JPH0228322A - 半導体基板の前処理方法 - Google Patents

半導体基板の前処理方法

Info

Publication number
JPH0228322A
JPH0228322A JP63267391A JP26739188A JPH0228322A JP H0228322 A JPH0228322 A JP H0228322A JP 63267391 A JP63267391 A JP 63267391A JP 26739188 A JP26739188 A JP 26739188A JP H0228322 A JPH0228322 A JP H0228322A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
gas
oxide film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63267391A
Other languages
English (en)
Inventor
Hiromi Ito
博巳 伊藤
Masanobu Iwasaki
岩崎 正修
Akira Tokui
徳井 晶
Katsuhiro Tsukamoto
塚本 克博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63267391A priority Critical patent/JPH0228322A/ja
Priority to US07/342,045 priority patent/US5470799A/en
Publication of JPH0228322A publication Critical patent/JPH0228322A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/906Cleaning of wafer as interim step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/974Substrate surface preparation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体基板上に薄膜を形成するための前段
階である、半導体基板表面の前処理方法に関するもので
あり、特に、半導体基板の表面に付着した自然酸化膜ま
たは汚染物を除去するための方法に関するものである。
[従来の技術〕 電子デバイスの特性は、作成中の故意あるいは意図しな
い′jI故で尋人された不純物の(j在に極めて強く影
響されるため、全工程にわたって作成環境の清浄度が極
めて高いレベルに維持される必要があり、使用祠料、処
理雰囲気形成法等に高度な清浄化技術および高純度化技
術が駆使されている。
半導体デバイスにおいて、その製造工程は薄膜形成工程
と回路パターン形成工程とに大別される。
薄膜形成工程は、さらに、膜種や形成方法により、種々
の工程に細分化され、それぞれ独自のあるいは一部JI
<通した清浄化技術が開発されている。そして、これら
のすべてに共通して重要かつ基本的な清浄化作業は、薄
膜形成前の基板前処理である。
前処理工程では、通常、脱脂、重金属除去、自然酸化膜
除去を目的として、水洗、酸洗浄あるいはアルカリ洗浄
、化学酸化、希フッ酸処理等が行なわれている。
これらの溶液洗浄法は、現在、確立された工程として広
く採用されているが、その決定的な問題点は、処理終了
直後から薄膜形成開始までの間に処理後の基板が必ず空
気に晒されるため、特に活性な半導体面や金属面が基板
上に露出しているときは、例外なくいくらかの自然酸化
膜の成長が起こるということである。それゆえ、溶液洗
浄は、6機物、重金属等の不純物の除去にはH効である
が、必ずしも真性表面を得るための手段とは言えない。
自然酸化膜の成長は、後の1−程である薄膜形成工程に
おいて、薄膜の品質に決定的な悪影響を及ぼす。なお、
ここにいう薄膜形成とは、たとえば、エピタキシャル成
長、ポリシリコン上への高融点金属膜(いわゆるポリサ
イド構造)形成、基板に電気的コンタクトを求める配線
形成、極薄絶縁膜形成等であり、これらの形成工程は、
高集積化に1モなって、今後、その重要性が益々増大す
る工程である。
それゆえに、基板との界面構造のよく制御された薄膜を
形成するためには、まず、半導体基板表面に成長する自
然酸化膜を除去することが最も大切なことであり、自然
酸化膜の優れた除去方法が強く望まれている。
[発明が解決しようとする課題] 自然酸化膜の除去のための優れた方法がない現在におい
ては、以下に述べるような技術が採用されている。すな
わち、溶液洗浄後の基板を薄膜形成装置に導入してから
、A「等の不活性ガスのプラズマによるスパッタエツチ
ングあるいは高温水素還元法によるガスエツチングによ
って自然酸化膜を除去して、その上に、連続的に薄膜を
形成する方法である。しかしながら、A「等の不活性ガ
スのプラズマによるスパッタエツチングでは、基板に損
