JPH022805B2 - - Google Patents

Info

Publication number
JPH022805B2
JPH022805B2 JP21118185A JP21118185A JPH022805B2 JP H022805 B2 JPH022805 B2 JP H022805B2 JP 21118185 A JP21118185 A JP 21118185A JP 21118185 A JP21118185 A JP 21118185A JP H022805 B2 JPH022805 B2 JP H022805B2
Authority
JP
Japan
Prior art keywords
reaction solution
silica particles
ammonia
particle size
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21118185A
Other languages
Japanese (ja)
Other versions
JPS6272516A (en
Inventor
Hiroyuki Kono
Genji Taga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP21118185A priority Critical patent/JPS6272516A/en
Publication of JPS6272516A publication Critical patent/JPS6272516A/en
Publication of JPH022805B2 publication Critical patent/JPH022805B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は粒径が非常に揃つた、いわゆる単分散
性の良好なシリカ粒子の製造方法に関する。 [従来技術およびその問題点] 従来、アルコキシシランなど加水分解可能な有
機珪素化合物を水、アンモニアおよびアルコール
の反応液中において加水分解することにより、シ
リカ粒子を得る方法が知られている。 しかしながら、従来法において得られる単分散
性の良好なシリカ粒子は、粒径が一般に0.05〜1μ
mと小さく、1μm以上の大きなシリカ粒子を得
ようとする場合は粒径が不揃いとなる問題があつ
た。即ち、反応液に有機珪素化合物またはその溶
液を添加する従来法では、反応の後半において微
細なシリカ粒子の発生、あるいは複数個のシリカ
粒子が凝集して大きなシリカ粒子を生成する現象
を伴うため、均一粒径のシリカ粒子が得られな
い。したがつて、単分散性の良好なシリカ粒子を
得るためには、反応を已む無く止ざるを得ず、粒
子が1μm以下のシリカ粒子しか得られなかつた。 一方、有機珪素化合物として例えばテトラペン
チルシリケートなど長鎖アルコールの珪酸エステ
ル、および反応液として例えばプロパノール/メ
タノール(=3/1)などの混合溶媒を用いるこ
とにより、粒径が2μmまでのシリカ粒子を得る
方法も提案されているが、前記と同様に単分散性
は比較的良好であるにしても、粒径の再現性が悪
いため、常に所望する粒径が得られ難い欠点があ
る。 [問題を解決するための手段] 本発明者等は、上記した従来法における問題点
を解決し、単分散性の良好なシリカ粒子を任意の
大きさで再現性よく得るために鋭意研究を重ね
た。その結果、加水分解可能な有機珪素化合物を
反応液中において加水分解してシリカ粒子を生成
するに際し、予め周期律表第族のアルカリ金属
イオンを添加混合した反応液を用いることによ
り、単分散の状態を保持した粒径の比較的大きい
シリカ粒子が容易に得られることを見出し、本発
明を提案するに至つたものである。 即ち、本発明は加水分解可能な有機珪素化合物
を反応液中において、周期律表第族のアルカリ
金属イオンの存在下に加水分解することを特徴と
するシリカ粒子の製造方法である。 本発明の方法は、一般に水、アンモニア及び溶
媒からなる反応液に周期律表第族のアルカリ金
属イオンを存在させればよく、他の条件は特に制
限されない。 本発明の原料である加水分解可能な有機珪素化
合物は特に限定されないが、代表的には一般式Si
(OR)4またはSiR′n(OR)4−nで示されるアル
コキシシラン、またはアルコキシシランを部分的
に加水分解して得られる低縮合物が工業的に入手
し易く、その1種または2種以上の混合物が好ま
しく使用される。なお、上記の一般式において、
RおよびR′はアルキル基で、例えばメチル基、
エチル基、イソプロピル基、ブチル基などの低級
アルキル基が好適である。 本発明において、上記した加水分解可能な有機
珪素化合物は溶媒を用いることなく、そのまま反
応液に添加することも可能であるが、反応の制御
を容易にするために、該有機珪素化合物の濃度を
一般に50重量%以下、特に5〜50重量%の範囲に
稀釈して使用することが好ましい。この稀釈用の
溶媒としては、加水分解可能な有機珪素化合物を
溶解することが出来、しかも水と一定の割合で均
一に混合できるものであれば特に制限されない
が、一般に容易に入手可能な例えばメタノール、
エタノール、イソプロピルアルコール、ブタノー
ル、エチレングリコールプロピレングリコールな
どのアルコール類が好適に用いられる。 次に、本発明に用いる反応液としては一般に
水、アンモニアおよび溶媒よりなり、かつ周期律
表第族のアルカリ金属イオンを含む均一混合液
を調整する。反応液に用いる溶媒としては、水お
よびアンモニアと均一な溶液を調整できるもので
あれば特に制限されず、一般に前記したアルコー
ル類が好適であり、一般に炭素原子数の多いアル
コール類を用いるほど、得られるシリカ粒子の粒
径を大きく出来る傾向にある。また、反応液にお
ける水およびアンモニアの濃度は、一般に、それ
ぞれ0.5〜50mol/、1.0〜10mol/の範囲か
ら選択して決定すればよい。 なお、反応液における水の濃度およびアンモニ
アの濃度は、それぞれ水/溶媒(合計)、アンモ
ニア/溶媒(合計)で表される量であり溶媒(合
計)とは、初期反応液の溶媒+有機珪素化合物の
溶液の溶媒+該有機珪素化合物の加水分解反応に
おいて生じる溶媒+後記するアンモニアおよび水
のコントロール用混合液の溶媒の合計量を示す。 次に、本発明において周期律表第族のアルカ
リ金属イオンを存在させる反応液は、一般に上記
した水、アンモニアおよび溶媒の混合溶液中に該
アルカリ金属イオンを生成し得る化合物であれば
特に制限なく添加、混合して所定の濃度に調整さ
れる。上記のアルカリ金属イオンを生成し得る化
合物としては、例えば水酸化リチウム、水酸化ナ
トリウム、水酸化カリウムなど周期律表第族の
アルカリ金属水酸化物が好適に用いられる。 本発明の反応液における上記したアルカリ金属
イオンの濃度は、製造するシリカの粒子径等々の
条件により異なるため一概に決められないが、一
般に反応液に用いる水、アンモニアおよび溶媒の
合計重量に対して0.001〜1mol/Kg、特に0.002〜
0.1mol/Kgの範囲にすることが好ましい。即ち、
反応液における該アルカリ金属イオンの濃度が上
記した範囲より低い場合には、本発明の効果が充
分に発揮されずシリカの粒径が大きくならず、ま
た反応液におけるアルカリ金属イオンの濃度が高
いほど粒径の大きいシリカが得られる傾向にある
が、上記した範囲より高い場合には種々の粒径の
シリカが生成し均一粒径のシリカ粒子が得られな
い。したがつて、本発明は反応の継続中におい
て、一般に所定のアルカリ金属イオン濃度を維持
するように初期の反応液に調製すればよいが、ま
た必要に応じて途中でアルカリ金属イオンを生成
し得る化合物を添加して所定のアルカリ金属イオ
ン濃度に調整することも出来る。 本発明の加水分解反応において、反応を続行す
る間、反応液における水およびアンモニアをそれ
ぞれ前記した一般に0.5〜50mol/、1〜
10mol/の範囲で選択した所定の初期値に対し
て実質的に変化させないようにコントロールする
ことは粒径の均一性をより一層高める方法として
有効である。このような反応液における水および
アンモニアの濃度を実質的に変化させることなく
均一に維持する方法としては、一般に予め所定の
濃度に調整した水、アンモニアおよび溶媒の反応
液に原料である加水分解可能な有機珪素化合物と
水およびアンモニアを所定濃度を維持する割合
で、逐次に同時添加することにより簡便に達成さ
れる。なお、上記した反応液の水およびアンモニ
アの濃度をそれぞれ実質的に変化させないとは、
所定の初期濃度(値)に対して±50%以内、好ま
しくは±30%以内に維持すればよい。 本発明における反応温度は種々の条件により異
なり一概に限定することが出来ないが、一般に大
気圧下で0〜40℃、好ましくは5〜30℃で実施さ
れる。 [効果] 本発明によれば、一般に粒子径が0.05〜50μm
の範囲で、粒子径の変動係数が10%以下という揃
つた粒度分布を有する球状シリカ粒子を任意に得
