JPH02265234A - Solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor

Info

Publication number
JPH02265234A
JPH02265234A JP1086266A JP8626689A JPH02265234A JP H02265234 A JPH02265234 A JP H02265234A JP 1086266 A JP1086266 A JP 1086266A JP 8626689 A JP8626689 A JP 8626689A JP H02265234 A JPH02265234 A JP H02265234A
Authority
JP
Japan
Prior art keywords
powder
resin
palladium
graphite
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086266A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kobashi
小橋 康博
Isao Irikura
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1086266A priority Critical patent/JPH02265234A/en
Priority to DE68914955T priority patent/DE68914955T2/en
Priority to US07/446,908 priority patent/US5005107A/en
Priority to EP89122472A priority patent/EP0372519B1/en
Priority to KR1019890018122A priority patent/KR920010629B1/en
Publication of JPH02265234A publication Critical patent/JPH02265234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To reduce trouble of an electrical short circuit by a method wherein a conductor which is composed of the following and which satisfies specific condition is used as the cathode layer or the adhesive: a coated conductive powder such that the surface of a graphite flakelike powder has been coated with palladium metal; and an organic high polymer. CONSTITUTION:The cathode layer 12 is a conductor made of a mixture of conductive powder and resin. The conductive powder is such that its core powder is graphite flake of 1 to 50mum grain size and that palladium is coated on the core powder by 0.1 to 2mum thickness. The resist is at least one kind of thermoplastic resin such as acryl resin or polyethylene resin and of thermosetting resin such as epoxy resin or phenol resin. The weight ratio of the mixture is (9.5 to 6.0):(0.5 to 4.0). Alternatingly, the adhesive 13 may be a conductor made of a mixture of conductive powder and resin. The conductive powder is such that its core powder is graphite flake of 1 to 50mum grain size and palladium is coated on the core powder by 0.1 to 2mum thickness. The resin is at least one kind of thermo-setting resins, such as epoxy resin or phenol resin. The weight ratio of the mixture is (9.5 to 6.0):(0.5 to 4.0). Thereby, trouble of an electrical short circuit is reduced; change in a leake current can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to solid electrolytic capacitors.

従来の技術 従来の固体電解コンデンサは第5図に示す様に、タンタ
ル陽極導、出線1を具備したタンタル多孔質電極体2の
タンタル陽極導出線根本部に絶縁板を取り付け、このタ
ンタル多孔質電極体2の表面上にタンタル誘電体酸化皮
膜3を形成し、更にこの表面に二酸化マンガンなどの固
体電解質4゜カーボン層5.銀、銅、カーボンなどの粉
末と有機高分子とからなる導電性塗料を塗布、乾燥して
なる陰極層6を順次積層してコンデンサ素子とし、この
コンデンサ素子のタンタル陽極導出線1に溶接で、陽極
導端子8を接続し、続いて半田又は銀、銅、カーボンな
どの粉末と有機高分子とからなる導電性接着剤9を塗布
、乾燥して陰極層6と陰極端子10を接続し、外装樹脂
11を施した後、互いに反対方向に引出した両端子をコ
ンデンサ本体の下方向に向かって端面及び底面に沿って
内側に折り曲げ加工していた。
2. Prior Art As shown in FIG. 5, a conventional solid electrolytic capacitor has an insulating plate attached to the base of a tantalum anode lead wire of a tantalum porous electrode body 2 having a tantalum anode lead wire 1. A tantalum dielectric oxide film 3 is formed on the surface of the electrode body 2, and a solid electrolyte such as manganese dioxide, 4.degree. carbon layer, 5. A conductive paint made of powders of silver, copper, carbon, etc. and an organic polymer is coated and dried to form a capacitor element by successively stacking cathode layers 6, and by welding to the tantalum anode lead wire 1 of this capacitor element. The anode conductive terminal 8 is connected, and then a conductive adhesive 9 made of solder or powder of silver, copper, carbon, etc. and an organic polymer is applied and dried to connect the cathode layer 6 and the cathode terminal 10. After applying the resin 11, both terminals pulled out in opposite directions were bent inward along the end face and bottom face toward the bottom of the capacitor body.

