)、6・・・可変抵抗、 
7・・・基準電源、 8・・・設定温度比較器、 9 
・・・制御部、10・・・バッファ回路、11・・・ゼ
ロクロス検出器、 12・・・ ピーク検出器、50・
・・発光ダイオード(L E D)、51.52・・・
ホトトライアック(P OT)、90・・・CPU、9
1・・・ A/Dコンバータ、 92・・・ ROM、
93 ・・・ RAM。
FIG. 1 is a structural diagram of a fixing unit in which the present invention is implemented, FIG. 2 is a temperature control circuit diagram of an embodiment of the present invention, and FIG. 3 is a diagram of the solid state relay (SSR) 5 of FIG. Figure 4 (1) is an example circuit diagram of the zero cross detector 11 in Figure 2, Figure 4 (2) is a diagram showing its time chart, and Figure 5 is the peak detection diagram in Figure 2. FIG. 6 is a diagram showing a time chart for explaining the operation of FIG. 2, and FIG. 7 is a diagram for explaining phase control data (TD value). 1... Heating roller, 2... Heater, 3 Thermistor, 4... AC power supply, 5... Solid state relay (SSR), 6... Variable resistor,
7... Reference power supply, 8... Set temperature comparator, 9
...Control unit, 10...Buffer circuit, 11...Zero cross detector, 12...Peak detector, 50...
・Light emitting diode (LED), 51.52...
Phototriac (POT), 90...CPU, 9
1... A/D converter, 92... ROM,
93...RAM.

Claims (1)

【特許請求の範囲】[Claims] 温度検出索子の出力を温度基準電圧と比較し、設定温度
範囲に制御する装置において、加熱素子に印加する交流
入力電圧の振幅及び周波数を検出する手段と、その検出
出力に対応した複数の位相制御データを予め格納してお
く手段と、前記交流入力電圧の振幅、周波数と温度検出
素子からの温度情報を基に前記予め格納した位相制御デ
ータを選択する手段と、該位相制御データにより前記加
熱素子のデューティー制御を行なう手段とからなること
を特徴とする温度制御装置。
A device that compares the output of a temperature detection cord with a temperature reference voltage and controls the temperature within a set temperature range, comprising means for detecting the amplitude and frequency of an AC input voltage applied to a heating element, and a plurality of phases corresponding to the detected output. means for storing control data in advance; means for selecting the pre-stored phase control data based on the amplitude and frequency of the AC input voltage and temperature information from the temperature detection element; 1. A temperature control device comprising means for controlling the duty of an element.
JP1104590A 1989-04-26 1989-04-26 Temperature controller Pending JPH02284214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104590A JPH02284214A (en) 1989-04-26 1989-04-26 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104590A JPH02284214A (en) 1989-04-26 1989-04-26 Temperature controller

Publications (1)

Publication Number Publication Date
JPH02284214A true JPH02284214A (en) 1990-11-21

Family

ID=14384649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104590A Pending JPH02284214A (en) 1989-04-26 1989-04-26 Temperature controller

Country Status (1)

Country Link
JP (1) JPH02284214A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127825A (en) * 1995-10-30 1997-05-16 Nec Corp Controller for fixing unit
JP2005050815A (en) * 2003-07-28 2005-02-24 Samsung Electronics Co Ltd Heat source control method and heat source control device
JP2007116806A (en) * 2005-10-19 2007-05-10 Toyota Industries Corp Bidirectional insulated dc-ac inverter
JP2008052045A (en) * 2006-08-24 2008-03-06 Ricoh Co Ltd Fixing controller and fixing control method
JP2010191204A (en) * 2009-02-18 2010-09-02 Canon Inc Image heating apparatus
JP2013029417A (en) * 2011-07-28 2013-02-07 Brother Ind Ltd Zero-cross detection circuit and image forming device including the same
JP2013036885A (en) * 2011-08-09 2013-02-21 Brother Ind Ltd Circuit for detecting ac voltage, and image forming device having the same
JP2018147870A (en) * 2017-03-09 2018-09-20 カシオ計算機株式会社 Light radiation device, stereoscopic image formation system, and stereoscopic image formation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127825A (en) * 1995-10-30 1997-05-16 Nec Corp Controller for fixing unit
JP2005050815A (en) * 2003-07-28 2005-02-24 Samsung Electronics Co Ltd Heat source control method and heat source control device
JP2007116806A (en) * 2005-10-19 2007-05-10 Toyota Industries Corp Bidirectional insulated dc-ac inverter
JP4670582B2 (en) * 2005-10-19 2011-04-13 株式会社豊田自動織機 Bidirectional insulation type DC / AC inverter
JP2008052045A (en) * 2006-08-24 2008-03-06 Ricoh Co Ltd Fixing controller and fixing control method
JP2010191204A (en) * 2009-02-18 2010-09-02 Canon Inc Image heating apparatus
JP2013029417A (en) * 2011-07-28 2013-02-07 Brother Ind Ltd Zero-cross detection circuit and image forming device including the same
US8912468B2 (en) 2011-07-28 2014-12-16 Brother Kogyo Kabushiki Kaisha Zero-crossing detector circuit and image forming apparatus having the same
JP2013036885A (en) * 2011-08-09 2013-02-21 Brother Ind Ltd Circuit for detecting ac voltage, and image forming device having the same
US9151784B2 (en) 2011-08-09 2015-10-06 Brother Kogyo Kabushiki Kaisha AC voltage detecting circuit and image forming apparatus having the same
JP2018147870A (en) * 2017-03-09 2018-09-20 カシオ計算機株式会社 Light radiation device, stereoscopic image formation system, and stereoscopic image formation method

Similar Documents

Publication Publication Date Title
EP0085950B1 (en) Temperature control device for fixing heat source of copying machine
US4086466A (en) Automatic heater controller
KR940004040B1 (en) Load testing circuit of induction heating cooker
JPH02166490A (en) Control circuit for heat fixing apparatus
JPH02284214A (en) Temperature controller
US4595814A (en) Induction heating apparatus utilizing output energy for powering switching operation
US4800330A (en) AC power control
US4119835A (en) Electronic thermostat
KR0122403Y1 (en) Ac power circuit for electric equipments
JPH08123558A (en) Constant power controller
KR0164751B1 (en) Circuit for stabilizing effective voltage in electric apparatus
KR0116340Y1 (en) Induction range driver
JP3197985B2 (en) Heater control device
JPH09106315A (en) Temperature controller
JPH0620171Y2 (en) Power control device
KR0170209B1 (en) Power control circuit for induction heating device
JPH08297429A (en) Ac load applying controlling device
JPH0538551Y2 (en)
KR940009595A (en) Electronic cooker
JP2591178B2 (en) Cordless iron
KR940007018Y1 (en) Circuit for sensing small substance to electronic range
JPS60176120A (en) Temperature controller of heating source in picture recorder
JPS6122804B2 (en)
JPH0447636Y2 (en)
JP2895078B2 (en) Electromagnetic cooker