傷が導入されるという問題点があった。また、高温水素
還元法では、高温(通常1000℃以上)を要するため
、PN接合の熱たれ等を招来し、その適用範囲が限定さ
れるという問題点があった。
さらに、最近のデバイス作製上の傾向として、ポリシリ
コン等の結晶性材料においては、結晶粒径の小さい、す
なわち非晶質に近いものが望まれているが、キンスブロ
ン等も指摘しているように(E、K1n5bron、M
、5ternheirn、and  R,Knoell
、Appl、Phys、Lett、、Vol、42.N
o、9,835、I  May (198B)) 、高
温に晒されたポリシリコン等の材料では、粒径の増大が
発生するため、高温水素還元法はこの意味からも制約か
多い。
この発明は上記のような問題点を解決するためになされ
たもので、十分低温でかつ半導体基板表面に損傷を与え
ずに、半導体基数表面に付着した自然酸化膜または汚染
物を除去することのできる、半導体基板表面の前処理方
法を提供することを目的とする。
[課題を解決するための手段] 本発明にとって最も重要なことは、用いる反応気体が照
射光を吸収せず、したがって、気相状態では、光化学的
な励起が行なわれず、光照射が無効と考えられているよ
うな反応系においても、被処理基板の表面に光を照射し
、かつ、被処理基板を適当に加熱すれば、著しい光照射
効果が得られる場合があることを見出した点にある。従
来より、本発明の意図するところと同様に、光化学反応
を用いて、低温・無損傷で成膜直前の半導体基板表面を
前処理しようとする試みは数多く報告されている。しか
しながら、そのすべてが、光化学プロセスとして、反応
気体が必ず照射光を吸収する必要があるという固定観念
に捕われており、反応気体と照射光源の組合わせに制約
が多かった。たしかに、光励起プロセスの1つの理論的
バックグラウンドである気体の光化学は、もともと気相
状態の光化学が主たる対象であったから、光化学過程が
成立するためには、反応気体が照射光を吸収することが
必須であった。また、半導体装置製造プロセスに光化学
を応用するにあたって、固体表面への吸着状態での光化
学を考慮する際も、吸着媒である被処理基板の温度の与
える影響は無視されていた。もちろん、光励起CVD法
等でも、多くの場合、被処理基板の加熱を行なうが、こ
の加熱は堆積した膜の緻密性の向上等の膜質改善を目的
に行なうものであって、加熱を行なわなくても光化学反
応自体は起こる。換言すれば、従来の光化学反応系また
は光励起プロセス系では、熱エネルギが光化学過程に与
える影響を全く考慮していなかった、と言える。本発明
はこの点に着目し、種々の実験を行なった結果、気相状
態で照射光を吸収しない反応気体でも高温にされた被処
理基板に吸着されると、光化学的な励起に類似した励起
が起こる場合があることを発見し、本発明を完成させる
に至った。
すなわち、本発明は、半導体基板の表面に付着した自然
酸化膜または汚染物を除去するための方法に係るもので
あり、チャンバ内に上記半導体基板を置く工程と、上記
チャンバ内に上記自然酸化膜または上記汚染物と反応し
得る反応ガスを導入する工程と、上記半導体基板を20
0〜700℃の範囲内にある温度に加熱する工程と、上
記半導体基板の加熱を行なっているときに、上記200
〜700℃の範囲内にある温度で、上記チャンバ内に導
入された反応ガスと上記半導体基板表面上に付着した自
然酸化膜または汚染物との光化学反応を行なわしめる波
長を有する光を上記加熱された゛ト導体基板表面に照射
する工程とを含むことを特徴とする方法である。
本発明で用い得る反応ガスは、一般には塩化水素ガス、
水素ガス、塩素ガス等のガスであり、塩化水素ガスは特
に好ましく用いられる。
半導体基板は、200〜700℃の範囲内にある温度に
加熱される。後に、詳細に、データを示して説明するが
、200℃以下では自然酸化膜の処理速度が遅いので好
ましくなく、700℃以上では自然酸化膜の処理速度は
速くなる一方、上述の熱だれおよび結晶材料の望ましく
ない粒径増大を引き起こし、好ましくない。
照射する光は、半導体基板の加熱を行なっているときに
、上記200〜700℃の範囲内にある温度で、上記チ
ャンバ内に導入された反応ガスと上記半導体基板表面上
の自然酸化膜または汚染物との光化学反応を行なわしめ
る波長を有するものなら、いずれでも使用し得る。その
うちでも、低圧水銀ランプ、高圧水銀ランプ、水銀−キ
セノンランプ、エキシマレーザ等から照射される光は、
好ましい。
また、上述の光の照射方向は半導体基板表面に向かう方
向が好ましいが、半導体基板表面にχ・1して平行な方
向であってもよい。半導体基板表面に向かう方向に光を
照射する場合には、光源としては、上述の光源のうち、
低圧水銀ランプ、高圧水銀ランプ、水銀−キャノンラン
プが好ましく用いられる。
また、半導体基板表面に対して平行な方向に光か照射さ
れる場合には、上記光源のうち、エキシマレーザ光が特
に好ましく用いられる。
反応ガスの雰囲気圧力は、好ましくは、大気圧から0.