発明が解決しようとする課題 しかしながら、上記の従来の構成では、次のような問題
があった。
Problems to be Solved by the Invention However, the above conventional configuration has the following problems.

(1)  陰極層又は導電性接着剤に銀粉末を用いた場
合、高温多湿中で銀の“マイグレーション”が起るので
、電気短絡故障、漏れ電流が大きくなる問題点を有して
いた。
(1) When silver powder is used in the cathode layer or conductive adhesive, "migration" of silver occurs in high temperature and humidity, resulting in problems such as electrical short circuit failure and increased leakage current.

(2)陰極層又は導電性接着剤に銅粉末を用いた場合、
高温高湿中で酸化されるので、janδ値が大きくなる
問題点を有していた。
(2) When copper powder is used for the cathode layer or conductive adhesive,
Since it is oxidized in high temperature and high humidity, it has a problem that the jan δ value becomes large.

(3)陰極層又は導電性接着剤にカーボン粉末を用いた
場合、カーボン粉末の固有抵抗が大きいので初期jan
δ値が大きいという問題点を有していた。
(3) When carbon powder is used for the cathode layer or conductive adhesive, the initial Jan.
The problem was that the δ value was large.

本発明は上記従来の問題点を解決するもので、初期ja
nδ値が小さ(、高温高湿中でjanδ値が変化せず電
気短絡故障が少なく、漏れ電流変化の小さい固体電解コ
ンデンサを提供することを目的とする。
The present invention solves the above-mentioned conventional problems.
The purpose of the present invention is to provide a solid electrolytic capacitor with a small nδ value (janδ value does not change in high temperature and high humidity, has few electrical short circuit failures, and has small leakage current changes.

課題を解決するための手段 この目的を達成するために本発明の固体電解コンデンサ
は、陰極層を粒径1〜50μmの黒鉛フレーク状粉末を
核導電性粉末とし、この表面に0.1〜2μmの厚みで
パラジウム金属を被覆した被覆導電性粉末とアクリル系
、ポリエチレン系、ビニル系、セルロース系、ポリカー
ボネート系、ポリアミド系熱可塑性樹脂又はエポキシ系
Means for Solving the Problems In order to achieve this object, the solid electrolytic capacitor of the present invention has a cathode layer made of graphite flake-like powder with a particle size of 1 to 50 μm as a nuclear conductive powder, and a layer of 0.1 to 2 μm in diameter on the surface of the cathode layer. Coated conductive powder coated with palladium metal to a thickness of 100 mL and acrylic, polyethylene, vinyl, cellulose, polycarbonate, polyamide thermoplastic resin or epoxy.

フェノール系、ポリイミド系熱硬化性樹脂のうち少なく
とも1種類の重量比が9.5〜6.0 : 0.5〜4
.0からなる導電体とするか、又は接着剤を粒径1〜5
0μmの黒鉛フレーク状粉末を核導電性粉末とし、この
表面に0.1〜2μmの厚みでパラジウム金属を被覆し
た被覆導電性粉末とエポキシ系、フェノール系、ポリイ
ミド系熱硬化性樹脂のうち少なくとも1種類の重量比が
9.5〜6.0 : 0.5〜4.0からなる導電体と
している。
The weight ratio of at least one of the phenolic and polyimide thermosetting resins is 9.5 to 6.0: 0.5 to 4
.. 0 or the adhesive has a particle size of 1 to 5.
0 μm graphite flake powder is used as nuclear conductive powder, the surface of this is coated with palladium metal to a thickness of 0.1 to 2 μm, and at least one of epoxy, phenol, and polyimide thermosetting resins is used. The conductor has a weight ratio of 9.5 to 6.0:0.5 to 4.0.

作用 この構成によって、陰極層・接着剤の被覆導電性粉末の
材料である黒鉛は固有抵抗は高いが非常に安価で高温高
湿中で化学的に安定でイオン化しにくい性質を有し、又
被覆するパラジウム金属は金属中比較的電気導電度が大
きく、高温高温中で化学的に安定でイオン化しに(い性
質を有しており、黒鉛フレーク状粉末にパラジウム金属
を被覆することにより粒子間の接触抵抗を小さくし、塗
料の固有抵抗が小さくできることを利用している。
Function: Due to this structure, graphite, which is the material of the conductive powder coating for the cathode layer/adhesive, has high resistivity but is very inexpensive, chemically stable at high temperatures and high humidity, and difficult to ionize. Palladium metal has a relatively high electrical conductivity among metals, is chemically stable at high temperatures, and has the property of not being ionized. By coating graphite flake-like powder with palladium metal, It takes advantage of the fact that the contact resistance can be reduced and the specific resistance of the paint can be reduced.

