JPH02264417A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH02264417A
JPH02264417A JP1086242A JP8624289A JPH02264417A JP H02264417 A JPH02264417 A JP H02264417A JP 1086242 A JP1086242 A JP 1086242A JP 8624289 A JP8624289 A JP 8624289A JP H02264417 A JPH02264417 A JP H02264417A
Authority
JP
Japan
Prior art keywords
layer
resin
palladium
conductive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086242A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kobashi
小橋 康博
Isao Irikura
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1086242A priority Critical patent/JPH02264417A/en
Priority to DE68914955T priority patent/DE68914955T2/en
Priority to US07/446,908 priority patent/US5005107A/en
Priority to EP89122472A priority patent/EP0372519B1/en
Priority to KR1019890018122A priority patent/KR920010629B1/en
Publication of JPH02264417A publication Critical patent/JPH02264417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To eliminate the migration of resin by a method wherein a dielectric oxide film is formed on the surface of an electrode body in which an anode lead-out wire is provided, a conductive layer, consisting of a carbon layer, palladium and an organic high molecule, is provided as a cathode layer, the cathode layer and a cathode terminal are connected with a conductive bonding agent, and they are enclosed by resin. CONSTITUTION:Grain having average diameter of 5mum are formed by conducting a flattening work on spnerical palladium powder of 0.45 to 1.0mum in grain diameter, the flake-like powder, high purity methyl methacrylic resin and xylene solvent are kneaded at the compounding weight ratio of 8.5:1.5:3.0, and the conductive coating material for a cathode layer 13 is formed. Then, flake-like powder, high purity bisphenol type epoxy resin, a phenol hardener, Imidazol and Butyl Cello Solve solvent are kneaded at the compounding weight ratio of 85:4.8:3.0:0.1:7.1, and a conductive material for a bonding agent 14 is formed. Subsequently, the above-mentioned cathode layer 13 is coated on the carbon layer 5 covering a porous electrode body 2 consisting of tantalum, the above material is enclosed by sheathing resin 11, and a bonding agent 14, which becomes a cathode terminal 10, is coated thereon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to solid electrolytic capacitors.

従来の技術 従来のタンクルチップ状固体電解コンデンサは第4図に
示す様に、断面が角形状の陽極導出filを具備したタ
ンタル弁作用金属を多孔質、電極体2として得、テフロ
ン板12を陽極導出線根本部に取り付けた後、この電極
体の表面に誘電体性の酸化皮膜3を形成させ、更にこの
表面に二酸化マンガンなどの電解質層4.カーボン層5
.銀、銅。
2. Description of the Related Art A conventional solid electrolytic capacitor in the form of a tank chip, as shown in FIG. After being attached to the base of the anode lead wire, a dielectric oxide film 3 is formed on the surface of this electrode body, and an electrolyte layer 4 such as manganese dioxide is further formed on this surface. carbon layer 5
.. silver, copper.

ニッケル、カーボンなどの粉末と高分子樹脂、有機溶剤
等からなる塗料を塗布乾燥してなる陰極層6を順次積層
させてコンデンサ素子とし、このコンデンサ素子の陽極
導出線に溶接7などの手段により陽極端子8が”接続さ
れ、続いてハンダ又は銀、銅、ニッケル、カーボンなど
の粉末と高分子樹脂、有機溶剤等からなる導電性接着剤
9を塗布乾燥して陰極層と陰極端子10を接続し、その
後、樹脂外装置1、互いに反対方向に引き出されたこの
両端子をコンデンサ本体の下方向に向かって端面、及び
底面に沿って内側に折り曲げ加工しタンタルチップ状固
体電解コンデンサとしていた。
A cathode layer 6 made by applying and drying a paint consisting of powders such as nickel, carbon, polymer resin, organic solvent, etc. is sequentially laminated to form a capacitor element, and an anode is attached to the anode lead wire of this capacitor element by means such as welding 7. The terminal 8 is connected, and then a conductive adhesive 9 made of solder or powder of silver, copper, nickel, carbon, polymer resin, organic solvent, etc. is applied and dried to connect the cathode layer and the cathode terminal 10. Thereafter, the resin outer device 1 was bent inwardly along the end face and the bottom face toward the bottom of the capacitor body to form a solid electrolytic capacitor in the form of a tantalum chip.

