JPH10340994A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10340994A
JPH10340994A JP9149164A JP14916497A JPH10340994A JP H10340994 A JPH10340994 A JP H10340994A JP 9149164 A JP9149164 A JP 9149164A JP 14916497 A JP14916497 A JP 14916497A JP H10340994 A JPH10340994 A JP H10340994A
Authority
JP
Japan
Prior art keywords
film
capacitor
temperature
partial pressure
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9149164A
Other languages
Japanese (ja)
Inventor
Tomonori Aoyama
知憲 青山
Soichi Yamazaki
壮一 山崎
Keitarou Imai
馨太郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9149164A priority Critical patent/JPH10340994A/en
Publication of JPH10340994A publication Critical patent/JPH10340994A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device capable of forming a high-capacitance low-leakage current capacitor. SOLUTION: A Ru film 19 is deposited all over in an atmosphere containing oxygen and manufactured in a prismatic form as a lower electrode of a capacitor. A (Ba, Sr) TiO3 film 20 is formed all over in a CVD method or a sputtering method under the conditions of oxygen partial pressure of 10<-2> Pa or below at rising temperatures, a temperature rising speed of 500 deg.C/min at a substrate, a film formation temperature of 550 deg.C, a film formation speed of 10 nm/min, an oxygen partial pressure of 0.1 P a and oxygen partial pressure of 0.5 Pa during film formation. Then, a Ru film 21 is deposited over the entire surface in an atmosphere containing oxygen and manufactured so as to become an upper electrode of the capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高誘電体膜をキャ
パシタの絶縁膜とした半導体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device using a high dielectric film as an insulating film of a capacitor.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化に伴
い、回路の微細化は進む一方であり、メモリセルにおい
てはキャパシタのセル面積も非常に小さくなっている。
セル面積の縮小化に伴いキャパシタ容量も小さくなって
しまうが、感度やソフトエラー等の点からキャパシタ容
量はそれほど小さくできないという要請がある。キャパ
シタ容量の低下を防ぐ方法として、キャパシタを三次元
的に形成してセル面積をできるだけ広くしてキャパシタ
容量を稼ぐ方法と、キャパシタ絶縁膜に誘電率の高い物
質を用いる方法が検討されている。誘電率の高い絶縁膜
として、例えば(Ba,Sr)TiO3 膜をキャパシタ
絶縁膜として用いることが検討されている。
2. Description of the Related Art In recent years, as semiconductor integrated circuits have become more highly integrated, circuit miniaturization has been progressing, and the cell area of a capacitor in a memory cell has become very small.
As the cell area decreases, the capacitance of the capacitor also decreases. However, there is a demand that the capacitance of the capacitor cannot be reduced so much in terms of sensitivity and soft error. As a method of preventing a decrease in the capacitance of the capacitor, a method of forming the capacitor three-dimensionally to increase the cell area as much as possible to increase the capacitance of the capacitor and a method of using a substance having a high dielectric constant for the capacitor insulating film are being studied. It has been studied to use, for example, a (Ba, Sr) TiO 3 film as a capacitor insulating film as an insulating film having a high dielectric constant.

【0003】高い誘電率の(Ba,Sr)TiO3 膜を
得るには、450℃以下の基板温度でアモルファス膜を
成膜した後にアニールして結晶化させる方法と、600
℃以上の基板温度で多結晶の(Ba,Sr)TiO3
形成して得る方法がある。これら二つの方法を比べる
と、結晶化温度以上の温度で成膜した(Ba,Sr)T
iO3 の方が結晶粒が大きく、誘電率も高いことが実験
より判明している。
In order to obtain a (Ba, Sr) TiO 3 film having a high dielectric constant, a method of forming an amorphous film at a substrate temperature of 450 ° C. or lower, followed by annealing and crystallizing the film,
There is a method in which polycrystalline (Ba, Sr) TiO 3 is formed at a substrate temperature of not less than ° C. Comparing these two methods, (Ba, Sr) T formed at a temperature higher than the crystallization temperature
Experiments have shown that iO 3 has larger crystal grains and a higher dielectric constant.

【0004】(Ba,Sr)TiO3 膜は、酸素を含む
雰囲気中で形成しなければならないため、キャパシタの
下部電極として高温でも酸化されにくいプラチナの使用
が検討されていた。しかし、Ptは加工性が悪いため、
現在では、酸化されても金属導電性を示すRu膜やIr
膜を用いることが検討されている。
Since the (Ba, Sr) TiO 3 film must be formed in an atmosphere containing oxygen, the use of platinum which is hardly oxidized even at a high temperature as a lower electrode of a capacitor has been studied. However, since Pt has poor workability,
At present, Ru films and Ir films exhibiting metal conductivity even when oxidized are used.
The use of membranes is being considered.

【0005】ところが、下部電極にPtを用いていた時
と同様に、(Ba,Sr)TiO3膜を600℃以上の
基板温度で形成し結晶化させて高い誘電率を得ようとす
ると、図13に示すように、(Ba,Sr)TiO3
41の成膜時に下部電極であるRu膜42の表面の酸化
が著しくRuO2 43が形成される。RuO2 43の形
成に伴い、体積膨張が起こりRu膜42表面のモフォロ
ジーが悪化する。下部電極表面のモフォロジーが劣化す
ると、キャパシタ絶縁膜中に発生するクラックによる上
部電極と下部電極でのショート、あるいは凹凸部での電
界集中によるリーク電流の増大という問題がある。
However, as in the case where Pt is used for the lower electrode, when a (Ba, Sr) TiO 3 film is formed at a substrate temperature of 600 ° C. or more and crystallized to obtain a high dielectric constant, As shown in FIG. 13, when the (Ba, Sr) TiO 3 film 41 is formed, the surface of the Ru film 42 serving as the lower electrode is significantly oxidized, and RuO 2 43 is formed. With the formation of RuO 2 43, volume expansion occurs and the morphology of the surface of the Ru film 42 deteriorates. When the morphology of the lower electrode surface is deteriorated, there is a problem that a short circuit occurs between the upper electrode and the lower electrode due to a crack generated in the capacitor insulating film, or a leak current increases due to electric field concentration at the uneven portion.