ることが出来る。したがつて、これら本発明で得
られるシリカ粒子は、球状かつ均一粒径の粉体ビ
ーズとして有用で、例えば免疫、臨床検査用、液
晶等のマイクロエレクトロニクスのスペーサー
用、濾過材評価試験用、液クロ、ガスクロの担体
などに好適に用いられる。 [実施例] 以下、本発明の実施例を挙げて具体的に説明す
るが、本発明はこれらの実施例によつて何ら制限
されるものではない。 実施例 1 撹拌機つきの内容積5のガラス製反応器に、
メタノール、アンモニア水(25重量%)および
5N―NaOH水溶液をそれぞれ1.6、350c.c.およ
び8c.c.を仕込み、良く混合して反応液を調整し
た。なお、反応液中のナトリウムイオン濃度は約
0.025mol/Kgである。 また、メタノール1に対して、テトラエチル
シリケート[Si(OC2H54、日本コルコート化学
社製、商品名エチルシリケート―28)を208gの
割合で溶解した原料溶液を準備した。 次に、反応液の温度を20℃に保ちながら、原料
液を1.5g/minの速度で混合した。添加開始後、
十数分間で反応液は乳白色となつた。表―1に示
すそれぞれ一定量のテトラエチルシリケートの溶
液を添加した後、反応を停止し、反応液を静置し
てシリカ粒子を沈降させ上澄液を分離した。更
に、メタノール中に再分散―デカンテーシヨン処
理を行いエバボレーターでメタノールを除き、生
成したシリカ粒子を取り出した。 得られたシリカ粒子は走査型電子顕微鏡写真に
より観察の結果、テトラエチルシリケートの添加
量にかかわらず、いずれも球形であつた。また、
それぞれ得られたシリカ粒子の粒径および変動係
数を表―1に示した。
[Industrial Field of Application] The present invention relates to a method for producing silica particles with very uniform particle sizes and good so-called monodispersity. [Prior Art and its Problems] Conventionally, a method is known in which silica particles are obtained by hydrolyzing a hydrolyzable organosilicon compound such as an alkoxysilane in a reaction solution of water, ammonia, and alcohol. However, silica particles with good monodispersity obtained by conventional methods generally have a particle size of 0.05 to 1μ.
When attempting to obtain silica particles as small as 1 μm or larger than 1 μm, there was a problem in that the particle sizes were uneven. That is, the conventional method of adding an organosilicon compound or its solution to the reaction solution involves the generation of fine silica particles in the latter half of the reaction, or the phenomenon of aggregation of multiple silica particles to produce large silica particles. Silica particles of uniform particle size cannot be obtained. Therefore, in order to obtain silica particles with good monodispersity, it is necessary to slow down the reaction, and only silica particles with a particle size of 1 μm or less can be obtained. On the other hand, by using a silicate ester of a long-chain alcohol such as tetrapentyl silicate as the organosilicon compound and a mixed solvent such as propanol/methanol (=3/1) as the reaction liquid, silica particles with a particle size of up to 2 μm can be produced. A method for obtaining the particles has also been proposed, but as mentioned above, even though the monodispersity is relatively good, the reproducibility of the particle size is poor, so it is difficult to always obtain the desired particle size. [Means for Solving the Problems] The present inventors have conducted extensive research in order to solve the problems in the conventional methods described above and obtain monodisperse silica particles of any size with good reproducibility. Ta. As a result, when a hydrolyzable organosilicon compound is hydrolyzed in a reaction solution to produce silica particles, by using a reaction solution to which alkali metal ions from group 3 of the periodic table have been added and mixed, monodisperse particles can be produced. The present inventors have discovered that silica particles with a relatively large particle size that maintain their state can be easily obtained, and have proposed the present invention. That is, the present invention is a method for producing silica particles, which is characterized in that a hydrolyzable organosilicon compound is hydrolyzed in a reaction solution in the presence of an alkali metal ion from Group 3 of the periodic table. In the method of the present invention, it is sufficient that an alkali metal ion of Group 1 of the periodic table is generally present in a reaction solution consisting of water, ammonia, and a solvent, and other conditions are not particularly limited. The hydrolyzable organosilicon compound that is the raw material of the present invention is not particularly limited, but typically has the general formula Si