ITorrの範囲に選ばれる。
また、同様の目的で、半導体基板を200〜700℃の
範囲にある温度に加熱する手段として、光を用いてもよ
い。半導体基板を加熱するための光源は、反応ガスに照
射する光源と同一のものであってもよい。この場合には
、アルゴン−アークランプ、キセノン−水銀ランプが好
ましく用いられる。また、半導体基板を加熱する光を赤
外線とし、反応ガスに照射する光を紫外線としてもよい
[作用] 上述のとおり、本発明においては、半導体基板表面上に
付着した自然酸化膜または汚染物を反応ガスで除去する
にあたり、光と熱とを併用している。反応ガスにたとえ
ばHC法ガスを用いた場合、たとえば自然酸化膜は次の
ような反応式に従って、基板上から除去される。
S i 02 +4HC込→5iC14+2H20本発
明は、この反応が、光エネルギと熱エネルギとの相乗効
果により促進されるのを利用している。それゆえに、光
だけでは活性化できないような反応ガスを用いても、該
反応ガスで自然酸化膜または汚染物を除去することが可
能となる。また、高温下に置かないと自然咳′化膜また
は汚染物を除去できない場合であっても、光のエネルギ
の助けによって、より低温で、自然酸化膜または汚染物
を除去できるようになる。
[実施例] 以上、本発明の実施例について説明する。この実施例で
は、反応ガスとして塩化水素ガスを用い、光源には低圧
水銀ランプを用いた。なお、この低圧水銀ランプから放
射される紫外線は、主として184 ’)Aと2537
への波長をHする光であった。半導体基板にはシリコン
基板を用いた。
使用した装置: 第1図は本発明の実施例を実現するための装置の断面図
である。なお、この装置は処理された基板を分析するた
めの付属装置も備えている。
第1図を参照して、処理装置は、チャンバ3を備えてい
る。チャンバ3には、クリーニングガス導入口6と、5
iH2CIljzガス導入ロアと、NH,ガス導入口8
と、排気口9が設けられている。
さらに、チャンバ3は、チャンバ3内に紫外線を照射す
るための紫外線入射窓2が設けられている。
紫外線入射窓2に対向して、低圧水銀ランプ1が設置さ
れている。チャンバ3内には基板支持台5が設置され、
基板支持台5の上にはシリコン基板4が置かれている。
基板支持台5は加熱手段5aを備えており、基板支持台
らを介して、シリコン基板4を加熱できるように構成さ
れている。
半導体基板表面の前処理方法の概略: 次に、上述の装置を用いて、半導体基板表面の前処理方
法の概略を述べる。
2!仮支持台5上にシリコン基板4を置く。このシリコ
ン基板4は、溶剤処理を行なった後のものであるが、既
に空気に触れて自然酸化膜が生じている。次いで、クリ
ーニングガス導入口6より、HCiガスをチャンバ3内
に導入し、シリコン基板4の表面にHCuガスを供給す
る。次いで、低圧水銀ランプ1を点灯することにより、
紫外線入射窓2からシリコン基板4の表面に紫外線を照
射する。この紫外線照射と同時に、シリコン基板4を2
00〜700℃に加熱する。すると、光と熱の相乗効果
により、たとえば、次に示す反応が促進され、シリコン
基板4上の自然酸化膜が除去される。
SiO□+4HCμ→5iCQ、4 +2H20本発明
の効果の確認の方法: 以上のようにして自然酸化膜が除去されるわけであるが
、自然酸化膜が除去されているか否かを確認し、本発明
の効果を評価するためには、工夫を要する。なぜなら、
シリコンは極めて酸化されやすい物質であるので、上述
の実施例に従って自然酸化膜を除去しても、その効果を
確認するためにシリコン基板を装置外に取出すと、その
瞬間に再び表面が酸化されてしまうからである。そこで
、その計画にあたり、ここでは2つの巧みな手法が考案
されている。
第1の確認の方法は、シリコン基板に本発明に係る前処
理を施し、該シリコン基板の表面から自然酸化膜を除去
した後、そのまま、その上へシリコン窒化膜等の酸素を
含まない薄膜を堆積し、その後、オージェ電子分光法等
で膜厚方向の元素プロファイルを観/Il+する、とい
う方法である。この方法によれば、シリコン基板(Si
)と堆積膜(St、N4)との界面近傍における酸素の
信号の検出の有無により、自然酸化膜の有無が判定され
る。
第2A図は、本実施例にかかる前処理を施した直後に、
シリコン窒化膜をCVD法により堆積させて得た試料の
、膜厚方向のオーフエプロファイルである。オージェ電
子分光法に共した試料は、次のようにして作られた。
第1図を参照して、基板支持台5上に溶液洗浄を行なっ
た後のシリコン基板4を置く。このシリコン基板4は、
空気に触れて、既に自然酸化膜が生じている。次いで、
クリーニングガス導入口6より、HCILガスをチャン
バ3内に導入し、シリコン基板4の表面にHCuガスを
供給する。次いで、シリコン基板4表面に紫外線を照射
すると同時に、基板を200〜700℃の範囲内にある
温度に加熱して、自然酸化膜の除去処理を行なった。
H1lガスの被曝時間は、数分間であった。次いで、排
気口9からHCQ、ガスを排気し、次いで5iH2C鉦
2ガス導入ロアより5iH2C(L2ガスを導入し、N
H,ガス導入口8よりNH,ガスを導入し、シリコン基
板4上にシリコン窒化膜をCVD法により堆積させた。
そして、このものを、オージェ電子分光分析に供した。
第2A図において、横軸はスパッタ時間であり、縦軸は
オージェ信号である。第2A図から明らかなように、本
発明の処理を行なった試料(HCIL処理をしたもの)
では、SiとSi、N、との界面近傍に、酸素の信号が
検出されなかった。
第2B図は、本発明の処理を行なイ〕ず(HCm処理な
し)に、St、N、を堆積したものの、膜厚方向の元素
プロファイルである。第2B図から明らかなように、S
iとSt、N4の界面近傍に、酸素の信号が検出された
以上の結果より、本実施例に係る前処理を施すと、自然
酸化膜が確実に除去される、ということが確認される。
第2の評価方法; 本発明の効果の確認の第2の方法は、処理前後のシリコ
ン基板に紫外線を照射して光電子放出を行なわせ、放出
される電子の量(光電流)の変化を/1lll定する方
法である。この方法は、後述のように、自然酸化膜の有
無が光電流量に著しい影響を与えるため、自然酸化膜の
有無の良好な判定手段となり得る。