発明が解決しようとする課題 しかしながら、これまでの固体電解コンデンサは陰極層
、導電性接着剤に電気伝導性の優れている銀粉末を有し
た導電性塗料が一番多(使用されている為、高温多湿の
環境下で銀の“マイグレーション現象”が起こり電気短
絡故障を起し易い欠点を持っていた。
Problems to be Solved by the Invention However, most solid electrolytic capacitors to date have used conductive paint containing silver powder, which has excellent electrical conductivity, in the cathode layer and conductive adhesive. It had the disadvantage of being susceptible to electrical short circuit failures due to the silver "migration phenomenon" that occurred in hot and humid environments.

次に、銅粉末、ニッケル粉末を有した導電性塗料を使用
した場合、安価で、且つ銀のような“マイグレーション
現象”は起さないが、酸化されてjanδ値が太き(な
る欠点を持っていた。
Next, when a conductive paint containing copper powder or nickel powder is used, it is inexpensive and does not cause the "migration phenomenon" like silver, but it has the drawback of becoming oxidized and increasing the janδ value. was.

又、カーボン粉末を有した導電性塗料を使用した場合は
、より安価で、且つ銀のような“マイグレーション現象
”は起さないが、上記の粉末と比較して抵抗値が大きい
ため初期janδ値が太きい欠点を持っていた。
In addition, when using a conductive paint containing carbon powder, it is cheaper and does not cause the "migration phenomenon" like silver, but it has a higher resistance value than the above powder, so the initial janδ value had a major drawback.

本発明はこれらの欠点を解決した初期janδ値が小さ
く、酸化されに((、且つ、マイグレーションの起らな
い導電性塗料を陰極層と導電接着剤に又は陰極層に又は
導電性接着剤に使用するものである。
The present invention solves these drawbacks by using a conductive coating material that has a small initial Jan δ value, does not oxidize ((), and does not migrate) for the cathode layer and the conductive adhesive, or for the cathode layer or the conductive adhesive. It is something to do.

課題を解決するための手段 このような従来の問題点を解決するために本発明はパラ
ジウムと有機高分子からなる導電層を陰極層または陰極
層と陰極端子との接着剤として用いるもので、パラジウ
ムと有機高分子との重量比を9.5〜6.0.0.5〜
4.0とすると共に、パラジウムの粒径を1〜30μm
とするものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention uses a conductive layer made of palladium and an organic polymer as a cathode layer or as an adhesive between the cathode layer and the cathode terminal. The weight ratio of and organic polymer is 9.5~6.0.0.5~
4.0, and the particle size of palladium is 1 to 30 μm.
That is.

作用 高温、高湿中で化学的に安定で、金属中比較的電気伝導
度の小さいパラジウム粉末を用い、この粉末形状を接触
抵抗の小さいフレーク状に加工し、有機高分子樹脂と混
練した導電性塗料を陰極層・接着剤に使用することによ
り、janδ値が小さく、高温、高温中で、マイグレー
ションの発生しない固体電解コンデンサを得ることがで
きる。
Action Palladium powder, which is chemically stable at high temperatures and high humidity and has relatively low electrical conductivity among metals, is processed into flakes with low contact resistance and kneaded with organic polymer resin to create a conductive material. By using a paint for the cathode layer and adhesive, it is possible to obtain a solid electrolytic capacitor that has a small jan δ value and does not undergo migration at high temperatures.

実施例 まず、粒子径が0.45〜1.0μの球状のパラジウム
粉末をフレーク状にボールミルで偏平化加工して平均粒
子径が5μmのものを用意し、続いてパラジウムフレー
ク状粉末:高純度のメチルメタクリル樹脂:キシレン溶
剤=8.5:1.5゜3.0の重量配合比で調合したも
のを三本ロールで混練し、陰極層13用導電性塗料を作
成し、次に、パラジウムフレーク状粉末:高純度のビス
フェノール型エポキシ樹脂:フェノール硬化剤:イミダ
ゾール:ブチルセルソルブ溶剤=85:4.8 : 3
.0 : 0.1 : 7.1の重量配合比で混練し接
着剤14用導電性塗料を作成してお(。
Example First, spherical palladium powder with a particle size of 0.45 to 1.0 μm was flattened into flakes with a ball mill to prepare one with an average particle size of 5 μm, and then palladium flake powder: high purity Methyl methacrylic resin:xylene solvent = 8.5:1.5゜3.0 was prepared by weight and kneaded using three rolls to create a conductive paint for the cathode layer 13, and then palladium Flake powder: High purity bisphenol type epoxy resin: Phenol curing agent: Imidazole: Butyl cellosolve solvent = 85:4.8:3
.. A conductive paint for adhesive 14 was prepared by kneading at a weight mixing ratio of 0:0.1:7.1.