Alkoxysilanes represented by (OR) 4 or SiR'n (OR) 4-n, or low condensates obtained by partially hydrolyzing alkoxysilanes, are easily available industrially, and one or two of them are available. Mixtures of the above are preferably used. In addition, in the above general formula,
R and R' are alkyl groups, such as methyl group,
Lower alkyl groups such as ethyl, isopropyl and butyl are preferred. In the present invention, the above-mentioned hydrolyzable organosilicon compound can be added to the reaction solution as it is without using a solvent, but in order to easily control the reaction, the concentration of the organosilicon compound can be adjusted. Generally, it is preferable to use it after diluting it to 50% by weight or less, particularly in the range of 5 to 50% by weight. The solvent for this dilution is not particularly limited as long as it can dissolve the hydrolyzable organosilicon compound and can be homogeneously mixed with water at a certain ratio, but methanol is commonly available, such as methanol. ,
Alcohols such as ethanol, isopropyl alcohol, butanol, and ethylene glycol propylene glycol are preferably used. Next, as the reaction solution used in the present invention, a homogeneous mixed solution generally consisting of water, ammonia and a solvent and containing an alkali metal ion of group 1 of the periodic table is prepared. The solvent used for the reaction solution is not particularly limited as long as it can prepare a homogeneous solution with water and ammonia, and the above-mentioned alcohols are generally preferred, and generally the more carbon atoms are used, the better the yield. There is a tendency for the particle size of the silica particles to be increased. In addition, the concentrations of water and ammonia in the reaction solution may generally be selected and determined from the ranges of 0.5 to 50 mol/ and 1.0 to 10 mol/, respectively. The concentrations of water and ammonia in the reaction solution are expressed as water/solvent (total) and ammonia/solvent (total), respectively. Solvent (total) is the initial reaction solution's solvent + organosilicon. The total amount of the solvent of the solution of the compound + the solvent generated in the hydrolysis reaction of the organosilicon compound + the solvent of the control mixture of ammonia and water described later is shown. Next, in the present invention, the reaction solution in which an alkali metal ion of group 3 of the periodic table is present is generally not particularly limited as long as it is a compound capable of producing the alkali metal ion in the above-mentioned mixed solution of water, ammonia, and a solvent. The concentration is adjusted to a predetermined concentration by adding and mixing. As the compound capable of producing the above-mentioned alkali metal ions, for example, alkali metal hydroxides from group 3 of the periodic table, such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, are preferably used. The concentration of the above-mentioned alkali metal ions in the reaction solution of the present invention cannot be determined unconditionally because it varies depending on conditions such as the particle size of the silica to be produced, but it is generally based on the total weight of water, ammonia, and solvent used in the reaction solution. 0.001~1mol/Kg, especially 0.002~
It is preferably in the range of 0.1 mol/Kg. That is,
If the concentration of the alkali metal ions in the reaction solution is lower than the above range, the effect of the present invention will not be sufficiently exhibited and the particle size of the silica will not increase, and the higher the concentration of the alkali metal ions in the reaction solution, the more Silica with a large particle size tends to be obtained, but if the particle size is higher than the above range, silica with various particle sizes will be produced, making it impossible to obtain silica particles with a uniform particle size. Therefore, in the present invention, the initial reaction solution may generally be prepared to maintain a predetermined alkali metal ion concentration during the continuation of the reaction, but alkali metal ions may be generated during the reaction if necessary. It is also possible to adjust the alkali metal ion concentration to a predetermined level by adding a compound. In the hydrolysis reaction of the present invention, while the reaction is continued, the amount of water and ammonia in the reaction solution is generally 0.5 to 50 mol/, 1 to 1, respectively, as described above.