【0006】一方、450℃以下の温度で(Ba,S
r)TiO3 膜を成膜した後にアニールした場合は、R
u表面のモフォロジー劣化は見られず、良好なリーク電
流特性が得られるものの、誘電率が低く小さなキャパシ
タ容量しか得られないという問題がある。
On the other hand, at a temperature of 450 ° C. or less, (Ba, S
r) When annealing is performed after forming the TiO 3 film, R
Although the morphology of the u surface is not deteriorated and good leakage current characteristics are obtained, there is a problem that the dielectric constant is low and only a small capacitor capacity can be obtained.

【0007】また、図14に示すように、Ru膜42を
堆積した後にRuO2 44を形成された積層構造の下部
電極を用いる場合、600℃以上の温度で(Ba,S
r)TiO3 膜41を成膜すると、RuO2 44/Ru
膜42界面のRu膜42の酸化によりモフォロジーの劣
化が生じ、Ru電極を用いた場合と同様にリーク電流が
生じるという問題がある。また、Ruの代わりにIr、
RuO2 の代わりにIrO2 を用いた場合も同様の問題
が生じる。
Further, as shown in FIG. 14, when a lower electrode having a laminated structure in which RuO 2 44 is formed after depositing a Ru film 42 is used, (Ba, S
r) When the TiO 3 film 41 is formed, RuO 2 44 / Ru
Oxidation of the Ru film 42 at the interface of the film 42 causes deterioration of morphology, which causes a problem that a leak current occurs as in the case of using the Ru electrode. Also, instead of Ru, Ir,
A similar problem occurs when IrO 2 is used instead of RuO 2 .

【0008】[0008]

【発明が解決しようとする課題】上記したように、キャ
パシタのRu,RuO2 ,Ir或いはIrO2 上にSr
TiO3 或いは(Ba,Sr)TiO3 を形成するとシ
ョートの発生,リーク電流の増加若しくは誘電率の低下
が生じるという問題がある。本発明の目的は、高容量且
つ低リーク電流のキャパシタを形成し得る半導体装置の
製造方法を提供することにある。
As described above, Sr is placed on Ru, RuO 2 , Ir or IrO 2 of a capacitor.
When TiO 3 or (Ba, Sr) TiO 3 is formed, there is a problem that a short circuit occurs, a leak current increases, or a dielectric constant decreases. An object of the present invention is to provide a method for manufacturing a semiconductor device capable of forming a capacitor having high capacitance and low leakage current.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

[構成]本発明は、上記目的を達成するために以下のよ
うに構成されている。 (1) 本発明(請求項1)は、Ru,Ir,RuとR
uO2 との積層構造或いはIrとIrO2 との積層構造
からなるキャパシタの下部電極上に、該キャパシタの絶
縁膜としてペロブスカイト構造の絶縁体を形成する半導
体装置の製造方法であって、前記絶縁体を結晶化温度以
上600℃未満の基板温度で形成することを特徴とす
る。
[Configuration] The present invention is configured as described below to achieve the above object. (1) The present invention (Claim 1) uses Ru, Ir, Ru and R
A method of manufacturing a semiconductor device, comprising forming an insulator having a perovskite structure as an insulating film of a capacitor on a lower electrode of a capacitor having a stacked structure of uO 2 or a stacked structure of Ir and IrO 2. Is formed at a substrate temperature equal to or higher than the crystallization temperature and lower than 600 ° C.

【0010】本発明の好ましい実施態様を以下に記す。
前記絶縁体として(Ba,Sr)TiO3 膜を形成する
場合、前記基板温度が470℃以上600℃未満であ
る。
Preferred embodiments of the present invention are described below.
When a (Ba, Sr) TiO 3 film is formed as the insulator, the substrate temperature is 470 ° C. or more and less than 600 ° C.

【0011】前記絶縁体としてSrTiO3 膜を形成す
る場合、前記基板温度が430℃以上600℃未満であ
る。前記絶縁体の成膜時間が5分以内である。
When the SrTiO 3 film is formed as the insulator, the substrate temperature is 430 ° C. or more and less than 600 ° C. The film formation time of the insulator is within 5 minutes.

【0012】前記基板温度まで加熱する際、昇温速度が
100℃/min以上である。 [作用]本発明は、上記構成によって以下の作用・効果
を有する。
When heating to the substrate temperature, the rate of temperature rise is 100 ° C./min or more. [Operation] The present invention has the following operation / effect by the above configuration.

【0013】発明者の研究により、下部電極の表面粗さ
が3.5nm以上になると、リーク電流が増加すること
が判明した。下部電極の表面は、上部にSrTiO3
しくは(Ba,Sr)TiO3 膜絶縁膜を成膜する際の
酸素によって荒らされる。従って、SrTiO3 若しく
は(Ba,Sr)TiO3 膜の成膜の際に、下部電極の
表面粗さを3.5nm以下に抑える必要がある。
According to the study of the inventor, it has been found that when the surface roughness of the lower electrode becomes 3.5 nm or more, the leak current increases. The surface of the lower electrode is roughened by oxygen when an SrTiO 3 or (Ba, Sr) TiO 3 film insulating film is formed on the upper portion. Therefore, it is necessary to suppress the surface roughness of the lower electrode to 3.5 nm or less when forming the SrTiO 3 or (Ba, Sr) TiO 3 film.

