JPH02268412A - Manufacture of capacitor - Google Patents

Manufacture of capacitor

Info

Publication number
JPH02268412A
JPH02268412A JP8983289A JP8983289A JPH02268412A JP H02268412 A JPH02268412 A JP H02268412A JP 8983289 A JP8983289 A JP 8983289A JP 8983289 A JP8983289 A JP 8983289A JP H02268412 A JPH02268412 A JP H02268412A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
silicon
oxide film
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8983289A
Other languages
Japanese (ja)
Inventor
Tetsuo Ishida
哲夫 石田
Hiroshi Oishi
大石 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8983289A priority Critical patent/JPH02268412A/en
Publication of JPH02268412A publication Critical patent/JPH02268412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve uniformity in thickness of a laminated insulating film by forming a silicon oxide film in a specific thickness or less before a silicon nitride film is formed on a conductive film made of polycrystalline Si. CONSTITUTION:A polycrystalline Si film 2 is formed on a semiconductor substrate 1 as an electrode. The film 2 is oxidized 15Angstrom or less to form a silicon oxide film 7. A sillcon nitride film 4 is formed thereon, and the film 4 is oxidized to form a silicon oxide film 5. Then, a polycrystalline Si film 6 is formed on the film 5, and conductivity is enhanced by diffusing impurity as an electrode. Thus, since the uniformity of the thickness of a laminated insulator is improved on a semiconductor substrate and between the substrates, the uniformity of capacity is improved, the aging breakdown characteristic of the laminated insulating film is improved to obtain a capacitor having high reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体基板上に設けた多結晶シリコン電極の
キャパシタを形成する製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a manufacturing method for forming a capacitor of a polycrystalline silicon electrode provided on a semiconductor substrate.

(従来の技術) 近年、半導体装置の微細化、集積化が進む中で、半導体
記憶素子(以下、メモリセルという)1個当りの面積が
小さくなり、メモリセル容量を確保するだめに、従来の
半導体基板に形成したプレーナーキャパシタに代わり、
半導体基板上の大きな段差を利用した多結晶シリコンを
電極として、この電極上に容量絶縁膜を形成するスタッ
クキャパシタが採用されている。その容量絶縁膜として
窒化珪素膜と酸化珪素膜の積層膜で形成する製造方法が
行われるようになってきた。
(Prior Art) In recent years, as semiconductor devices have become smaller and more integrated, the area per semiconductor memory element (hereinafter referred to as a memory cell) has become smaller. Instead of planar capacitors formed on semiconductor substrates,
A stacked capacitor is used in which a polycrystalline silicon electrode is used as an electrode, and a capacitive insulating film is formed on the electrode, making use of a large step difference on a semiconductor substrate. A manufacturing method in which the capacitor insulating film is formed using a laminated film of a silicon nitride film and a silicon oxide film has come to be used.

第2図は従来のキャパシタの1遣方法により形成した酸
化珪素膜と窒化珪素膜と酸化珪素膜の積層膜の概略を示
したものである。第2図において、1は半導体基板、2
および6は多結晶シリコン膜。
FIG. 2 schematically shows a laminated film of a silicon oxide film, a silicon nitride film, and a silicon oxide film formed by the conventional one-layer method for capacitors. In FIG. 2, 1 is a semiconductor substrate, 2
and 6 is a polycrystalline silicon film.

3および5は酸化珪素膜、4は窒化珪素膜である。3 and 5 are silicon oxide films, and 4 is a silicon nitride film.