Controlling so as not to substantially change the predetermined initial value selected in the range of 10 mol/l is effective as a method for further increasing the uniformity of the particle size. In general, as a method for maintaining the concentrations of water and ammonia in the reaction solution uniform without substantially changing them, a reaction solution of water, ammonia, and a solvent that has been adjusted to a predetermined concentration is generally mixed with a hydrolyzable raw material. This can be easily achieved by sequentially and simultaneously adding an organic silicon compound, water, and ammonia at a rate that maintains a predetermined concentration. Note that not substantially changing the concentrations of water and ammonia in the reaction solution described above means
It is sufficient to maintain the predetermined initial concentration (value) within ±50%, preferably within ±30%. Although the reaction temperature in the present invention varies depending on various conditions and cannot be absolutely limited, it is generally carried out at 0 to 40°C, preferably 5 to 30°C, under atmospheric pressure. [Effect] According to the present invention, the particle size is generally 0.05 to 50 μm.
Within this range, it is possible to arbitrarily obtain spherical silica particles having a uniform particle size distribution with a particle size variation coefficient of 10% or less. Therefore, these silica particles obtained by the present invention are useful as powder beads with a spherical shape and uniform particle size, and are used, for example, in immunology, clinical tests, spacers for microelectronics such as liquid crystals, filter material evaluation tests, and liquid beads. It is suitably used as a carrier for chromatography and gas chromatography. [Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited by these Examples. Example 1 A glass reactor with an internal volume of 5 and equipped with a stirrer was
Methanol, aqueous ammonia (25% by weight) and
1.6, 350 c.c., and 8 c.c. of 5N-NaOH aqueous solutions were charged, respectively, and mixed well to prepare a reaction solution. Note that the sodium ion concentration in the reaction solution is approximately
It is 0.025mol/Kg. In addition, a raw material solution was prepared in which 208 g of tetraethyl silicate [Si(OC 2 H 5 ) 4 , manufactured by Nippon Colcoat Chemical Co., Ltd., trade name: Ethyl silicate-28] was dissolved in 1 methanol. Next, the raw material liquid was mixed at a rate of 1.5 g/min while maintaining the temperature of the reaction liquid at 20°C. After starting the addition,
The reaction solution became milky white in about ten minutes. After adding a certain amount of the tetraethyl silicate solution shown in Table 1, the reaction was stopped, the reaction solution was allowed to stand, the silica particles were allowed to settle, and the supernatant was separated. Furthermore, a redispersion-decantation process was performed in methanol, methanol was removed using an evaporator, and the generated silica particles were taken out. As a result of observation using scanning electron micrographs, the obtained silica particles were all spherical regardless of the amount of tetraethyl silicate added. Also,
Table 1 shows the particle diameters and coefficients of variation of the silica particles obtained.