導電塗料化においても核導電性粉末形状をフレーク状に
すること、コストを考慮して被覆するパラジウム金属量
を多(すること、塗膜強度を考慮して被覆導電性粉末と
有機高分子の重量比で被覆導電性粉末量を多(すること
により塗料の固有抵抗を小さくでき、黒鉛粉末の場合よ
り初期janδ値が小さ(、パラジウム粉末の場合より
低コストで且つ高温高湿中でtanδ値変化の小さい、
電気的短絡故障の発生しない固体電解コンデンサを得る
ことができる。
In the production of conductive paint, the shape of the nuclear conductive powder should be made into flakes, the amount of palladium metal coated should be increased considering cost, and the weight of the coated conductive powder and organic polymer should be increased in consideration of coating strength. By increasing the amount of conductive powder coated with the ratio, the specific resistance of the paint can be reduced, and the initial tanδ value is smaller than that of graphite powder (lower cost than that of palladium powder, and the tanδ value changes in high temperature and high humidity. small,
A solid electrolytic capacitor without electrical short circuit failure can be obtained.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図は本発明の一実施例における固体電解
コンデンサの側断面図を示すものである。1はタンタル
陽極導出線、2はタンタル多孔質電極体、3はタンタル
誘電体酸化皮膜、4は固体電解質層、5はカーボン層、
7は溶接部、脂、12は黒鉛フレーク状粉末にパラジウ
ム金属を被覆した被覆導電性粉末と有機高分子からなる
陰極層(以下、黒鉛−パラジウム系陰極層という)、1
3は黒鉛フレーク状粉末にパラジウム金属を被覆した被
覆導電性粉末と有機高分子からなる接着剤(以下、黒鉛
−パラジウム系接着剤という)である。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a side sectional view of a solid electrolytic capacitor in one embodiment of the present invention. 1 is a tantalum anode lead wire, 2 is a tantalum porous electrode body, 3 is a tantalum dielectric oxide film, 4 is a solid electrolyte layer, 5 is a carbon layer,
7 is a welded part; 12 is a cathode layer consisting of a coated conductive powder made of graphite flake powder coated with palladium metal and an organic polymer (hereinafter referred to as graphite-palladium cathode layer); 1
3 is an adhesive (hereinafter referred to as graphite-palladium adhesive) consisting of a coated conductive powder obtained by coating graphite flake powder with palladium metal and an organic polymer.

まず、粒径4μmのフレーク状の黒鉛核導電性粉末にパ
ラジウムを1μmの厚みで化学メツキした被覆導電性粉
末(以下、黒鉛−パラジウム系粉末という)を用意し、
黒鉛−パラジウム系粉末:高純度のメチルメタクリル樹
脂:キシレン溶剤=8 、2 : 4゜0の重量比で調
合したものを三本ロールで混練し、黒鉛−パラジウム系
陰極層用導電性塗料を作成し、次に黒鉛−パラジウム系
粉末:高純度ビスフェノール型エポキシ樹脂:フェノー
ル硬化剤:イミダゾール:ブチルセルソルブ溶剤=80
:12.1ニア、9:0.1:20の重量比で混練し、
黒鉛−パラジウム系接着剤用導電性塗料を作成しておく
First, a coated conductive powder (hereinafter referred to as graphite-palladium powder) is prepared by chemically plating palladium to a thickness of 1 μm on flaky graphite core conductive powder with a particle size of 4 μm.
Graphite-palladium powder: High-purity methyl methacrylic resin: xylene solvent = 8, 2: Mixed in a weight ratio of 4゜0 using three rolls to create a graphite-palladium conductive paint for the cathode layer. Then, graphite-palladium powder: High purity bisphenol type epoxy resin: Phenol curing agent: Imidazole: Butyl cellosolve solvent = 80
:12.1near, kneaded at a weight ratio of 9:0.1:20,
Prepare a conductive paint for graphite-palladium adhesive.