【0014】そこで、本発明のプロセス条件を用いて、
Ru,Ru/RuO2 ,Ir,Ir/IrO2 からなる
下部電極上に、SrTiO3 若しくは(Ba,Sr)T
iO3 膜を形成することによって、表面粗さが少なくリ
ーク電流が少ないキャパシタを形成することができる。
Therefore, using the process conditions of the present invention,
Ru, Ru / RuO 2 , Ir, Ir / IrO 2 on a lower electrode made of SrTiO 3 or (Ba, Sr) T
By forming the iO 3 film, a capacitor having a small surface roughness and a small leak current can be formed.

【0015】また、基板温度範囲において形成されるS
rTiO3 若しくは(Ba,Sr)TiO3 膜の誘電率
は十分高いので、容量の大きいキャパシタを形成するこ
とができる。
The S formed in the substrate temperature range is
Since the dielectric constant of the rTiO 3 or (Ba, Sr) TiO 3 film is sufficiently high, a capacitor having a large capacitance can be formed.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を以下に図面
を参照して説明する。 [第1実施形態](Ba,Sr)TiO3 膜の成膜時の
パラメータを変えて成膜を行い、表面粗さをAFMで測
定した。以下に、Ru下部電極上に350nmの(B
a,Sr)TiO3 膜を堆積した場合の各種パラーメー
タ依存性に関して説明する。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] A (Ba, Sr) TiO 3 film was formed by changing parameters at the time of film formation, and the surface roughness was measured by AFM. In the following, 350 nm (B) is formed on the Ru lower electrode.
A description will be given of the dependence of various parameters upon deposition of the (a, Sr) TiO 3 film.

【0017】図1は、昇温時の酸素分圧を0.01P
a,昇温速度を500℃/min,成膜中の酸素分圧を
0.1Pa及び成膜速度を10nm/minで成膜した
場合の表面粗さの基板温度依存性を示す特性図である。
600℃以上で成膜すると、表面粗さは4nmを超える
ことがわかる。従って、リーク電流を抑えるためには、
基板温度を600℃未満にしてキャパシタ絶縁膜を成膜
する必要があることがわかる。
FIG. 1 shows that the oxygen partial pressure at the time of temperature rise is 0.01 P
a is a characteristic diagram showing the substrate temperature dependence of surface roughness when a film is formed at a temperature rising rate of 500 ° C./min, an oxygen partial pressure of 0.1 Pa during film formation, and a film forming rate of 10 nm / min. .
It can be seen that when the film is formed at a temperature of 600 ° C. or higher, the surface roughness exceeds 4 nm. Therefore, to suppress the leakage current,
It can be seen that it is necessary to set the substrate temperature to less than 600 ° C. to form the capacitor insulating film.

【0018】また、図2にSrTiO3 膜及び(Ba,
Sr)TiO3 膜の誘電率の基板温度依存性を示す。S
rTiO3 膜の場合には、430℃以上、(Ba,S
r)TiO3 膜の470℃以上の温度で成長させると、
結晶化が起こり高い誘電率の膜を得ることができる。
FIG. 2 shows an SrTiO 3 film and (Ba,
4 shows the substrate temperature dependence of the dielectric constant of the Sr) TiO 3 film. S
In the case of the rTiO 3 film, the temperature is 430 ° C. or more, (Ba, S
r) When the TiO 3 film is grown at a temperature of 470 ° C. or more,
Crystallization occurs and a film having a high dielectric constant can be obtained.

【0019】以上の条件から、SrTiO3 膜の場合に
は430℃以上600℃未満、(Ba,Sr)TiO3
膜の場合には470℃以上600℃未満の温度で形成す
ることによって、容量が大きくリーク電流の少ないキャ
パシタを形成することができる。
From the above conditions, in the case of the SrTiO 3 film, the temperature is 430 ° C. or more and less than 600 ° C., and (Ba, Sr) TiO 3
In the case of a film, a capacitor having a large capacitance and a small leak current can be formed by forming the film at a temperature of 470 ° C. or higher and lower than 600 ° C.

【0020】また、基板温度以外にも、以下に記すよう
な好ましい成膜条件がある。図3は昇温時の酸素分圧
0.01Pa、成膜時の基板温度550℃、成膜時の酸
素分圧0.1Paとした場合の成膜時間に関するグラフ
である。なお、(Ba,Sr)TiO3 膜の膜厚は30
nmである。成膜速度が遅い場合は所望の膜厚を得るた
めに長時間酸化性雰囲気にさらされるため、表面モフォ
ロジーの劣化が起きる。そのため、表面粗さを3nm以
下にするために、成膜時間を5分以下にすることが好ま
しい。
In addition to the substrate temperature, there are other preferable film forming conditions as described below. FIG. 3 is a graph relating to the film formation time when the oxygen partial pressure at the time of temperature rise is 0.01 Pa, the substrate temperature at the time of film formation is 550 ° C., and the oxygen partial pressure at the time of film formation is 0.1 Pa. The thickness of the (Ba, Sr) TiO 3 film is 30
nm. When the film forming rate is low, the film is exposed to an oxidizing atmosphere for a long time to obtain a desired film thickness, so that the surface morphology is deteriorated. Therefore, in order to reduce the surface roughness to 3 nm or less, the film formation time is preferably set to 5 minutes or less.

【0021】図4は、昇温時の酸素分圧を成膜時の酸素
分圧と同じにした場合の成膜時酸素分圧依存性を示すグ
ラフである。表面粗さが少なく良好なリーク電流特性を
有するキャパシタを得るためには、成膜時の酸素分圧を
0.5Pa以下にすることが好ましい。
FIG. 4 is a graph showing the oxygen partial pressure dependence during film formation when the oxygen partial pressure during temperature rise is the same as the oxygen partial pressure during film formation. In order to obtain a capacitor having a small surface roughness and good leak current characteristics, it is preferable that the oxygen partial pressure during film formation be 0.5 Pa or less.