次に上記従来の製造方法について説明する。半導体基板
1上に気相成長(CVD)により多結晶シリコン膜2を
形成し、不純物拡散により導電性を高め電極とする。そ
の多結晶シリコン膜2上に窒化珪素膜4をCVDにより
形成する際、CVD装置での酸素の巻き込みにより、形
成される窒化珪素膜4と多結晶シリコン膜2の間には、
酸化珪素膜3が10人程度形成される。次に、窒化珪素
膜4を高温熱処理炉で酸化することにより酸化珪素膜5
を形成する。その上にCVDにより多結晶シリコン膜6
を形成し不純物拡散により導電性を高め電極となる。以
上のようにして多結晶シリコン膜2および6の電極間に
酸化珪素膜3と窒化珪素膜4と酸化珪素膜5の積層容量
絶縁膜が形成される6(発明が解決しようとする課題) しかしながら、上記従来の製造方法では、窒化珪素膜4
を形成する際、必ず酸化珪素膜3が形成されるにの酸化
珪素膜3は、多結晶シリコン膜2が酸化されて形成され
るものであるが、多結晶シリコンに不純物拡散が行われ
ているため、表面不純物濃度により酸化速度が影響され
ることから、半導体基板内や半導体基板間で多結晶シリ
コン膜2の表面不純物濃度分布に依存して膜厚が異なる
Next, the above conventional manufacturing method will be explained. A polycrystalline silicon film 2 is formed on a semiconductor substrate 1 by vapor phase growth (CVD), and is made into an electrode by increasing conductivity by diffusing impurities. When a silicon nitride film 4 is formed on the polycrystalline silicon film 2 by CVD, there are
About 10 silicon oxide films 3 are formed. Next, the silicon nitride film 4 is oxidized in a high-temperature heat treatment furnace to form a silicon oxide film 5.
form. On top of that, a polycrystalline silicon film 6 is formed by CVD.
The conductivity is increased by impurity diffusion and becomes an electrode. As described above, a laminated capacitive insulating film of silicon oxide film 3, silicon nitride film 4, and silicon oxide film 5 is formed between the electrodes of polycrystalline silicon films 2 and 6 (Problem to be Solved by the Invention) However, , in the above conventional manufacturing method, the silicon nitride film 4
When forming the silicon oxide film 3, the silicon oxide film 3 is formed by oxidizing the polycrystalline silicon film 2, but impurities are diffused into the polycrystalline silicon. Therefore, since the oxidation rate is affected by the surface impurity concentration, the film thickness varies depending on the surface impurity concentration distribution of the polycrystalline silicon film 2 within a semiconductor substrate or between semiconductor substrates.

このような理由により、酸化珪素膜3は半導体基板内と
半導体基板間で膜厚に差が生じ、容量絶縁膜の膜厚が異
なることになり、メモリセル容量に差が生じる問題を有
していた。また、酸化珪素膜3は700〜800℃で形
成される多結晶シリコン上の酸化珪素膜のため、耐圧が
低く、信頼性を低下させる開運も有していた。
For these reasons, the silicon oxide film 3 has a difference in film thickness between the semiconductor substrate and the semiconductor substrate, resulting in a difference in the film thickness of the capacitor insulating film, which causes a problem of a difference in memory cell capacitance. Ta. Furthermore, since the silicon oxide film 3 is a silicon oxide film on polycrystalline silicon formed at 700 to 800° C., it has a low breakdown voltage and has the disadvantage of lowering reliability.

本発明は、上記従来の課題を解決するもので、半導体基
板内及び半導体基板間の積層絶縁膜の膜厚の均一性を向
上させ、信頼性の高いキャパシタを製造する製造方法を
提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a manufacturing method for manufacturing a highly reliable capacitor by improving the uniformity of the thickness of a laminated insulating film within a semiconductor substrate and between semiconductor substrates. This is the purpose.

(11題を解決するための手段) 本発明は上記目的を達成するために、キャパシタの製造
方法は、CVDにより窒化珪素膜を形成する前に雰囲気
を制御したランプ加熱装置により1100〜1200℃
の温度で15Å以下の均一かつ良質の酸化珪素膜を形成
した上に窒化珪素膜を形成するようにしたものである。
(Means for Solving Problem 11) In order to achieve the above object, the present invention provides a capacitor manufacturing method that uses a lamp heating device with a controlled atmosphere to heat the capacitor to 1100 to 1200° C. before forming a silicon nitride film by CVD.
A silicon nitride film is formed on a uniform and high-quality silicon oxide film with a thickness of 15 Å or less at a temperature of .

(作 用) したがって1本発明による製造方法によれば、多結晶シ
リコン膜上に形成される酸化珪素膜を安定化し、信頼性
の高いキャパシタを形成することができる。
(Function) Therefore, according to the manufacturing method according to the present invention, the silicon oxide film formed on the polycrystalline silicon film can be stabilized, and a highly reliable capacitor can be formed.