そして第1図に示す様に、タンタル金属粉末100Nに
断面が円形の線径0.3mmのタンタル線を埋設し陽極
導出線1とし一般的な方法で焼結し、3’ 5 V 6
 、8μF用の多孔質電極体2を得、テフロン板12を
陽極導出線根本部に取り付けた後、タンタル酸化皮膜3
.二酸化マンガン層4゜カーボン層5を順次形成する。
Then, as shown in Fig. 1, a tantalum wire with a circular cross section and a wire diameter of 0.3 mm was buried in 100 N of tantalum metal powder, and was sintered by a general method to form an anode lead wire 1.
After obtaining the porous electrode body 2 for 8 μF and attaching the Teflon plate 12 to the root of the anode lead wire, the tantalum oxide film 3
.. A manganese dioxide layer 4 and a carbon layer 5 are sequentially formed.

これに先はど作成した陰極層用導電性塗料をディッピン
グ法により塗布、30分常温放置した後120℃、IH
r乾燥し、陰極層13を形成しコンデンサ素子とする。
Next, the conductive paint for the cathode layer prepared previously was applied by dipping, left at room temperature for 30 minutes, and then heated to 120°C using IH.
After drying, a cathode layer 13 is formed to form a capacitor element.

次に内部陰極端子に作成した接着剤14用導電塗料をデ
イスペンサーで塗布し、この上に陰極層が、且つタンタ
ル陽極導出線が内部陽極端子方向になるようコンデンサ
素子を配置、タンタル陽極導出線と陽極端子8を溶接7
により接続した後、コンデンサ素子の陰極層が陰極端子
10と確実に接続されるよう少し加圧して180℃、I
Hrの条件で乾燥し接続する。
Next, apply the conductive paint for the adhesive 14 prepared on the internal cathode terminal with a dispenser, place the capacitor element on top of this so that the cathode layer is on top and the tantalum anode lead wire is in the direction of the internal anode terminal, and the tantalum anode lead wire is and anode terminal 8 are welded 7
After connecting the capacitor element with the cathode terminal 10, a little pressure is applied to ensure that the cathode layer of the capacitor element is connected to the cathode terminal 10, and the temperature is increased to 180°C.
Dry and connect under hr conditions.

その後、互いに反対方向の両端に両端子が引出されるよ
うにトランスファーモールド金型にセット、樹脂モール
ド外装置1し、この端子がコンデンサ本体の下方向に向
かって端面及び底面に沿って内側に折り曲げ加工しチッ
プ状固体電解コンデンサを得る。
After that, set it in a transfer mold mold so that both terminals are pulled out at both ends in opposite directions, put the resin mold outside device 1, and bend this terminal inward along the end face and bottom face toward the bottom of the capacitor body. Process to obtain a chip-shaped solid electrolytic capacitor.

先はど作成した導電性塗料の抵抗値は固体電解コンデン
サのjanδ値に影響を与える為、抵抗値は小さい方が
良い。抵抗値はパラジウム粉末と有機高分子樹脂との配
合比、パラジウム粉末粒子径、有機高分子樹脂種類等に
よって変化する。
Since the resistance value of the conductive paint previously prepared affects the jan δ value of the solid electrolytic capacitor, the smaller the resistance value, the better. The resistance value changes depending on the blending ratio of palladium powder and organic polymer resin, the palladium powder particle size, the type of organic polymer resin, etc.

平均粒子径5μmのパラジウムフレーク状粉末とメチル
メタクリル樹脂との配合比を変化させたものにキシレン
を加えて混線・塗料化し、これをガラス基板上に200
μmの膜厚に塗膜を形成した後120℃で乾燥し、塗膜
の抵抗値を測定したのが第2図である。
Xylene was added to a mix of palladium flake powder with an average particle size of 5 μm and methyl methacrylic resin in varying mixing ratios to form a cross wire/paint, and this was coated on a glass substrate with 200%
Figure 2 shows the result of forming a coating film to a thickness of μm, drying it at 120°C, and measuring the resistance value of the coating film.