【0022】図5は、昇温時の酸素分圧0.01Pa、
成膜中の酸素分圧0.1Pa、成膜時の基板温度550
℃、成膜速度10nm/minとした場合の基板の昇温
速度依存性に関するグラフである。この図から、基板の
昇温速度は100nm/min以上にすると、表面粗さ
が3nm以下になることが分かる。従って、昇温温度を
100nm/min以上にすることが好ましい。
FIG. 5 shows an oxygen partial pressure of 0.01 Pa when the temperature is raised,
Oxygen partial pressure 0.1 Pa during film formation, substrate temperature 550 during film formation
FIG. 6 is a graph showing the dependence of the substrate on the rate of temperature rise when the film formation rate is 10 nm / min. From this figure, it can be seen that when the temperature rise rate of the substrate is 100 nm / min or more, the surface roughness becomes 3 nm or less. Therefore, it is preferable that the temperature increase temperature be 100 nm / min or more.

【0023】また、図6は成膜条件を昇温速度100℃
/min,成膜中の酸素分圧1.0Pa,成膜時の基板
温度550℃及び成膜速度10m/minとした場合の
基板昇温時の酸素分圧依存性に関するグラフである。こ
の場合は違いが顕著に見られるように基板の昇温速度を
遅く、また、成膜中の酸素分圧を高めにしてある。グラ
フより、昇温時の酸素分圧は10-2Pa以下の酸素分圧
が望ましいことがわかる。
FIG. 6 shows a film forming condition in which the temperature was raised at a rate of 100 ° C.
6 is a graph showing the oxygen partial pressure dependency when the substrate temperature is raised when the substrate temperature is 550 ° C. and the film forming speed is 10 m / min. In this case, the temperature rise rate of the substrate is slowed down and the oxygen partial pressure during film formation is increased so that the difference is remarkably seen. From the graph, it is understood that the oxygen partial pressure at the time of temperature rise is desirably 10 −2 Pa or less.

【0024】なお、本実施形態では、下部電極としてR
u膜を用いたが、Ru/RuO2 膜,Ir或いはIr/
IrO2 膜を下部電極として用いた場合も同様な結果が
得られた。
In this embodiment, R is used as the lower electrode.
Although a u film was used, a Ru / RuO 2 film, Ir or Ir /
Similar results were obtained when the IrO 2 film was used as the lower electrode.

【0025】[第2実施形態]本実施形態では、下部電
極としてRu膜を用い、絶縁膜として(Ba,Sr)T
iO3 膜を用いたキャパシタの形成について説明する。
[Second Embodiment] In this embodiment, a Ru film is used as a lower electrode, and (Ba, Sr) T is used as an insulating film.
The formation of a capacitor using the iO 3 film will be described.

【0026】図7,8は本発明の第2実施形態に係わる
キャパシタの製造工程を示す工程断面図である。先ず、
pタイプシリコン基板10上に素子を分離する素子分離
領域11を形成した後、トランジスタのゲート絶縁膜1
2,ゲート電極(ワード線)13,n+拡散層14(1
4a,14b)を形成する。そして、全面に第1の層間
絶縁膜15を堆積する。その後、n+ 拡散層14aに接
続するコンタクトホールを第1の層間絶縁膜15に形成
する。そして、コンタクトホールを通してn+ 拡散層1
4aに電気的に接続するビット線16を形成する。そし
て、全面に第2の層間絶縁膜17を形成する。第1及び
第2の層間絶縁膜15,17にn+ 拡散層14bに接続
するコンタクトホールを開孔した後、全面にn+ 多結晶
シリコン18を堆積する。そして、エッチバック法若し
くはCMP法を用いてn+ 多結晶シリコンを後退させ、
コンタクトホール内にのみn+ 多結晶シリコン18を埋
め込む(図7(a))。
FIGS. 7 and 8 are sectional views showing the steps of manufacturing a capacitor according to the second embodiment of the present invention. First,
After forming an element isolation region 11 for isolating elements on a p-type silicon substrate 10, the gate insulating film 1 of the transistor is formed.
2, gate electrode (word line) 13, n + diffusion layer 14 (1
4a, 14b) are formed. Then, a first interlayer insulating film 15 is deposited on the entire surface. Thereafter, a contact hole connected to n + diffusion layer 14a is formed in first interlayer insulating film 15. Then, the n + diffusion layer 1 is formed through the contact hole.
A bit line 16 electrically connected to 4a is formed. Then, a second interlayer insulating film 17 is formed on the entire surface. After a contact hole connected to the first and second interlayer insulating films 15 and 17 to the n + diffusion layer 14b, depositing a n + polycrystalline silicon 18 on the entire surface. Then, the n + polycrystalline silicon is retracted by using the etch-back method or the CMP method,
The n + polycrystalline silicon 18 is buried only in the contact hole (FIG. 7A).

