JPH02266516A - Manufacture of gaalas epitaxial wafer - Google Patents

Manufacture of gaalas epitaxial wafer

Info

Publication number
JPH02266516A
JPH02266516A JP1088499A JP8849989A JPH02266516A JP H02266516 A JPH02266516 A JP H02266516A JP 1088499 A JP1088499 A JP 1088499A JP 8849989 A JP8849989 A JP 8849989A JP H02266516 A JPH02266516 A JP H02266516A
Authority
JP
Japan
Prior art keywords
thickness
gaas substrate
epitaxial wafer
curvature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1088499A
Other languages
Japanese (ja)
Inventor
Yukio Kikuchi
幸夫 菊池
Toshiya Toyoshima
豊島 敏也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1088499A priority Critical patent/JPH02266516A/en
Publication of JPH02266516A publication Critical patent/JPH02266516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a GaAlAs epitaxial wafer, curvature of which is reduced, by using a thin GaAs substrate. CONSTITUTION:When the AlAs mixed crystal ratio of a GaAlAs layer is brought to 0.05 or more and thickness thereof to 100mum or more, a GaAs substrate having thickness from 30mum to 100mum is employed. That is, the thin GaAs substrate having thickness from 30mum to 100mum is used, thus reducing stress due to the difference of lattice constants of the GaAs substrate and AlAs. Accordingly, the curvature of a GaAlAs epitaxial wafer can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、GaA、Q Asエピタキシャルウェハの製
造方法に係り、特に、膜厚が厚く、面積の大きなGaA
N As層を有するGaAlAsエピタキシャルウェハ
の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing GaA, QAs epitaxial wafers, and in particular, GaA, QAs epitaxial wafers with a thick film thickness and a large area.
The present invention relates to a method of manufacturing a GaAlAs epitaxial wafer having an NA layer.

[従来の技術1 高輝度の発光ダイオードには、GaAlAs基板が多く
用いられているやこのGaAgAsはAgの偏析係数が
大きいため直接単結晶成長させることは難しい。このな
め、一般にはGaAs基板上にGaAgAsのエピタキ
シャル層を液相エピタキシャル成長によって厚く成長さ
せて、これをGaAlAs基板として用いている。
[Prior Art 1] GaAlAs substrates are often used in high-brightness light emitting diodes, and it is difficult to directly grow single crystals of GaAgAs because the segregation coefficient of Ag is large. For this reason, generally a GaAgAs epitaxial layer is grown thickly on a GaAs substrate by liquid phase epitaxial growth, and this is used as the GaAlAs substrate.

この場合、GaAsとGaAgAsとの格子定数は、エ
ピタキシャル成長温度付近においては、はぼ一致するが
、室温ではGaAlAsの格子定数の方が大きくなる。
In this case, the lattice constants of GaAs and GaAgAs are almost the same near the epitaxial growth temperature, but the lattice constant of GaAlAs is larger at room temperature.

このため、その熱膨脹係数の差によりGaAgAsエピ
タキシャルウェハ3は第2図に示すように、GaAs基
板2上に成長させたGaAgAs層1側に凸状に大きく
湾曲する。湾曲の大きさはGaAN As 1層の膜厚
が厚く、しかも面積が大きくなるほど大きくなり、つい
には湾曲に耐えられずクラック、割れが発生する。
Therefore, due to the difference in coefficient of thermal expansion, the GaAgAs epitaxial wafer 3 is greatly curved in a convex shape toward the GaAgAs layer 1 grown on the GaAs substrate 2, as shown in FIG. The magnitude of the curvature increases as the thickness of the single GaAN As layer increases and the area increases, and eventually the curvature cannot be tolerated and cracks occur.

[発明が解決しようとする課題1 上述したようにGaAlAsエピタキシャルウェハは、
GaAs基板との格子定数の差による応力のため、湾曲
や割れが生じやすい。
[Problem to be solved by the invention 1 As mentioned above, GaAlAs epitaxial wafers have
Curving and cracking are likely to occur due to stress due to the difference in lattice constant from the GaAs substrate.