この第2図かられかるように、コンデンサ用陰極材料と
して使用できるのはパラジウムフレーク状粉末:メチル
メタクリル樹脂混合比が9.5〜6.0 : 0.5〜
4.0の範囲である。又パラジウムフレーク状粉末が多
くなりすぎると塗膜強度が弱くなるので注意が必要であ
る。
As can be seen from Fig. 2, the palladium flake powder: methyl methacrylic resin mixing ratio of 9.5 to 6.0: 0.5 can be used as a cathode material for capacitors.
It is in the range of 4.0. Also, care must be taken because if the amount of palladium flake powder is too large, the strength of the coating will be weakened.

次にパラジウム粉末:メチルメタクリル樹脂:キシレン
=8.5 :1.573.0の配合比で、パラジウム粉
末の形状1粒子径を変えて塗料化し、これをガラス基板
上に200μmの膜厚に・塗膜を形成した後120℃で
乾燥し、塗膜を抵抗値を測定したのが第3図である。形
状はフレーク状の方が良い。粒子径はあまり大きくても
抵抗値はあまり変わらないが、塗料の沈降性を考えると
1〜30μmが良い。又、導電性接着剤についても同様
の結果が得られた。以上のことを検討し、最適条件を見
出したものを本実施例では使用した。
Next, with a mixing ratio of palladium powder: methyl methacrylic resin: xylene = 8.5: 1.573.0, the shape and particle size of the palladium powder was changed to form a paint, and this was coated on a glass substrate in a film thickness of 200 μm. After forming the coating film, it was dried at 120° C., and the resistance value of the coating film was measured as shown in FIG. 3. It is better to have a flaky shape. Even if the particle size is too large, the resistance value will not change much, but in consideration of the sedimentation property of the paint, a range of 1 to 30 μm is preferable. Similar results were also obtained for conductive adhesives. After considering the above, optimal conditions were found and used in this example.

発明の効果 本発明の固体電解コンデンサは、マイグレーション現象
が発生せず、耐湿試験で、漏れ電流変化が小さく、また
下表のように電気的短絡故障が起こらないという効果が
得られる。
Effects of the Invention The solid electrolytic capacitor of the present invention has the following effects: migration phenomenon does not occur, leakage current change is small in a humidity test, and electrical short circuit failure does not occur as shown in the table below.

(以  下  余  白) 本発明品と従来品(銀糸陰極層・接着剤)の耐湿(85
℃、90%、1000Hr)試験での電気的短絡故障発
生数比較 ・・・・・・銀粉末と有機高分子とからなる導電性接着
剤、10・・・・・・陰極端子、11・・・・・・外装
樹脂、12・・・・・・テフロン板、13・・・・・・
パラジウム粉末と有機高分子とからなる陰極層、14・
・・・・・パラジウム粉末と有機高分子とからなる接着
剤。
(Margin below) Moisture resistance (85
Comparison of the number of electrical short circuit failures in tests (℃, 90%, 1000 Hr) Conductive adhesive made of silver powder and organic polymer, 10... Cathode terminal, 11... ...Exterior resin, 12...Teflon plate, 13...
Cathode layer consisting of palladium powder and organic polymer, 14.
...Adhesive made of palladium powder and organic polymer.

代理人の氏名 弁理士 粟野重孝 ほか1名Name of agent: Patent attorney Shigetaka Awano and one other person