【0027】次いで、酸素を含む雰囲気中でRu膜19
を全面に堆積し(図7(b))、キャパシタの下部電極
として柱状に加工する(図7(c))。そして、全面
に、(Ba,Sr)TiO3 膜20をCVD法を用いて
全面に形成する(図8(d))。成膜条件は、昇温時の
酸素分圧10-3Pa以下,基板の昇温速度500℃/m
in,成膜温度550℃,成膜速度10nm/min,
成膜中の酸素分圧0.1Pa及び成膜圧力0.5Paで
ある。なお、基板の構造によってはスパッタ法で成膜し
て良い。
Next, the Ru film 19 is formed in an atmosphere containing oxygen.
Is deposited on the entire surface (FIG. 7B), and is processed into a columnar shape as a lower electrode of the capacitor (FIG. 7C). Then, a (Ba, Sr) TiO 3 film 20 is formed on the entire surface by using the CVD method (FIG. 8D). The film forming conditions are as follows: the oxygen partial pressure at the time of temperature rise is 10 −3 Pa or less, and the substrate temperature rise rate is 500 ° C./m
in, deposition temperature 550 ° C., deposition rate 10 nm / min,
The oxygen partial pressure during film formation is 0.1 Pa and the film formation pressure is 0.5 Pa. Note that the film may be formed by a sputtering method depending on the structure of the substrate.

【0028】次いで、全面に酸素を含む雰囲気中でRu
膜21を全面に堆積し、キャパシタの上部電極となるよ
う加工する(図8(e))。図9に従来の製造方法と本
実施形態で説明した製造方法で形成されたキャパシタの
リーク電流特性を示す。キャパシタ絶縁膜である(B
a,Sr)TiO3 膜の膜厚は30nmである。なお、
従来例の成膜条件は酸素分圧1.0Pa、成膜温度60
0℃、成膜速度3nm/minである。なお、両者と
も、昇温時の酸素分圧は0.01Pa、基板の昇温速度
は500℃/minとした。図から明らかなように、本
発明により、リーク電流は大幅に滅少していることがわ
かる。なお、(Ba,Sr)TiO3 膜のSiO2 換算
膜厚は、従来例で0.31nm、本発明で0.32nm
の値が得られた。
Next, Ru in an atmosphere containing oxygen on the entire surface.
A film 21 is deposited on the entire surface and processed so as to be an upper electrode of the capacitor (FIG. 8E). FIG. 9 shows the leakage current characteristics of the capacitors formed by the conventional manufacturing method and the manufacturing method described in the present embodiment. Capacitor insulating film (B
The thickness of the (a, Sr) TiO 3 film is 30 nm. In addition,
The film forming conditions of the conventional example are as follows: oxygen partial pressure 1.0 Pa, film forming temperature 60
The temperature is 0 ° C. and the film formation rate is 3 nm / min. In both cases, the oxygen partial pressure during the temperature rise was 0.01 Pa, and the temperature rise rate of the substrate was 500 ° C./min. As is clear from the figure, it can be seen that the leakage current is greatly reduced by the present invention. The SiO 2 equivalent film thickness of the (Ba, Sr) TiO 3 film is 0.31 nm in the conventional example and 0.32 nm in the present invention.
Was obtained.

【0029】以上説明したように、本実施形態によれ
ば、(Ba,Sr)TiO3 膜を形成する際に、基板の
昇温速度を500℃/min、昇温時の酸素分圧を10
-3Paとすることによって昇温時に下部Ru電極が酸化
されてモフォロジーが劣化することを防止している。ま
た、成膜中の基板温度を550℃とすることで多結晶の
(Ba,Sr)TiO3 膜を得ることができ、高い誘電
率を得ることができる。また、成膜中の酸素分圧を0.
1Pa、成膜速度を10nm/minとすることによっ
て成膜時のRu膜の酸化を抑制することができ、良好な
リーク電流特性が得られる。
As described above, according to the present embodiment, when forming the (Ba, Sr) TiO 3 film, the temperature of the substrate is raised at a rate of 500 ° C./min, and the oxygen partial pressure during the temperature rise is reduced by 10%.
By setting the pressure to -3 Pa, the lower Ru electrode is prevented from being oxidized at the time of raising the temperature and the morphology is degraded. Further, by setting the substrate temperature during film formation to 550 ° C., a polycrystalline (Ba, Sr) TiO 3 film can be obtained, and a high dielectric constant can be obtained. Further, the oxygen partial pressure during the film formation is set at 0.
By setting the pressure to 1 Pa and the film formation rate to 10 nm / min, oxidation of the Ru film at the time of film formation can be suppressed, and good leak current characteristics can be obtained.

【0030】また、昇温温度が100℃/min以上昇
温時の酸素分圧を10-2Pa以下にすることでも、昇温
時に下部のRu電極が酸化されてモフォロジーの劣化を
抑えることができる。また、成膜中の酸素分圧を0.5
Pa以下,基板温度が470〜600℃,成膜時間を5
分以内にすることでも同様にリーク電流が少なく、容量
の高いキャパシタを形成することができる。
Also, by lowering the oxygen partial pressure when the temperature rise temperature is 100 ° C./min or more to 10 −2 Pa or less, the lower Ru electrode is oxidized at the time of temperature rise and the morphology is prevented from deteriorating. it can. Further, the oxygen partial pressure during film formation is set to 0.5.
Pa or lower, the substrate temperature is 470 to 600 ° C., and the film formation time is 5
Even within minutes, a capacitor having a low leakage current and a high capacity can be formed.

【0031】[第3実施形態]本実施形態では、下部電
極としてRu膜とRuO2 膜の積層構造を用い、絶縁膜
としてSrTiO3 膜を用いたキャパシタの形成につい
て説明する。
[Third Embodiment] In this embodiment, the formation of a capacitor using a laminated structure of a Ru film and a RuO 2 film as a lower electrode and using a SrTiO 3 film as an insulating film will be described.