また、この方法においては、本発明において自然酸化膜
を除去するために用いる紫外線を、そのまま、光電子放
出を起こさせる紫外線として用いることができるので、
光電流を追跡することで、自然酸化膜が除去されていく
状況をモニタできる、という利点がある。
光電流と自然酸化膜の有無の関係を、第3A図および第
3B図を参照して説明する。これらの図はアルゴン雰囲
気中、基板温度を500℃にして、紫外線照射開始後か
ら、放出される光電子の電流を追跡したものである。第
3A図は、550℃で15分間紫外線照射下でHCfL
を被曝させたシリコン基板を用いたときのデータであり
、第2A図に対応する。第3B図は、この処理を行なわ
なかったシリコン基板を用いた場合のデータであり、第
2B図に対応する。
これらの図から明らかなように、本発明に係る処理を行
なった場合、光電流が著しく小さくなっている。第2A
図と第3A図の結果を併せて考慮すると、光電流の減少
は自然酸化膜が除去されるために生じる現象である、と
結論づけることができる。
また、光電流の減少の程度を追跡することにより、自然
酸化膜が除去されていく状況をモニタできるという結論
も、容易に理解されるであろう。
第3A図と第3B図の結果を念頭に置いて、本発明によ
る自然酸化膜の除去が、熱反応と光化学反応の相乗効果
によるものであることを、次に立証していく。
第4A図、第4B図、第4C図および第4D図は、図中
に示されている各基14度で、本発明による処理を行な
っているときの光電流の変化を示したものである。すな
わち、本発明の方法の温度依存性を見たものである。第
4A図は基板温度を250℃にしたときの光電流の変化
を示したものである。第4B図は基板温度を450℃に
したときの光電流の変化を示したものである。第4C図
は基板温度を500℃にしたときの光電流の変化を示し
たものである。第4D図は基板温度を550℃にしたと
きの光電流の変化を示したものである。これらの図にお
いて、横軸は時間(分)であり、縦軸は光電流(/lA
)である。光電流Δか1定は、基板を各温度でHCQ雰
囲気に置き、紫外線照射のシャッタを開放し、時間を追
って光電流値を追跡していくという手順で行なった。第
4A図〜第4D図より、次の知見が得られた。
■ 各温度共、紫外線照射とともに光電流は減少する。
■ 光電流の減少速度は、基板の温度上昇とともに急速
に増大する。
■ 減少後の光電流は、基板温度に関係なく、一定値に
落着く。
光電流の減少は、前述のとおり、自然酸化膜の除去に関
連づけることができるので、上述の結果より、自然酸化
j漠の除去速度は高温はど大きく、熱により加速される
ものであるということが示唆される。また、データブッ
クによれば、常温常圧のHCuは、約150 n m以
下の波長の紫外線しか吸収しない。したがって、低圧水
銀ランプから照射される光(1849人と2537人の
波長を有する紫外線)では、本来ならば、Illは励起
されず、ひいては自然酸化膜を除去することは不可能だ
ろう。しかしながら、基数を200〜700℃の範囲内
にある温度に加熱することにより、第4A図〜第4D図
に示したごとく、自然酸化膜が除去され得る。よって、
この点からも、本発明に係る自然酸化膜の除去が、熱と
光の相乗効果の結果であると結論できる。
なお、薄膜形成前の前処理という時間制約のあるもとで
は、上述の結果は、500℃程度以上の基板温度が望ま
しいことを示しているが、この温度でも熱反応のみによ
る場合と比べると、著しい低温化が達成されており、実
用的意義は非常に大きいといえる。
第5図は、本発明に係る前処理方法の、紫外線照射効果
を見たものである。実験装置は、第1図に示す装置に光
電子コレクタ電極を備え付けたものを用いた。この光電
子コレクタ電極は、メツシュ状の電極であり、第1図を
参照して、シリコン基板4と紫外線入射窓2との間の位
置に配置される。本実験では、下記の基板を用い、Ar
雰囲気中で、基数温度を500℃にし、光電子コレクタ
電極に印加する電圧を変化させて、光電流をJilt定
した。
測定するための基板として、以下の4種類が選ばれた。
■ 紫外線を照射しながら、500℃において15分間
H(、l被爆させた基板(本発明の処理を行なったもの
)。
■ 紫外線を照射しながら500℃において15分間H
(、l被爆させ、このとき同時に光電子コレクタ電極に
+250Vの電圧を印加し続けて得た基板。
■ 紫外線を照射せずに、500℃において15分間H
Cα彼爆を行なった基板。
■ HCu被爆を全く行なわなかった基t!12(ただ
し、500℃、Ar中で、15分間紫外線を照射したも
の)。
第5図から明らかなように、充電流特性は、■と■とか
らなるグループと、■と■とからなるグループに明瞭に
分かれた。このことから、以下のrll柄が明らかとな
った。すなわち、■と■を比較すると明らかなように、
500℃程度の高温でも、紫外線照射のない場合には、
HC迂処理は効果がない。また、■と■を比較すると明
らかなように、自然酸化物の除去には、HC1彼爆は必
要不可欠である。これについては、第2A図、第2B図
、第3A図および第3B図の説明のところで説明したの
で、ここではその説明を省略する。
なお、第4A図〜第4D図の結果だけを参照すると、光
電流Δ−1定中に印加した外部電界によりHC(プラズ
マが発生し、そのプラズマによって自然酸化膜が除去さ
れているのではないかという疑問が生じるかもしれない
が、■と■を比べて、光電流値に差がないことより、か
かる疑問は解消される。
また、第5図を参照して、印加電圧の増加とともに光電
流か増加するのは、a?+定雰定見囲気ガスるAr中の
電子増倍作用によるもので、現在の議論にとって大きな
意味はない。以上の事柄より、自然酸化膜の除去は、光
と熱の相乗効果によって初めて可能となる、と結論づけ
ることができる。
それゆえ、光だけでは活性化できないような反応ガスを
用いても自然酸化膜の除去が可能となる。
また、著しい高温下に置かないと自然酸化膜を除去でき
ない場合であっても、光のエネルギの助けによって、よ
り低温で自然酸化膜を除去できるようになる。
次に、自然酸化膜の除去方法における、望ましい2!仮
温度の範囲を求める実験を行なった。
第6図は、UV−HCu系でシリコン基板をエツチング