そしてタンタル金属粉末1100aに断面が円形の線径
0.3mmのタンタル線を埋設し陽極導出線とし一般的
な方法で焼結し、35V6.8μF用のタンタル多孔質
電極体を得、絶縁板を陽極導出線根本部に取り付けた後
、タンタル誘電体酸化皮膜、固体電解質である二酸化マ
ンガン層、カーボン層を順次形成する。これに先はど作
成した黒鉛−パラジウム系陰極層用導電性塗料をディッ
ピング法により塗布、30分常温放置した後120℃、
IHr乾燥し、黒鉛−パラジウム系陰極層を形成しコン
デンサ素子とする。次に陰極端子に作成した黒鉛−パラ
ジウム系接着剤用導電性塗料をデイスペンサーで塗布し
、この上に黒鉛−パラジウム系陰極層が、且つタンタル
陽極導出線が陽極端子方向になるようコンデ、ンサ素子
を配置し、タンタル陽極導出線と陽極端子を溶接により
接続した後、コンデンサ素子の黒鉛−パラジウム系陰極
層が陰極端子と確実に接続されるよう少し加圧して18
0℃、IHrの条件で乾燥し接続する。その後、互いに
反対方向の両端に両端子が引出されるようトランスファ
ーモールド金型にセットして樹脂外装し、この端子がコ
ンデンサ本体の下方向に向かって端面及び底面に沿って
内側に折り曲げ加工し固体電解コンデンサを得る。
Then, a tantalum wire with a circular cross section and a wire diameter of 0.3 mm was embedded in the tantalum metal powder 1100a and sintered as an anode lead wire using a general method to obtain a tantalum porous electrode body for 35 V 6.8 μF, and an insulating plate was formed. After attaching it to the base of the anode lead wire, a tantalum dielectric oxide film, a solid electrolyte manganese dioxide layer, and a carbon layer are sequentially formed. On this, the previously prepared graphite-palladium conductive paint for the cathode layer was applied by the dipping method, left at room temperature for 30 minutes, and then heated to 120°C.
It is dried by IHr to form a graphite-palladium cathode layer to form a capacitor element. Next, apply the prepared conductive paint for graphite-palladium adhesive to the cathode terminal using a dispenser, and place the graphite-palladium cathode layer on top of this using a capacitor and paste so that the tantalum anode lead wire is in the direction of the anode terminal. After arranging the element and connecting the tantalum anode lead wire and the anode terminal by welding, a little pressure was applied to ensure that the graphite-palladium cathode layer of the capacitor element was connected to the cathode terminal.
Dry and connect at 0°C and IHr conditions. After that, the terminals are set in a transfer mold mold so that they can be pulled out from both ends in opposite directions, and are covered with resin.The terminals are then bent inward along the end and bottom surfaces toward the bottom of the capacitor body, and solidified. Get an electrolytic capacitor.

先はど作成した導電性塗料の抵抗値は固体電解コンデン
サのjanδ値に影響を与えるため、抵抗値は小さい方
が良い。抵抗値は黒鉛−パラジウム系粉末と有機高分子
との重量比、黒鉛−パラジウム系粉末粒子径等によって
変化する。
Since the resistance value of the conductive paint previously prepared affects the jan δ value of the solid electrolytic capacitor, the smaller the resistance value, the better. The resistance value changes depending on the weight ratio of the graphite-palladium powder to the organic polymer, the particle size of the graphite-palladium powder, and the like.