【0032】図10〜12は本発明の第2実施形態に係
わるキャパシタの製造工程を示す工程断面図である。先
ず、第2実施形態と同様に、pタイプシリコン基板10
に素子分離領域11を形成した後、ゲート絶縁膜12,
ゲート電極(ワード線)13,n+ 拡散層14(14
a,14b)からなるトランジスタを形成する。その
後、全面に第1の層間絶縁膜15を堆積し、n+ 拡散層
14aに接続するビット線16を形成する。そして、全
面に第2の層間絶縁膜17を堆積した後、n+ 拡散層1
4bに接続するn+ 多結晶シリコン18を形成する(図
10(a))。
FIGS. 10 to 12 are sectional views showing the steps of manufacturing a capacitor according to the second embodiment of the present invention. First, as in the second embodiment, the p-type silicon substrate 10
After forming an element isolation region 11 in the gate insulating film 12,
Gate electrode (word line) 13, n + diffusion layer 14 (14
a, 14b). Thereafter, a first interlayer insulating film 15 is deposited on the entire surface, and a bit line 16 connected to the n + diffusion layer 14a is formed. Then, after depositing a second interlayer insulating film 17 on the entire surface, the n + diffusion layer 1 is formed.
An n + polycrystalline silicon 18 connected to 4b is formed (FIG. 10A).

【0033】次いで、酸素を含む雰囲気中でRu膜19
を全面に堆積した後、雰囲気中の酸素量を増やして第1
のRuO2 膜31を堆積し、Ru膜19と第1のRuO
2 膜31との積層膜を形成する(図10(b))。次い
で、Ru膜19と第1のRuO2 膜31との積層膜を柱
状に加工する(図10(c))。その後、全面に第2の
RuO2 膜32を堆積する(図11(d))。さらに、
反応性イオンエッチング法を用いて第2のRuO2 膜3
2を後退させ、Ru膜19の表面がRuO2 膜31,3
2で被覆された構造を形成する(図11(e))。
Next, the Ru film 19 is formed in an atmosphere containing oxygen.
Is deposited on the entire surface, and then the amount of oxygen in the atmosphere is
RuO 2 film 31 is deposited, and the Ru film 19 and the first RuO
A laminated film with the two films 31 is formed (FIG. 10B). Next, the laminated film of the Ru film 19 and the first RuO 2 film 31 is processed into a columnar shape (FIG. 10C). Thereafter, a second RuO 2 film 32 is deposited on the entire surface (FIG. 11D). further,
Second RuO 2 film 3 using reactive ion etching
2 is retracted, and the surface of the Ru film 19 becomes RuO 2 films 31 and 3.
2 is formed (FIG. 11E).

【0034】次いで、全面にSrTiO3 膜33をCV
D法で成膜する(図12(f))。SrTiO3 膜33
の成膜条件は、昇温時の酸素分圧10-2Pa以下,基板
の昇温速度500℃/min,成膜温度500℃,成膜
速度10nm/min,成膜中の酸素分圧1Pa、及び
成膜圧力0.5Paである。なお、構造によってはスパ
ッタ法を用いてSrTiO3 膜33を成膜しても良い。
Next, an SrTiO 3 film 33 is formed on the entire surface by CV.
A film is formed by the method D (FIG. 12F). SrTiO 3 film 33
The film forming conditions are as follows: oxygen partial pressure at the time of temperature rise of 10 −2 Pa or less, substrate temperature rising rate of 500 ° C./min, film forming temperature of 500 ° C., film forming rate of 10 nm / min, oxygen partial pressure of 1 Pa during film formation. , And a film forming pressure of 0.5 Pa. Depending on the structure, the SrTiO 3 film 33 may be formed by using a sputtering method.

【0035】そして、全面に酸素を含む雰囲気中でRu
膜21を全面に堆積し、上部電極となるよう加工する
(図12(g))。本実施形態が第2実施形態と異なる
点は下部電極にRuO2 /Ru積層構造を採用した点と
SrTiO3 膜をキャパシタ絶縁膜に採用した点であ
る。(Ba,Sr)TiO3 膜よりも結晶化温度の低い
SrTiO3 膜を用いていることより、成膜温度を45
0℃まで下げても多結晶SrTiO3 膜を得ることがで
きる。
Then, Ru is applied in an atmosphere containing oxygen entirely.
A film 21 is deposited on the entire surface and processed so as to become an upper electrode (FIG. 12G). This embodiment is different from the second embodiment in that a RuO 2 / Ru stacked structure is used for the lower electrode and an SrTiO 3 film is used for the capacitor insulating film. Since the SrTiO 3 film having a lower crystallization temperature than that of the (Ba, Sr) TiO 3 film is used, the film formation temperature is set to 45.
Even if the temperature is lowered to 0 ° C., a polycrystalline SrTiO 3 film can be obtained.

【0036】Ru膜とRuO2 膜との積層膜を下部電極
として用いた場合も第2実施形態と同様、高容量且つ低
リーク電流であるキャパシタを形成することが可能であ
ることが確認された。
It has been confirmed that a capacitor having a high capacitance and a low leakage current can be formed in the same manner as in the second embodiment even when the laminated film of the Ru film and the RuO 2 film is used as the lower electrode. .

【0037】また、昇温温度が100℃/min以上昇
温時の酸素分圧を10-2Pa以下にすることでも、昇温
時に下部のRu電極が酸化されてモフォロジーの劣化を
抑えることができる。また、成膜中の酸素分圧を0.5
Pa以下,基板温度が430〜600℃,成膜時間を5
分以内にするこでも同様にリーク電流が少なく、容量の
高いキャパシタを形成することができる。
Also, by setting the oxygen partial pressure when the temperature rise temperature is 100 ° C./min or more to 10 −2 Pa or less, the lower Ru electrode is oxidized at the time of temperature rise, thereby suppressing the deterioration of morphology. it can. Further, the oxygen partial pressure during film formation is set to 0.5.
Pa or lower, the substrate temperature is 430 to 600 ° C., and the film formation time is 5
Even within minutes, a capacitor having a small leakage current and a high capacitance can be formed.