したときの、エツチング速度と温度との関係を示した、
アレニウスプロット(log (エツチングレート)v
s、1/T)である。ここでは、自然酸化膜の除去速度
でなく、シリコン基板のエツチング速度をとっている。
これは、以下の理由による。すなわち、自然酸化膜は薄
すぎて、除去速度の定量ができないから、シリコン基板
のエツチング速度を求め、このシリコン基板のエツチン
グ速度から自然酸化膜の除去速度を推測しようと考えた
ためである。言うまでもなく、基板シリコンの最上層表
面に自然酸化膜が存在するから、基板シリコンがエツチ
ングされることは、自然酸化膜もエツチング除去されて
いることを示している。
第6図の結果を説明する前に、エツチング速度の求め方
を、第7A図〜第7C図を参照して説明する。まず、第
7A図を参照して、酸化膜のマスク15が形成された半
導体基板16を準備する。
半導体基板16には1〜100 Q・cmの抵抗を有す
るp型(100)シリコン基板を用いた。次に、第7B
図を参照して、エツチングを所定のエツチング条件(1
00%HC(J−ニア00sccm。
雰囲気圧カニ7.2Torr、低圧水銀ランプの照射の
ある場合とない場合)下で行なった。次に、第7C図を
参照して、マスク15を除去し、エツチング深さdを求
めた。このエツチング深さdから、エツチング速度が求
められた。
以上のような求め方により、UVを照射する場合とUV
を照射しない場合に分けて、種々の温度でエツチング速
度を求めた。第6図は、このようにして求められたエツ
チング速度を温度の関数として、アレニウスプロットし
たものである。
第6図を参照して、UV照射があっても、温度の低下と
ともにエツチング速度は減少し、200℃を屈曲点とし
て急低下することがわかった。これは、200℃以下で
は実効的なエツチングが起こらず、200℃以上にして
初めて実効的なエツチングが起こる、ということを示し
ている。また、第6図の下のプロットは、Uvを照射し
ないと、基板温度を600℃まで上昇させても、エツチ
ング速度があまり大きくならず、実効的エツチングが起
こらないことを示している。これらのエツチング条件は
、本発明の方法で採用される自然酸化膜の除去処理条件
と同じであるから、第6図の結果は、自然酸化膜の除去
速度にそのままあてはめることができる。
以上の結果より、基板温度を200℃以上にし、かつU
Vを照射して初めて、熱と光の相乗効果により、実効的
な自然酸化膜除去処理が行なえるということが直接的に
明らかとなった。
ところで、第6図からも明らかなように、200℃以上
ならば、温度を上げれば上げるほど、自然酸化膜の除去
速度は大きくなる。しかしながら、前述のように、過度
に温度を上げると、結晶性伺料の望ましくない粒径増大
等を招来し、低温前処理の利点が失われてしまう。
最近のデバイス作成上の傾向として、ポリシリコンはな
るべく結晶粒径の小さい、すなわち非晶質に近いものが
望まれており、基板温度は上述のとおり600℃以下に
するのが望ましいが、これ以上の温度で処理しても、実
用的には十分使用に耐えjGるものが得られるし、また
温度を上げると自然酸化膜の除去速度が速くなるという
利点がある。しかし、700℃を越えると、上記利点よ
りも、アモルファスシリコンからポリシリコンへ変化す
るという不利な点が強調されるようになる。
したがって、半導体基板の処理温度は200〜700℃
の範囲にある温度に設定されるのが望ましい。
本発明の他の実施例。
第8図は、この発明の他の実施例を実現するための装置
の断面図である。第8図に示す装置は、以上の点を除い
て、第1図に示す装置と同様であり、相当する部分には
同一の参照番号を付し、その説明を省略する。
第8図に示す装置が、第1図に示す装置と異なる点は、
反応ガスのみに光が当たるように、半導体基板4に対し
て平行に光か照射するように、紫外線入射窓2が設けら
れ、かつ光源1が配置されている点である。このような
構成にした場合、光源にはエキシマレーザを照射する光
源が好ましく用いられる。第1図に示す装置では光が基
板に直接的に当たるように構成されているので、光源に
エキシマレーザ光を用いると、自然酸化膜だけでなく基
板までエツチングされてしまう懸念があるが、第8図に
示すような装置を用いると、そのような懸念はなく、自
然酸化膜除去の速度を上げることができる。
本発明のさらに他の実施例: 第9A図および第9B図は、この発明のさらに他の実施
例を実現するための装置を示したものであり、第9A図
は正面断面図であり、第9B図は、第9A図におけるB
−B断面図である。
この装置は、シリコン基板を大皿に処理できるバッチ式
の処理装置である。処理装置はチャンバ13を備えてい
る。チャンバ13内には、複数個のシリコン基板4を保
持できるボート11が配置されている。ボート11は円
柱形状のものであり、その側壁には上下方向に延びる満
11aが、次数、間隔をおいて形成されている。その溝
11aのそれぞれには、シリコン基板を水平に保持する
保持溝11bが、上下方向に間隔をおいて、複数、形成
されている。ボート11は、その軸心を中心にして、回
転できるようになっている。
チャンバ13は、たとえばHutのようなりリニングガ
スを導入するクリーニングガス導入口6と、排気口9を
倫えている。
また、チャンバ13は、紫外線入射窓2を向えており、
この紫外線入射窓2の配置は、シリコン基板4に対して
平行に光を照射できるように選ばれている。紫外線入射
窓2に対向して、光源たとえば低圧水銀ランプ1か配置
される。
次に、この装置を用いて、半導体基板表面の前処理を行
なうh゛法について述べる。
ボート11に複数個のシリコン基板4を保持させる。こ
のシリコン基板4は溶剤処理を行なったものであり、既
に大気に触れて、その表面に自然酸化膜が形成されてい
るものである。次いで、チャンバ13内を真空引きする
。続いて、クリーニングガス導入口6より、Hutガス
等の反応ガスを導入すると同時に、低圧水銀ランプ1等
の光源から放射される紫外線を紫外線入射窓2を通して
、チャンバ13内のシリコン基1!j4表面および導入
された塩化水素ガス等の反応ガスに照射する。このとき
、シリコン基板4は光照射されることによって発生する