(実施例) 第1図は本発明の一実施例におけるキャパシタ製造方法
による積層絶縁膜の概略断面を示したものである。第1
図において、1は半導体基板、2および6は多結晶シリ
コン、4は窒化珪素膜、5および7は酸化珪素膜である
(Example) FIG. 1 shows a schematic cross section of a laminated insulating film produced by a capacitor manufacturing method according to an example of the present invention. 1st
In the figure, 1 is a semiconductor substrate, 2 and 6 are polycrystalline silicon, 4 is a silicon nitride film, and 5 and 7 are silicon oxide films.

次に上記実施例の積層絶縁膜の製造方法について説明す
る。半導体基板1上にCVDによる多結晶シリコン膜2
を形成し、不純物拡散により導電性を高め電極とする。
Next, a method of manufacturing the laminated insulating film of the above embodiment will be explained. Polycrystalline silicon film 2 formed by CVD on semiconductor substrate 1
is formed, and the conductivity is increased by impurity diffusion to form an electrode.

その上に雰囲気を窒素で酸素を50分の1程度に希釈す
るか、または減圧下において酸素を流すことにより、酸
化速度を非常に低下させた状態で、ランプによる急速加
熱により1100〜1200℃の温度範囲に昇温し、多
結晶シリコン膜2を15Å以下酸化し酸化珪素膜7を形
成する。
On top of that, the oxidation rate is extremely reduced by diluting the oxygen to about 1/50 with nitrogen or by flowing oxygen under reduced pressure, and then rapidly heated with a lamp to 1100-1200℃. The temperature is raised to a temperature range, and the polycrystalline silicon film 2 is oxidized to a thickness of 15 Å or less to form a silicon oxide film 7.

その上にCVDにより窒化珪素膜4を形成し、高温熱処
理炉において熱酸化を行い、酸化珪素膜5を形成し、そ
の上にCVDにより多結晶シリコン膜6を形成し、不純
物拡散により導電性を高め電極とする0以上のようにし
て多結晶シリコン膜2゜6の電極間に積層絶縁膜が形成
される。
A silicon nitride film 4 is formed thereon by CVD, thermal oxidation is performed in a high-temperature heat treatment furnace to form a silicon oxide film 5, a polycrystalline silicon film 6 is formed thereon by CVD, and conductivity is improved by diffusion of impurities. A laminated insulating film is formed between the electrodes of the polycrystalline silicon film 2.6 so that the height of the electrode is 0 or more.

以上のように本実施例によれば、雰囲気を制御した11
00〜1200℃のランプ加熱により窒化珪素膜下の酸
化珪素膜を15Å以下で、均一かつ良質なものとするこ
とができ、高温処理ではあるが処理時間が数分と極めて
短いため拡散長に影響を与えることはなく、半導体基板
及び半導体基板間で積層絶縁膜の膜厚均一性が向上する
ことにより容量の均一性が向上するとともに、積層絶縁
膜の経時破壊特性が改善され信頼性の高いキャパシタが
実現する。
As described above, according to this embodiment, 11
The silicon oxide film under the silicon nitride film can be made uniform and of good quality with a thickness of 15 Å or less by lamp heating at 00 to 1200°C, and although it is a high temperature treatment, the treatment time is extremely short, only a few minutes, so it affects the diffusion length. By improving the uniformity of the thickness of the laminated insulating film between semiconductor substrates, the uniformity of capacitance is improved, and the aging breakdown characteristics of the laminated insulating film are improved, resulting in a highly reliable capacitor. will be realized.