特に、GaAfJAs層の膜厚が100μm以上で、ウ
ェハの面積が大きくなると、湾曲は大きくなって、クラ
ックが発生し易くなり、以後のプロセス、例えばエピタ
キシー、露光、GaAs基板の研磨除去等の大きな障害
となっていた。GaA、1lAs層の膜圧を厚くするこ
とと、ウェハの面積を大きくすることは実用化する上で
必要なことである。
In particular, when the thickness of the GaAfJAs layer is 100 μm or more and the area of the wafer becomes large, the curvature becomes large and cracks are likely to occur, which poses a major problem in subsequent processes such as epitaxy, exposure, and polishing removal of the GaAs substrate. It became. Increasing the film thickness of the GaA and 11As layers and increasing the area of the wafer are necessary for practical use.

本発明の目的は、薄いGaAs基板を用いることによっ
て、上述した従来技術の欠点を解消して、ウェハの湾曲
を大幅に低減した新規なGaAuASエピタキシャルウ
ェハの製造方法を提供することにある。
An object of the present invention is to provide a novel method for manufacturing a GaAuAS epitaxial wafer, which uses a thin GaAs substrate, eliminates the drawbacks of the prior art described above, and significantly reduces wafer curvature.

[課題を解決するための手段] 本発明のGaANAsエピタキシャルウェハの製造方法
は、GaAs基板上にGaA、Q As層を液相エピタ
キシャル成長させたGaA、I)Asエピタキシャルウ
ェハにおいて、GaAgAs層のANAs混晶比が0.
05以上で厚さが100μm以上の場合、厚さが30μ
m以上100μm以下のGaAs基板を用いるようにし
たものである。
[Means for Solving the Problems] The method for manufacturing a GaANAs epitaxial wafer of the present invention is a GaA, I) As epitaxial wafer in which a GaA, QAs layer is grown on a GaAs substrate by liquid phase epitaxial growth, and the ANAs mixed crystal of the GaAgAs layer is The ratio is 0.
05 or more and the thickness is 100μm or more, the thickness is 30μm
A GaAs substrate having a diameter of 100 μm or more is used.

GaA、1)As層のA、Q混晶比が0.05以上で厚
さが100μm以上の場合において、GaAs基板の厚
さが100μm以下のときには、湾曲の大きさは100
μm以下となり、クラックが発生しない。
GaA, 1) When the A, Q mixed crystal ratio of the As layer is 0.05 or more and the thickness is 100 μm or more, and the thickness of the GaAs substrate is 100 μm or less, the magnitude of the curvature is 100 μm or more.
The thickness is less than μm, and no cracks occur.

また、厚さが30μm以下のGaAs基板は、既述した
ように製造が非常に難しく、しかも、エピタキシャル成
長が困難となるため、実質上使用することはできない。
Furthermore, as described above, a GaAs substrate having a thickness of 30 μm or less is extremely difficult to manufacture and epitaxial growth is difficult, so that it cannot be practically used.

したがって、GaAs基板の厚さを30μm以上100
μm以下に制限する必要がある。
Therefore, the thickness of the GaAs substrate should be 30 μm or more and 100 μm or more.
It is necessary to limit it to below μm.

[作用] GaAJIAsエピタキシャルウェハは、結晶面(10
0)面のGaAs基板上にGaA、QAs層を液相エピ
タキシャル成長させることにより形成する。
[Function] GaAJIAs epitaxial wafer has a crystal plane (10
0) A GaA and QAs layer is formed by liquid phase epitaxial growth on a GaAs substrate.

GaAgAs層のAJIAs混晶比を変えることによっ
て、GaA、flAs系LEDは結晶組成に応じて禁制
帯幅を自由に変えることができ、赤外から可視光の赤色
までの発光が可能である。赤外しEDは光通信用や測距
用の光源として、また、可視LEDは屋外表示用などの
高輝度LEDとして用いられる。混晶比が0.05以上
0.35近辺以下だと赤外LED用の発光波長が得られ
、0゜45以上にすると発光波長660nmの可視光を
透過するGaAρAs光透過層を得ることができる。
By changing the AJIAs mixed crystal ratio of the GaAgAs layer, GaA, flAs-based LEDs can freely change the forbidden band width depending on the crystal composition, and can emit light from infrared to visible red. Infrared EDs are used as light sources for optical communication and distance measurement, and visible LEDs are used as high-intensity LEDs for outdoor displays and the like. When the mixed crystal ratio is 0.05 or more and around 0.35 or less, an emission wavelength suitable for infrared LEDs can be obtained, and when it is 0°45 or more, a GaAρAs light transmission layer that transmits visible light with an emission wavelength of 660 nm can be obtained. .