【表】 実施例 2〜8 実施例1に準じた同様な方法で、反応液中のア
ルカリ金属イオン濃度を変えることにより、粒子
径の異なるシリカ粒子を製造した。 得られたシリカ粒子は走査型電子顕微鏡写真に
より観察の結果、アルカリ金属イオン濃度にかか
わらずいずれも球形であつた。結果はまとめて表
―2に示した。
[Table] Examples 2 to 8 Silica particles having different particle sizes were produced in the same manner as in Example 1 by changing the alkali metal ion concentration in the reaction solution. As a result of observation using scanning electron micrographs, the obtained silica particles were all spherical regardless of the alkali metal ion concentration. The results are summarized in Table 2.

【表】 実施例 9 メタノール、アンモニア水(25重量%)および
5N―KOH水溶液をそれぞれ1.6、350c.c.、10c.c.
を良く混合して反応液を調整し実施例1と同様な
方法でシリカ粒子の製造を行つた。 なお反応液中ののカリウムイオン濃度は約
0.031mol/Kgである。 得られたシリカ粒子は走査型電子顕微鏡写真に
より観察の結果、テトラエチルシリケートの添加
量にかかわらず、いずれも球形であつた。結果は
まとめて表―3に示した。
[Table] Example 9 Methanol, aqueous ammonia (25% by weight) and
5N-KOH aqueous solution at 1.6, 350 c.c., and 10 c.c., respectively.
A reaction solution was prepared by mixing well, and silica particles were produced in the same manner as in Example 1. The potassium ion concentration in the reaction solution is approximately
It is 0.031mol/Kg. As a result of observation using scanning electron micrographs, the obtained silica particles were all spherical regardless of the amount of tetraethyl silicate added. The results are summarized in Table 3.