(発明の効果) 本発明は上記実施例から明らかなように、多結晶シリコ
ン膜上に形成される酸化珪素膜を雰囲気を制御したラン
プ加熱装置で15Å以下形成することにより、積層絶縁
膜の膜厚の均一性の向上及び信頼性が向上したキャパシ
タを製造できるという効果を有する。
(Effects of the Invention) As is clear from the above embodiments, the present invention is capable of forming a layered insulating film by forming a silicon oxide film formed on a polycrystalline silicon film to a thickness of 15 Å or less using a lamp heating device in which the atmosphere is controlled. This has the effect that a capacitor with improved thickness uniformity and reliability can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるキャパシタの製造方
法による積層絶縁膜の概略断面図、第2図は従来の製造
方法による積層絶縁膜の概略断面図である。 1 ・・・半導体基板、 2,6 ・・・多結晶シリコ
ン膜、 3,5.7 ・・・酸化珪素膜、4・・・窒化
珪素膜。 特許出願人 松下電子工業株式会社 第 図 第 図
FIG. 1 is a schematic cross-sectional view of a laminated insulating film formed by a capacitor manufacturing method according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a laminated insulating film formed by a conventional manufacturing method. 1...Semiconductor substrate, 2,6...Polycrystalline silicon film, 3,5.7...Silicon oxide film, 4...Silicon nitride film. Patent applicant Matsushita Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に多結晶シリコンからなる導電膜を形成す
る工程と、前記多結晶シリコン表面に15Å以下の酸化
珪素膜を形成する工程と、前記酸化珪素膜上に窒化珪素
膜を被覆する工程と、前記窒化珪素膜を酸化し酸化珪素
膜を形成する工程と、前記酸化珪素膜上に多結晶シリコ
ンからなる導電膜を形成する工程を備えたことを特徴と
するキャパシタの製造方法。
a step of forming a conductive film made of polycrystalline silicon on a semiconductor substrate, a step of forming a silicon oxide film of 15 Å or less on the surface of the polycrystalline silicon, a step of covering the silicon oxide film with a silicon nitride film, A method for manufacturing a capacitor, comprising the steps of: oxidizing the silicon nitride film to form a silicon oxide film; and forming a conductive film made of polycrystalline silicon on the silicon oxide film.
JP8983289A 1989-04-11 1989-04-11 Manufacture of capacitor Pending JPH02268412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8983289A JPH02268412A (en) 1989-04-11 1989-04-11 Manufacture of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8983289A JPH02268412A (en) 1989-04-11 1989-04-11 Manufacture of capacitor

Publications (1)

Publication Number Publication Date
JPH02268412A true JPH02268412A (en) 1990-11-02

Family

ID=13981736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8983289A Pending JPH02268412A (en) 1989-04-11 1989-04-11 Manufacture of capacitor

Country Status (1)

Country Link
JP (1) JPH02268412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156750B2 (en) * 2003-01-29 2007-01-02 Bridgestone Sports Co., Ltd. Golf club head
JP2007329189A (en) * 2006-06-06 2007-12-20 Tdk Corp Thin-film capacitor, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156750B2 (en) * 2003-01-29 2007-01-02 Bridgestone Sports Co., Ltd. Golf club head
JP2007329189A (en) * 2006-06-06 2007-12-20 Tdk Corp Thin-film capacitor, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4464701A (en) Process for making high dielectric constant nitride based materials and devices using the same
KR950007123A (en) Method for manufacturing semiconductor device with memory capacitor
KR20020049389A (en) Method of manufacturing capacitor of semiconductor memory device by two-step thermal treatment
JP4003888B2 (en) Semiconductor device and manufacturing method thereof
US20010051406A1 (en) Fabrication of dram and other semiconductor devices with an insulating film using a wet rapid thermal oxidation process
JPH02268412A (en) Manufacture of capacitor
JPS6228591B2 (en)
JPH10340994A (en) Manufacture of semiconductor device
JPH0277149A (en) Semiconductor device and manufacture thereof
JPH0255415A (en) Semiconductor device
KR100231597B1 (en) Capacitor fabrication method of semiconductor device
JPS5984570A (en) Manufacture of capacitor for semiconductor device
JPH0281421A (en) Forming method for polycrystalline silicon film
JPH033357A (en) Semiconductor device
JP2903735B2 (en) Semiconductor device
JPH0255416A (en) Semiconductor device
KR20040059536A (en) Method for fabricating capacitor in semiconductor device
JPS5928369A (en) Manufacture of capacitor for semiconductor device
JPH01232768A (en) Manufacture of semiconductor device
JP2943383B2 (en) Method for manufacturing semiconductor device
JPS6360550A (en) Semiconductor device and manufacture thereof
JPH07335768A (en) Manufacture of capacitor dielectric film in semiconductor element
JPH0442958A (en) Manufacture of semiconductor integrated circuit
JPH03280466A (en) Manufacture of semiconductor device insulating film
JPH05121652A (en) Manufacture of capacitor