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のチップ状タンタル固体電解コンデンサ
の側断面図、第2図はパラジウムフレーク状粉末とメチ
ルメタクリル樹脂との配合比と抵抗値の関係を示す特性
図、第3図はパラジウム粉末の形状・粒子径と抵抗値の
関係を示す特性図、第4図は従来のチップ状タンタル固
体電解コンデンサの側断面図である。 1・・・・・・陽極導出線、2・・・・・・多孔質電極
体、3・・・・・・酸化皮膜、4・・・・・・二酸化マ
ンガン、5・・・・・・カーボン層、6・・・・・・銀
粉末と有機高分子とからなる導電性陰極層、7・・・・
・・溶接部、8・・・・・・陽極端子、9第 図 第 図 麿N求仔蔭− / ρ υ 3θ 4θ 5θ シA)
Figure 1 is a side sectional view of the chip-shaped tantalum solid electrolytic capacitor of the present invention, Figure 2 is a characteristic diagram showing the relationship between the blending ratio of palladium flake powder and methyl methacrylic resin and resistance value, and Figure 3 is a graph of palladium powder. FIG. 4 is a side sectional view of a conventional chip-shaped tantalum solid electrolytic capacitor. 1... Anode lead wire, 2... Porous electrode body, 3... Oxide film, 4... Manganese dioxide, 5... Carbon layer, 6... Conductive cathode layer consisting of silver powder and organic polymer, 7...
...Welded part, 8... Anode terminal, 9 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)陽極導出線を具備する電極体の表面に誘電体酸化
皮膜を形成させ、更にこの上にカーボン層およびパラジ
ウムと有機高分子からなる導電層を陰極層として順次形
成し、前記陰極層と陰極端子を導電性接着剤で接続する
と共に樹脂外装を施してなる固体電解コンデンサ。
(1) A dielectric oxide film is formed on the surface of an electrode body having an anode lead wire, and a carbon layer and a conductive layer made of palladium and an organic polymer are sequentially formed on this as a cathode layer. A solid electrolytic capacitor whose cathode terminals are connected with a conductive adhesive and coated with resin.
(2)陽極導出線を具備する電極体の表面に誘電体酸化
皮膜を形成させ、更にこの上にカーボン層および陰極層
を順次形成し、前記陰極層と陰極端子をパラジウムと有
機高分子からなる導電層を接着剤として接続すると共に
樹脂外装を施してなる固体電解コンデンサ。
(2) A dielectric oxide film is formed on the surface of the electrode body equipped with the anode lead wire, and a carbon layer and a cathode layer are sequentially formed on this, and the cathode layer and cathode terminal are made of palladium and an organic polymer. A solid electrolytic capacitor with a conductive layer connected using an adhesive and a resin exterior.
(3)導電層がパラジウムと有機高分子の重量比として
9.5〜6.0:0.5〜4.0でかつパラジウムの粒
径が1〜30μmである特許請求の範囲第1項または第
2項記載の固体電解コンデンサ。
(3) The conductive layer has a weight ratio of palladium to organic polymer of 9.5 to 6.0:0.5 to 4.0, and the particle size of palladium is 1 to 30 μm, or Solid electrolytic capacitor according to item 2.
JP1086242A 1988-12-07 1989-04-05 Solid electrolytic capacitor Pending JPH02264417A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1086242A JPH02264417A (en) 1989-04-05 1989-04-05 Solid electrolytic capacitor
DE68914955T DE68914955T2 (en) 1988-12-07 1989-12-06 Solid electrolytic capacitor.
US07/446,908 US5005107A (en) 1988-12-07 1989-12-06 Solid electrolytic capacitor
EP89122472A EP0372519B1 (en) 1988-12-07 1989-12-06 A solid electrolytic capacitor
KR1019890018122A KR920010629B1 (en) 1988-12-07 1989-12-07 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086242A JPH02264417A (en) 1989-04-05 1989-04-05 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02264417A true JPH02264417A (en) 1990-10-29

Family

ID=13881338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086242A Pending JPH02264417A (en) 1988-12-07 1989-04-05 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02264417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056842A (en) * 1991-06-27 1993-01-14 Hitachi Aic Inc Solid electrolytic capacitor
JP2006024691A (en) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056842A (en) * 1991-06-27 1993-01-14 Hitachi Aic Inc Solid electrolytic capacitor
JP2006024691A (en) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4624017B2 (en) * 2004-07-07 2011-02-02 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR920010629B1 (en) Solid electrolytic capacitor
US7348194B2 (en) Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
US9748043B2 (en) Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
US7599169B2 (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
US8896986B2 (en) Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
JPH05159987A (en) Solid electrolytic capacitor
JPH02264417A (en) Solid electrolytic capacitor
JP5014459B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0213808B2 (en)
JPH02265233A (en) Solid-state electrolytic capacitor
JPS5853965A (en) Electrically-conductive coating compound for solid electrolysis condenser
JP2638162B2 (en) Solid electrolytic capacitors
WO2024070142A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2001338847A (en) Solid electrolytic capacitor
JPH02264415A (en) Solid electrolytic capacitor
WO2023119843A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JPH02264416A (en) Solid electrolytic capacitor
JP2833341B2 (en) Chip-shaped solid electrolytic capacitor
JPS6142406B2 (en)
JPH01232714A (en) Solid electrolytic capacitor
JPS60192319A (en) Solid electrolytic condenser
JPH02265234A (en) Solid-state electrolytic capacitor
JPH04148522A (en) Solid tantalum capacitor
JPH04177817A (en) Tantalum solid electrolytic capacitor
CN101356610A (en) Polymer based solid state capacitors and a method of manufacturing them