熱によって昇温される。この熱と、さらに引き続き照射
される光と、導入されたHC(ガスとによって、半導体
基板上の自然酸化膜が除去される。その後、HCαガス
を排気口9より真空引きした後、同一装置内で空気に晒
すことなく引き続き薄膜の形成を行なえば、シリコンパ
板4と薄膜との界面構造のよく制御された薄膜形成を行
なうことができる。
本発明のさらに他の実施例: 第10A図および第10B図は、この発明のさらに他の
実施例を実現するための装置を示したものであり、第1
0A図は平面断面図、第10B図は第10A図における
A−A線に沿う断面図である。
この装置もまた、シリコンJlを大量に処理できるバッ
チ式の処理装置である。これらの図を参照して、処理装
置は、紫外線透過性の材料、たとえば石英でできた円筒
形のチャンバ13を備えている。チャンバ13内には、
複数個のシリコン基板4を保持できる多角柱形の回転サ
セプタ18が配置されている。シリコン基11124は
、その裏面が回転サセプタ18の面に接するように、回
転サセプタ18に保持されている。チャンバ13は、た
とえばHCuのようなりリーニングガスを導入するクリ
ーニングガス導入口6と、排気口9を備えている。チャ
ンバ13の周囲には、光化学反応用の紫外線ランプ1と
基板加熱用の赤外線ランプ17が交互に配置されている
次に、この装置を用いて、半導体基板表面の前処理を行
なう方法について述べる。回転サセプタ18に複数個の
シリコン基板4を保持させ、該回転サセプタ18をその
軸を中心に回転させる。シリコン基板4は溶剤処理を行
なったものであり、既に大気に触れて、その表面に自然
酸化膜が形成されている。次いで、排気口9より、チャ
ンバ13内を真空引きする。続いて、クリーニングガス
導入口6より、HCILガス等の反応ガスを導入する。
これと同時に、水銀ランプ1および赤外線ランプ17を
点灯し、チャンバ13内に、紫外線および赤外線を照射
する。このとき、シリコン基板4は赤外線によって昇温
される。この熱と、紫外線と、導入されたH(4ガスと
によって、半導体基板上の自然酸化膜が除去される。そ
の後、チャンバ13内の反応ガスを成膜用ガスに置換え
ると、クリーニング後の基板上に、引き続き、人気に晒
すことなく、成膜を行なうことができる。この装置を用
いると、1回の処理で大量の基板の処理が可能となる。
なお、上記実施例では、エツチングガスとしてHCuガ
スを用いた場合を例示したが、塩素ガス、水素ガス等の
紫外領域に吸収のあるガスならいずれでも使用し得る。
また、光化学反応用の光源として、高圧水銀ランプ、水
銀キセノンランプ、アルゴン−アークランプ、ArFエ
キシマレーザ先、KrFエキシマレーザ先、XeCηエ
キシマレーザ光を用いてもよい。
[発明の効用] 以上説明したとおり、この発明によれば、半導体基板表
面上に付着した自然酸化膜または汚染物を反応ガスで除
去するにあたり、光と熱とを併用している。本発明の「
1然酸化膜の除去は、反応ガスと自然酸化膜との反応に
よって進むものであり、この反応が光と熱との相乗効果
により促進されるのを(り用している。それゆえに、光
だけでは活性化できないような反応ガスを用いても自然
酸化膜の除去がi’+J能となる。また、高温ドに置か
ないと自然酸化膜を除去できない場合であっても、先の
助けによって、より低温で自然酸化膜等を除去できるよ
うになる。それゆえに、十分低温で、かつ半導体基板表
面に損傷を与えずに、半導体基板表面の自然酸化膜を除
去できるという効果を奏する。
【図面の簡単な説明】
第1図は本発明の一実施例を実現するための装置の断面
図である。第2A図および第2B図は本発明の効果を評
価する第1の方法を説明するための図である。第3A図
および第3B図は、この発明の効果の評価を行なう第2
の方法を説明するための図である。第4A図、第4B図
、第4C図および第4D図は、本発明の温度効果を示し
た図である。第5図は本発明の紫外線照射効果を示した
図である。第6図はシリコン基板のエツチング速度と温
度との関係をアレニウスプロットした図である。第7A
図、第7B図および第7C図はシリコン基板のエツチン
グ速度を求めるための方法を示した図である。第8図は
本発明の他の実施例を実現するための装置の断面図であ
る。第9A図はこの発明のさらに他の実施例を実現する
ための装置の正面断面図であり、第9B図は第9A図に
おけるB−8断面図である。第10A図および第10B
図は、この発明のさらに他の実施例を実現するための装
置を示したものであり、第10 A図は平面断面図、第
10B図は第10A図におけるA−A線に沿う断面図で
ある。 図において、1は低圧水銀ランプ、3はチャンバ、4は
シリコン基板、6はクリーニングガス導入口、5aは加
熱手段である。 なお、各図中、同一初号は同一またはI111部分を示
す。

Claims (4)

    【特許請求の範囲】
  1. (1)半導体基板の表面に付着した自然酸化膜または汚
    染物を除去するための方法であって、チャンバ内に前記
    半導体基板を置く工程と、前記チャンバ内に前記自然酸
    化膜または前記汚染物と反応し得る反応ガスを導入する
    工程と、前記半導体基板を200〜700℃の範囲内に
    ある温度に加熱する工程と、 前記半導体基板の加熱を行なっているときに、前記20
    0〜700℃の範囲内にある温度で、前記チャンバ内に
    導入された反応ガスと前記半導体基板表面上に付着した
    自然酸化膜または汚染物との光化学反応を行なわしめる
    波長を有する光を前記反応ガスに照射する工程と、 を含む、半導体基板の前処理方法。
  2. (2)前記光を照射する照射光源として低圧水銀ランプ
    を用い、前記反応ガスとしてHClガスを用いる請求項
    1記載の、半導体 基板の前処理方法。
  3. (3)前記光を照射する照射光源として低圧水銀ランプ
    を用い、前記反応ガスとしてH_2ガスを用いる請求項
    1記載の、半導体基 板の前処理方法。
  4. (4)半導体基板の表面に付着した自然酸化膜または汚
    染物を除去するための方法であって、チャンバ内に前記
    半導体基板を置く工程と、前記チャンバ内に前記自然酸