【0038】なお、本発明は、上記実施形態に限定され
るものではない。例えば、Ru系電極に関して説明した
が、RuをIrに置き換えても同様に本発明を実施する
ことができる。この場合はRu電極の代わりにIr電
極、表面がRuO2 に被覆されたRu電極の代わりに、
表面がIrO2 に被覆されたIr電極にすれば良い。ま
た、容易に類推できるように、Ru電極表面にRuO2
が被覆されている場合やIr電極表面にRuO2 が被覆
されている場合にも同様に本発明を実施することができ
る。その他、本発明は、その要旨を逸脱しない範囲で、
種々変形して実施することが可能である。
The present invention is not limited to the above embodiment. For example, although the description has been given with respect to the Ru-based electrode, the present invention can be similarly implemented by replacing Ru with Ir. In this case, instead of the Ru electrode, instead of the Ir electrode, and the Ru electrode whose surface is coated with RuO 2 ,
Surface may be the Ir electrode covered with IrO 2. Also, as can be easily analogized, RuO 2 is applied to the Ru electrode surface.
The present invention can be carried out in the same manner when the surface is coated or when the surface of the Ir electrode is coated with RuO 2 . In addition, the present invention does not depart from the gist thereof,
Various modifications are possible.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、表
面粗さが少なくなり、誘電率の高い膜が得られるプロセ
ス条件でキャパシタの絶縁膜を形成することによって、
リーク電流が低く、容量が大きいキャパシタを形成する
ことができる。
As described above, according to the present invention, by forming an insulating film of a capacitor under process conditions in which a film having a low surface roughness and a high dielectric constant can be obtained,
A capacitor with low leakage current and large capacitance can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ru膜の表面粗さの基板温度依存性を示す特性
図。
FIG. 1 is a characteristic diagram showing the substrate temperature dependence of the surface roughness of a Ru film.

【図2】比誘電率の成膜温度依存性を示す特性図。FIG. 2 is a characteristic diagram showing the dependency of the relative dielectric constant on the film formation temperature.

【図3】表面粗さの成膜時の酸素分圧依存性を示す特性
図。
FIG. 3 is a characteristic diagram showing the oxygen partial pressure dependence of surface roughness during film formation.

【図4】表面粗さの成膜速度依存性を示す特性図。FIG. 4 is a characteristic diagram showing the dependency of the surface roughness on the deposition rate.

【図5】表面粗さの基板昇温時の酸素分圧依存性を示す
特性図。
FIG. 5 is a characteristic diagram showing the dependency of the surface roughness on the oxygen partial pressure when the substrate is heated.

【図6】表面粗さの基板の昇温速度依存性を示す特性
図。
FIG. 6 is a characteristic diagram showing the dependency of surface roughness on the rate of temperature rise of a substrate.

【図7】第2実施形態に係わるキャパシタの製造工程を
示す工程断面図。
FIG. 7 is a process cross-sectional view showing the process of manufacturing the capacitor according to the second embodiment.

【図8】第2実施形態に係わるキャパシタの製造工程を
示す工程断面図。
FIG. 8 is a process cross-sectional view showing a process of manufacturing the capacitor according to the second embodiment.

【図9】キャパシタのリーク電流特性を示す特性図。FIG. 9 is a characteristic diagram showing leakage current characteristics of a capacitor.

【図10】第3実施形態に係わるキャパシタの製造工程
を示す工程断面図。
FIG. 10 is a process cross-sectional view showing the process of manufacturing the capacitor according to the third embodiment.

【図11】第3実施形態に係わるキャパシタの製造工程
を示す工程断面図。
FIG. 11 is a process cross-sectional view showing the process of manufacturing the capacitor according to the third embodiment.

【図12】第3実施形態に係わるキャパシタの製造工程
を示す工程断面図。
FIG. 12 is a process cross-sectional view showing the process of manufacturing the capacitor according to the third embodiment.

【図13】従来の問題点を説明する図。FIG. 13 is a diagram illustrating a conventional problem.

【図14】従来の問題点を説明する図。FIG. 14 is a diagram illustrating a conventional problem.

【符号の説明】[Explanation of symbols]