また、GaA、llAs系LEDはGaA、1)As光
透過層付きにすることによって、光の吸収損失を低減す
ることが可能であり、大幅な輝度の向上が望める。光透
過層付きLEDは一般にGaAJIASウェハ上にエピ
タキシャル成長により形成される。ここで、エピタキシ
ャル成長用基板としての、ある程度の厚さを持っなGa
AJIAsウェハが必要となる。その厚さは通常100
μm以上必要とされる。
Furthermore, by providing a GaA, 1)As light transmitting layer in a GaA, 11As-based LED, light absorption loss can be reduced, and a significant improvement in brightness can be expected. LEDs with light-transmitting layers are generally formed on GaAJIAS wafers by epitaxial growth. Here, as a substrate for epitaxial growth, Ga having a certain thickness is used.
AJIAs wafer is required. Its thickness is usually 100
μm or more is required.

このようにG a A fJ A s NのAJIAs
の混晶比が0.05以上で厚さが100μmの場合、厚
さが30 μm以上]、 OOμm以下のGaAs基板
を用いるが、特に、G a A s基板の厚さが100
μm以下だと湾曲やクラックが低減するのは、基板が薄
いために基板とAρAsとの格子定数の差による応力が
小さくなるためである。
In this way, AJIAs of G a A f J A s N
When the mixed crystal ratio is 0.05 or more and the thickness is 100 μm, a GaAs substrate with a thickness of 30 μm or more is used, and a GaAs substrate with a thickness of 00 μm or less is used.
The reason why curvature and cracks are reduced when the thickness is less than .mu.m is because the substrate is thin and the stress due to the difference in lattice constant between the substrate and A.rho.As is reduced.

第1図は直径が40mmのGaAs基板上に膜厚200
μm、AN As混晶比0.4のGaAj As層をエ
ピタキシャル成長した場合の、G a A s基板の厚
さとウェハの湾曲、クラックとの関係を示したものであ
る。これより、GaAs基板の厚さが100μm以下の
ときには、湾曲の大きさは100μm以下となり、クラ
ックが発生しないことがわかる。
Figure 1 shows a film with a thickness of 200 mm on a GaAs substrate with a diameter of 40 mm.
2 shows the relationship between the thickness of the GaAs substrate, wafer curvature, and cracks when a GaAj As layer with an AN As mixed crystal ratio of 0.4 is epitaxially grown. From this, it can be seen that when the thickness of the GaAs substrate is 100 μm or less, the magnitude of curvature is 100 μm or less, and no cracks occur.

特に、GaAs基板の厚さを、GaAfJAs層の2分
の1以下とすることが望ましい。
In particular, it is desirable that the thickness of the GaAs substrate be one-half or less of the thickness of the GaAfJAs layer.

このように、ウェハの湾曲が70μm以下で、膜厚が1
00μm以上、しかも直径が40mm以上のGaAJ!
AsエピタキシャルウェハをAβAs混晶比が0.05
以上のもの全てにおいて容易に得ることができることか
ら、発光波長が8000人程度の赤外LEDから700
0Å以下の可視LEDまでの光透過層として工業的に利
用することができる。
In this way, the curvature of the wafer is 70 μm or less and the film thickness is 1
GaAJ with a diameter of 00μm or more and a diameter of 40mm or more!
As epitaxial wafer with AβAs mixed crystal ratio of 0.05
Since all of the above can be easily obtained, the emission wavelength is about 700 from an infrared LED of about 8000.
It can be used industrially as a light transmission layer for visible LEDs up to 0 Å or less.

[実施例J 直径が40mm、厚さが60 μmのGaAs基板上に
、Ga、GaAs、AfJからなる溶液から、成長開始
温度が950°C″′C’ A J)混晶比がそれぞれ
0.05,0.4,0.7のGaA、QAs層を、液相
エピタキシャル成長により200μm成長させた。
[Example J] On a GaAs substrate with a diameter of 40 mm and a thickness of 60 μm, a growth starting temperature of 950°C'''C' A J) from a solution consisting of Ga, GaAs, and AfJ) with a mixed crystal ratio of 0. GaA and QAs layers of 0.05, 0.4, and 0.7 were grown to a thickness of 200 μm by liquid phase epitaxial growth.