    化膜または汚染物と反応し得るガスを導入する工程と、 前記半導体基板に光を照射することによって、該半導体
    基板を200〜700℃の範囲内にある温度に加熱する
    工程と、 前記半導体基板の加熱を行なっているときに、前記20
    0〜700℃の範囲内にある温度で、前記チャンバ内に
    導入された反応ガスと前記半導体基板表面上に付着した
    自然酸化膜または汚染物との光化学反応を行なわしめる
    波長を有する光を前記反応ガスに照射する工程と、 を含む、半導体基板の前処理方法。
JP63267391A 1988-04-28 1988-10-24 半導体基板の前処理方法 Pending JPH0228322A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63267391A JPH0228322A (ja) 1988-04-28 1988-10-24 半導体基板の前処理方法
US07/342,045 US5470799A (en) 1988-04-28 1989-04-24 Method for pretreating semiconductor substrate by photochemically removing native oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10810688 1988-04-28
JP63-108106 1988-04-28
JP63267391A JPH0228322A (ja) 1988-04-28 1988-10-24 半導体基板の前処理方法

Publications (1)

Publication Number Publication Date
JPH0228322A true JPH0228322A (ja) 1990-01-30

Family

ID=26448067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267391A Pending JPH0228322A (ja) 1988-04-28 1988-10-24 半導体基板の前処理方法

Country Status (2)

Country Link
US (1) US5470799A (ja)
JP (1) JPH0228322A (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW237562B (ja) 1990-11-09 1995-01-01 Semiconductor Energy Res Co Ltd
US5372958A (en) * 1990-11-16 1994-12-13 Seiko Epson Corporation Process for fabricating a thin film semiconductor device
US7025831B1 (en) 1995-12-21 2006-04-11 Fsi International, Inc. Apparatus for surface conditioning
KR100187448B1 (ko) * 1996-06-25 1999-04-15 김광호 반도체용 케미칼 농축방법 및 장치
JP4041182B2 (ja) 1997-01-27 2008-01-30 Sumco Techxiv株式会社 熱処理用シリコンウェーハ及びその製造方法
US5954884A (en) * 1997-03-17 1999-09-21 Fsi International Inc. UV/halogen metals removal process
US6165273A (en) * 1997-10-21 2000-12-26 Fsi International Inc. Equipment for UV wafer heating and photochemistry
US6465374B1 (en) 1997-10-21 2002-10-15 Fsi International, Inc. Method of surface preparation
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6325078B2 (en) * 1998-01-07 2001-12-04 Qc Solutions, Inc., Apparatus and method for rapid photo-thermal surface treatment
US6221168B1 (en) 1998-06-16 2001-04-24 Fsi International, Inc. HF/IPA based process for removing undesired oxides form a substrate
US6451714B2 (en) * 1998-08-26 2002-09-17 Micron Technology, Inc. System and method for selectively increasing surface temperature of an object
WO2000030157A1 (en) * 1998-11-16 2000-05-25 Fsi International, Inc. Equipment for uv wafer heating and photochemical processing
KR20040008193A (ko) 2001-05-30 2004-01-28 에이에스엠 아메리카, 인코포레이티드 저온 로딩 및 소성
US7063992B2 (en) * 2003-08-08 2006-06-20 Solid State Measurements, Inc. Semiconductor substrate surface preparation using high temperature convection heating
US7544603B2 (en) * 2005-09-22 2009-06-09 United Microelectronics Corp. Method of fabricating silicon nitride layer and method of fabricating semiconductor device