【表】 比較例 1 撹拌器つき反応容器にメタノール1.6および
アンモニア水(25重量%)350c.c.を仕込み、良く
混合して20℃に保つた。次に、メタノール1に
テトラエチルシリケート208gを溶解した溶液を、
上記の反応液に1.5g/minの速度で添加混合し
た。 テトラエチルシリケートの添加量に応じて、得
られるシリカ粒子について平均粒径とその変動係
数を表―4に示した。
[Table] Comparative Example 1 In a reaction vessel equipped with a stirrer, 1.6 methanol and 350 c.c. of ammonia water (25% by weight) were charged, mixed well, and kept at 20°C. Next, a solution of 208 g of tetraethyl silicate dissolved in 1 methanol,
It was added and mixed to the above reaction solution at a rate of 1.5 g/min. Table 4 shows the average particle diameter and its coefficient of variation of the resulting silica particles depending on the amount of tetraethylsilicate added.

【表】 ードとなつた。
[Table] It became a code.

Claims (1)

【特許請求の範囲】[Claims] 1 加水分解可能な有機珪素化合物を反応液中に
おいて、周期律表第族のアルカリ金属イオンの
存在下に加水分解させることを特徴とするシリカ
粒子の製造方法。
1. A method for producing silica particles, which comprises hydrolyzing a hydrolyzable organosilicon compound in a reaction solution in the presence of an alkali metal ion of group 1 of the periodic table.
JP21118185A 1985-09-26 1985-09-26 Production of silica particle Granted JPS6272516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21118185A JPS6272516A (en) 1985-09-26 1985-09-26 Production of silica particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21118185A JPS6272516A (en) 1985-09-26 1985-09-26 Production of silica particle

Publications (2)

Publication Number Publication Date
JPS6272516A JPS6272516A (en) 1987-04-03
JPH022805B2 true JPH022805B2 (en) 1990-01-19

Family

ID=16601754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21118185A Granted JPS6272516A (en) 1985-09-26 1985-09-26 Production of silica particle

Country Status (1)

Country Link
JP (1) JPS6272516A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950001660B1 (en) * 1989-04-07 1995-02-28 니혼 쇼꾸바이 가가꾸 고오교 가부시기가이샤 Method for production of inorganic oxide particles

Also Published As

Publication number Publication date
JPS6272516A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
US4842837A (en) Process for producing fine spherical silica
EP0502129B1 (en) Process for forming highly uniform silica spheres
JPH0159974B2 (en)
JPH09502693A (en) A method for forming large silica spheres by low temperature nucleation.
TW201831402A (en) Silica particle dispersion and method for producing same
JP3584485B2 (en) Method for producing silica sol
JP2004514027A (en) Process for producing fumed metal oxide dispersion
JP2019116396A (en) Silica-based particle dispersion and production method thereof
CN113651336A (en) Silica microspheres and preparation method thereof
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JPH06254383A (en) Production of metal oxide particulate
JPH02288B2 (en)
JP3330984B2 (en) Method for producing monodisperse spherical silica
JPH022805B2 (en)
JP2000178020A (en) High purity silica aqueous sol and its production
JP3746301B2 (en) Method for producing spherical silica particles
JP3354650B2 (en) Method for producing silica particles
JPH10287415A (en) Production of highly pure spherical silica
JPH07277724A (en) Production of silica grain
JPH08337413A (en) Silica particles and their production
JP2915224B2 (en) Method for producing inorganic oxide particles
JPH03159911A (en) Production of spherical silica particle
JP3556277B2 (en) Method for producing metal oxide particles
JPH0624712A (en) Production of inorganic oxide particle
JPH0461810B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term