その結果、GaAJIAsエピタキシャルウェハの湾曲
の大きさはそれぞれ30μm、50μm。
As a result, the curvature of the GaAJIAs epitaxial wafer was 30 μm and 50 μm, respectively.

60μm以下となり、いずれの場合もクラックは発生し
ていなかった。
The thickness was 60 μm or less, and no cracks were observed in any case.

[比較例1 直径が40m+n、厚さが120μmのG a A s
基板上に、Ga、GaAs、AJIIからなる溶液から
、成長開始温度が950℃で、AlAs混晶比が上記と
同様にそれぞれ0.05,0.4,0.7のGaA、Q
As層を、液相エピタキシャル成長により200μm成
長させた。
[Comparative Example 1 GaAs with a diameter of 40m+n and a thickness of 120μm
On the substrate, GaA and Q were grown from a solution consisting of Ga, GaAs, and AJII at a growth start temperature of 950°C and with AlAs mixed crystal ratios of 0.05, 0.4, and 0.7, respectively, as above.
The As layer was grown to 200 μm by liquid phase epitaxial growth.

その結果、GaAρA、 sエピタキシャルウェハの湾
曲の大きさは、それぞれ70μm、120μm、150
μmとなり、そのうち特にAJ2As混晶比が0.4と
0.7の場合にはGaAF As層にクラックが発生し
、半数が割れていた。
As a result, the magnitude of the curvature of GaAρA, s epitaxial wafers is 70 μm, 120 μm, and 150 μm, respectively.
μm, and among these, cracks occurred in the GaAF As layer particularly when the AJ2As mixed crystal ratio was 0.4 and 0.7, and half of the GaAF As layers were broken.

又、厚さが30μm以下のGaAs基板は薄すぎるため
、研磨やハンドリングでほぼ全数側れてしまい、作成す
ることができなかった。
Furthermore, since GaAs substrates with a thickness of 30 μm or less are too thin, almost all of them fall off during polishing and handling, making it impossible to produce them.

[応用例] 上記実施例で作成した、AlAs混晶比が005.0.
4,0.7のGaAfJAsエピタキシャルウェハのG
aAs基板を研磨で除去し、GaAlAs層のみにした
ところ湾曲の大きさがそれぞれ20μm、40μm、5
0μm以下と小さいGaA、9Asエピタキシヤルウエ
ハが得られた。
[Application example] The AlAs mixed crystal ratio created in the above example was 005.0.
G of GaAfJAs epitaxial wafer of 4,0.7
When the aAs substrate was removed by polishing to leave only the GaAlAs layer, the magnitude of the curvature was 20 μm, 40 μm, and 5 μm, respectively.
GaA, 9As epitaxial wafers as small as 0 μm or less were obtained.

[効果1 本発明によれば、厚さが30μm以上100μm以下の
薄いGaAs基板を用いるようにしたので、GaAs基
板とAfJAsとの格子定数の差による応力が低減でき
、Ga、AlAsエピタキシャルウェハの湾曲を大幅に
低減できる。
[Effect 1] According to the present invention, since a thin GaAs substrate with a thickness of 30 μm or more and 100 μm or less is used, stress due to the difference in lattice constant between the GaAs substrate and AfJAs can be reduced, and the curvature of the Ga, AlAs epitaxial wafer can be reduced. can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGaAs基板の厚さと湾曲、クラックの関係を
示した説明図、第2図は従来のGaAρAsエピタキシ
ャルウェハの断面図を示したものである。 1はGaA、QAs層、2はGaAs基板、3はGaA
j Asエピタキシャルウェハである。 GaAs基板の厚さ(μff1) GaAs基板の厚さとGaA12As工辷°タ舷キルツ
$ハの湾曲の大きさの関係第1図 従来のGaAえAs工じハシtルウ二ハの断面図第2図
FIG. 1 is an explanatory diagram showing the relationship between thickness, curvature, and cracks of a GaAs substrate, and FIG. 2 is a sectional view of a conventional GaAρAs epitaxial wafer. 1 is GaA, QAs layer, 2 is GaAs substrate, 3 is GaA
j As epitaxial wafer. Thickness of the GaAs substrate (μff1) Relationship between the thickness of the GaAs substrate and the magnitude of curvature of the GaA12As machining frame Figure 1 Cross-sectional view of the conventional GaAs machining frame Figure 2