10…pタイプシリコン基板 11…素子分離領域 12…ゲート絶縁膜 13…ゲート電極 14…n+ 拡散層 15…第1の層間絶縁膜 16…ビット線 17…第2の層間絶縁膜 18…n+ 多結晶シリコン 19…Ru膜 20…(Ba,Sr)TiO3 膜 21…Ru膜 31…第1のRuO2 膜 32…第2のRuO2 膜 33…SrTiO3Reference Signs List 10 p-type silicon substrate 11 element isolation region 12 gate insulating film 13 gate electrode 14 n + diffusion layer 15 first interlayer insulating film 16 bit line 17 second interlayer insulating film 18 n + polysilicon 19 ... Ru film 20 ... (Ba, Sr) TiO 3 film 21 ... Ru film 31 ... first RuO 2 film 32 ... second RuO 2 film 33 ... SrTiO 3 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Ru,Ir,RuとRuO2 との積層構造
或いはIrとIrO2 との積層構造からなるキャパシタ
の下部電極上に、該キャパシタの絶縁膜としてペロブス
カイト構造の絶縁体を形成する半導体装置の製造方法で
あって、 前記絶縁体を結晶化温度以上600℃未満の基板温度で
形成することを特徴とする半導体装置の製造方法。
1. A semiconductor in which an insulator having a perovskite structure is formed as an insulating film of a capacitor on a lower electrode of a capacitor having a stacked structure of Ru, Ir, Ru and RuO 2 or a stacked structure of Ir and IrO 2. A method for manufacturing a semiconductor device, comprising: forming the insulator at a substrate temperature equal to or higher than a crystallization temperature and lower than 600 ° C.
【請求項2】前記絶縁体として(Ba,Sr)TiO3
膜を形成する場合、 前記基板温度が470℃以上600℃未満であることを
特徴とする請求項1記載の半導体装置の製造方法。
2. The method according to claim 2, wherein (Ba, Sr) TiO 3 is used as the insulator.
2. The method according to claim 1, wherein when forming a film, the substrate temperature is 470 ° C. or higher and lower than 600 ° C.
【請求項3】前記絶縁体としてSrTiO3 膜を形成す
る場合、 前記基板温度が430℃以上600℃未満であることを
特徴とする請求項1記載の半導体装置の製造方法。
3. The method according to claim 1, wherein when forming an SrTiO 3 film as said insulator, said substrate temperature is 430 ° C. or more and less than 600 ° C.
【請求項4】前記絶縁体の成膜中の酸素分圧が0.5P
a以下であることを特徴とする請求項1記載の半導体装
置の製造方法。
4. The method according to claim 1, wherein the oxygen partial pressure during the formation of the insulator is 0.5 P
2. The method according to claim 1, wherein a is equal to or less than a.
【請求項5】前記絶縁体の成膜時間が5分以内であるこ
とを特徴とする請求項1に記載の半導体装置の製造方
法。
5. The method for manufacturing a semiconductor device according to claim 1, wherein a film forming time of said insulator is within 5 minutes.
【請求項6】前記基板温度まで加熱する際、昇温速度が
100℃/min以上であることを特徴とする請求項1
記載の半導体装置の製造方法。
6. The method according to claim 1, wherein the heating rate is 100 ° C./min or more when heating to the substrate temperature.
The manufacturing method of the semiconductor device described in the above.
JP9149164A 1997-06-06 1997-06-06 Manufacture of semiconductor device Pending JPH10340994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9149164A JPH10340994A (en) 1997-06-06 1997-06-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149164A JPH10340994A (en) 1997-06-06 1997-06-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH10340994A true JPH10340994A (en) 1998-12-22

Family

ID=15469204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149164A Pending JPH10340994A (en) 1997-06-06 1997-06-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH10340994A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056612A1 (en) * 2001-12-28 2003-07-10 Genitech Co., Ltd. Method of forming copper interconnections for semiconductor integrated circuits on a substrate
US8927403B2 (en) 2005-03-15 2015-01-06 Asm International N.V. Selective deposition of noble metal thin films
US9129897B2 (en) 2008-12-19 2015-09-08 Asm International N.V. Metal silicide, metal germanide, methods for making the same
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US9587307B2 (en) 2005-03-15 2017-03-07 Asm International N.V. Enhanced deposition of noble metals
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056612A1 (en) * 2001-12-28 2003-07-10 Genitech Co., Ltd. Method of forming copper interconnections for semiconductor integrated circuits on a substrate
US8927403B2 (en) 2005-03-15 2015-01-06 Asm International N.V. Selective deposition of noble metal thin films
US9469899B2 (en) 2005-03-15 2016-10-18 Asm International N.V. Selective deposition of noble metal thin films
US9587307B2 (en) 2005-03-15 2017-03-07 Asm International N.V. Enhanced deposition of noble metals
US9129897B2 (en) 2008-12-19 2015-09-08 Asm International N.V. Metal silicide, metal germanide, methods for making the same
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US9634106B2 (en) 2008-12-19 2017-04-25 Asm International N.V. Doped metal germanide and methods for making the same
US10553440B2 (en) 2008-12-19 2020-02-04 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US10043880B2 (en) 2011-04-22 2018-08-07 Asm International N.V. Metal silicide, metal germanide, methods for making the same
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
US10199234B2 (en) 2015-10-02 2019-02-05 Asm Ip Holding B.V. Methods of forming metal silicides

Similar Documents

Publication Publication Date Title
JP3319994B2 (en) Semiconductor storage element
JP2637917B2 (en) Capacitor and manufacturing method thereof
JPH10144884A (en) Semiconductor device and fabrication thereof
US5714402A (en) Method for fabricating a capacitor of a semiconductor device and the structure of the same
JP2000058878A (en) Capacitor of semiconductor element and fabrication thereof
JP2000307081A (en) Manufacture of semiconductor memory device
US7335550B2 (en) Methods for forming semiconductor devices including thermal processing
JPH10335602A (en) Semiconductor capacitive element structure and manufacture thereof
JPH10340994A (en) Manufacture of semiconductor device
JP2001237402A (en) Structured metal oxide containing layer, and method of manufacturing semiconductor structure element
JP2000208440A (en) Forming method of platinum film for capacitor electrode of semiconductor device
JP2000503725A (en) Method for producing dielectric layer or ferroelectric layer having high dielectric constant ε
JPH1154703A (en) Manufacture of high dielectric capacitor
JPH11177048A (en) Semiconductor element and manufacture thereof
JP4659436B2 (en) Manufacturing method of semiconductor device
JP3225913B2 (en) Method for manufacturing semiconductor device
US6306666B1 (en) Method for fabricating ferroelectric memory device
JP2826717B2 (en) Method for manufacturing capacitor of semiconductor device
US7329548B2 (en) Integration processes for fabricating a conductive metal oxide gate ferroelectric memory transistor
JP2000022109A (en) Semiconductor device and manufacture thereof
JP2001036027A (en) Semiconductor device and manufacture thereof
JPH05259389A (en) Semiconductor memory device
KR100425826B1 (en) Method for fabricating capacitor of semiconductor device
JP5030349B2 (en) Dielectric film fabrication method
JP4357146B2 (en) Method for forming oxide dielectric film and method for manufacturing semiconductor device