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US7789965B2 (en) 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
US7759199B2 (en) 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
US7871937B2 (en) 2008-05-16 2011-01-18 Asm America, Inc. Process and apparatus for treating wafers
US20100112191A1 (en) * 2008-10-30 2010-05-06 Micron Technology, Inc. Systems and associated methods for depositing materials
US8603292B2 (en) * 2009-10-28 2013-12-10 Lam Research Corporation Quartz window for a degas chamber
US8367528B2 (en) 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch
US8584612B2 (en) * 2009-12-17 2013-11-19 Lam Research Corporation UV lamp assembly of degas chamber having rotary shutters
US8492736B2 (en) 2010-06-09 2013-07-23 Lam Research Corporation Ozone plenum as UV shutter or tunable UV filter for cleaning semiconductor substrates
CN103098177A (zh) 2010-08-04 2013-05-08 应用材料公司 从衬底表面去除污染物与原生氧化物的方法
US9885123B2 (en) 2011-03-16 2018-02-06 Asm America, Inc. Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow
US8809170B2 (en) 2011-05-19 2014-08-19 Asm America Inc. High throughput cyclical epitaxial deposition and etch process
US10490475B2 (en) * 2015-06-03 2019-11-26 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation after oxide removal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590091A (en) * 1984-12-17 1986-05-20 Hughes Aircraft Company Photochemical process for substrate surface preparation
JPH0682652B2 (ja) * 1985-01-31 1994-10-19 株式会社東芝 シリコン熱酸化膜の形成方法
WO1987000346A1 (en) * 1985-07-02 1987-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film

Also Published As

Publication number Publication date
US5470799A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
JPH0228322A (ja) 半導体基板の前処理方法
US5407867A (en) Method of forming a thin film on surface of semiconductor substrate
US5174881A (en) Apparatus for forming a thin film on surface of semiconductor substrate
US6534412B1 (en) Method for removing native oxide
JP2729310B2 (ja) 半導体基板表面に薄膜を形成する装置
JP3078853B2 (ja) 酸化膜形成方法
JPH0294631A (ja) 薄膜形成方法及び薄膜形成装置
JPS61160939A (ja) ドライエツチング後Si表面損傷の乾式による除去方法
JP2006128391A (ja) 結晶質シリコン基板のその処理方法および光電変換素子
JP2003347241A (ja) カーボン系薄膜除去方法及び表面改質方法並びにそれらの処理装置
JPH02148727A (ja) 半導体基板表面の処理方法
JPH021913A (ja) 半導体装置用エッチング処理装置
JP2928538B2 (ja) 基板処理方法
JP4055581B2 (ja) Hsg膜の形成方法
JPH0281430A (ja) 半導体装置の処理装置
JPH01217926A (ja) ゲッタリング方法
JP2005210138A (ja) 半導体装置の製造装置
JP2001217222A (ja) 半導体装置の製造方法および半導体製造装置
JPH07176504A (ja) 半導体装置の製造方法
JPS63232337A (ja) ドライクリ−ニング方法
JPH02183530A (ja) 半導体素子の作製方法
JPH05308064A (ja) シリコン自然酸化膜の「その場」除去方法及びその装置
JPH05198499A (ja) レジスト膜のアッシング装置
JPS61256716A (ja) 光励起プロセス装置
JPS6179230A (ja) 半導体基板の処理方法