Claims (1)

【特許請求の範囲】 GaAs基板上にGaAlAs層をエピタキシャル成長
させたGaAlAsエピタキシャルウェハにおいて、 GaAlAs層のAlAS混晶比が0.05以上で厚さ
が100μm以上の場合、厚さが30μm以上100μ
m以下のGaAs基板を用いることを特徴とするGaA
lAsエピタキシャルウェハの製造方法。
[Claims] In a GaAlAs epitaxial wafer in which a GaAlAs layer is epitaxially grown on a GaAs substrate, when the GaAlAs layer has an AlAS mixed crystal ratio of 0.05 or more and a thickness of 100 μm or more, the thickness is 30 μm or more and 100 μm or more.
GaA characterized by using a GaAs substrate of m or less
A method for manufacturing an lAs epitaxial wafer.
JP1088499A 1989-04-07 1989-04-07 Manufacture of gaalas epitaxial wafer Pending JPH02266516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088499A JPH02266516A (en) 1989-04-07 1989-04-07 Manufacture of gaalas epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088499A JPH02266516A (en) 1989-04-07 1989-04-07 Manufacture of gaalas epitaxial wafer

Publications (1)

Publication Number Publication Date
JPH02266516A true JPH02266516A (en) 1990-10-31

Family

ID=13944515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088499A Pending JPH02266516A (en) 1989-04-07 1989-04-07 Manufacture of gaalas epitaxial wafer

Country Status (1)

Country Link
JP (1) JPH02266516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045836A1 (en) * 2001-11-30 2003-06-05 Silverbrook Research Pty. Ltd. Differential stress reduction in thin films
AU2002247566B2 (en) * 2001-11-30 2005-05-05 Silverbrook Research Pty Ltd Differential stress reduction in thin films
AU2005203476B2 (en) * 2001-11-30 2005-11-03 Silverbrook Research Pty Ltd Formation of a crystalline thin film structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045836A1 (en) * 2001-11-30 2003-06-05 Silverbrook Research Pty. Ltd. Differential stress reduction in thin films
AU2002247566B2 (en) * 2001-11-30 2005-05-05 Silverbrook Research Pty Ltd Differential stress reduction in thin films
AU2005203476B2 (en) * 2001-11-30 2005-11-03 Silverbrook Research Pty Ltd Formation of a crystalline thin film structure

Similar Documents

Publication Publication Date Title
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JPH03133182A (en) Semiconductor substrate and manufacture thereof
US4987472A (en) Compound semiconductor epitaxial wafer
JPH02266516A (en) Manufacture of gaalas epitaxial wafer
JPH07267796A (en) Production of gallium nitride single crystal
JPS5922374A (en) Manufacture of green light-emitting diode
JP7264343B2 (en) Group III nitride crystal production method and seed substrate
JP3146874B2 (en) Light emitting diode
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JPH07277884A (en) Production of single crystal for semiconductor
JPH03163884A (en) Epitaxial wafer and manufacture thereof
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
JP3749454B2 (en) GaN single crystal manufacturing method
JPH1145860A (en) Manufacture of compound semiconductor epitaxial wafer
KR100983181B1 (en) Method of growing GaN layer for manufacturing Light Emitting Diode, Method of manufacturing Light Emitting Diode using the same, and Light Emitting Diode device thereof
KR20010047069A (en) method for fabricating GaN substrate
CN102208331A (en) Crystal growth method and substrate manufacturing method
JPS63256600A (en) Production of ga1-xalxas epitaxial wafer
JPH06100400A (en) Production of gaalas epitaxial wafer
CN116845155A (en) LED chip with horizontal epitaxial structure and preparation method thereof
JP2002053397A (en) Nitride crystal and method for producing the same
JPH03160735A (en) Zinc sulfide compound semiconductor
JPS5948793B2 (en) Gallium nitride crystal growth method
JPS6381990A (en) Materials for light emitting element
JPH0410480A (en) Manufacture of light-emitting diode