粒径4μmで且つ粉末形状が球状、フレーク状の各黒鉛
粉末に1μmパラジウム金属を被覆した各黒鉛−パラジ
ウム系粉末とメチルメタクリル樹脂との重量比を変化さ
せたものにキシレンを加えて混線、塗料化し、これをガ
ラス基板上に面積1cd 、厚み200μmで塗膜を形
成した後、120℃で乾燥し塗膜の抵抗値を測定した結
果を第2図(黒鉛−パラジウム系粉末と有機高分子重量
比−抵抗値特性曲線)に示す。この第2図かられかるよ
うに、コンデンサ用陰極材料として使用できるのは黒鉛
−パラジウム系粉末:メチルメタクリル樹脂の重量比が
9.5〜6.0 : 0.5〜4.0の範囲である。但
し、黒鉛−パラジウム系粉末が多(なりすぎると塗膜強
度が弱(なるので注意が必要である。又、粉末形状はフ
レーク状が良い。
Each graphite powder with a particle size of 4 μm and a powder shape of spherical or flake shape is coated with 1 μm palladium metal, and xylene is added to the mixture of graphite-palladium based powder and methyl methacrylic resin in varying weight ratios to mix wires and paint. After forming a coating film with an area of 1 cd and a thickness of 200 μm on a glass substrate, it was dried at 120°C and the resistance value of the coating film was measured. Specific resistance-resistance value characteristic curve). As can be seen from Fig. 2, the material that can be used as a cathode material for capacitors is one in which the weight ratio of graphite-palladium powder to methyl methacrylic resin is in the range of 9.5 to 6.0:0.5 to 4.0. be. However, care must be taken, as too much graphite-palladium powder will weaken the strength of the coating.Also, the powder should preferably be in the form of flakes.

次に粒径4μmの黒鉛フレーク状粉末に1μmパラジウ
ム金属を被覆した黒鉛−パラジウム系粉末:メチルメタ
クリル樹脂:キシレン=8 、2 :4の重量比で黒鉛
−パラジウム系粉末の粒径を変えて塗料化し、これをガ
ラス基板上に面積1 cn? 。
Next, graphite flake powder with a particle size of 4 μm was coated with 1 μm palladium metal. Graphite-palladium powder: Methyl methacrylic resin: and place it on a glass substrate with an area of 1 cn? .

厚み200μmで塗膜を形成した後、120℃で乾燥し
塗膜の抵抗値を測定した結果を第3図(黒鉛−パラジウ
ム系粉末の粒径−抵抗値特性曲線)に示す。粒径はあま
り太き(でも抵抗値は変わらないが、塗料の沈降性、塗
膜の表面状態を考えると1〜50μmが良い。
After forming a coating film with a thickness of 200 μm, it was dried at 120° C. and the resistance value of the coating film was measured. The results are shown in FIG. 3 (particle size-resistance characteristic curve of graphite-palladium powder). The particle size is too large (although the resistance value will not change, but considering the sedimentation properties of the paint and the surface condition of the coating film, 1 to 50 μm is preferable).

粒径4μmの黒鉛フレーク状粉末へ被覆するパラジウム
金属厚みについて、黒鉛−パラジウム系粉末:メチルメ
タクリル樹脂:キシレン=8:2;4の重量比で、被覆
するパラジウム金属の厚みを変えて塗料化し、これをガ
ラス基板上に面積1 cd 、厚み200μmで塗膜を
形成後、120℃で乾燥し初期抵抗値を測定した結果を
第4図(バラジウム金属厚み一抵抗値特性曲線)に示す
。パラジウム金属の厚みが厚(なるにつれて抵抗値は小
さくなるが、コストを考慮して0.1〜2.0μmが良
い。
Regarding the thickness of palladium metal coated on graphite flake-like powder with a particle size of 4 μm, the thickness of palladium metal coated was changed into a paint at a weight ratio of graphite-palladium-based powder: methyl methacrylic resin: xylene = 8:2; 4, A coating film having an area of 1 cd and a thickness of 200 μm was formed on a glass substrate, dried at 120° C., and the initial resistance value was measured. The results are shown in FIG. 4 (baradium metal thickness vs. resistance value characteristic curve). The resistance value decreases as the palladium metal becomes thicker, but in consideration of cost, it is preferably 0.1 to 2.0 μm.

又、黒鉛−パラジウム系接着剤用導電性塗料についても
同様の結果が得られた。以上のことを検討し最適条件の
ものを本実施例では使用した。
Similar results were also obtained for the conductive paint for graphite-palladium adhesives. After considering the above, the optimum conditions were used in this example.

なお、実施例では黒鉛−パラジウム系陰極用導電性塗料
の樹脂として、アクリル系樹脂を使用したが、コンデン
サ特性に悪影響を与えないポリエチレン系、ビニル系、
セルロース系、ポリカーボネート系、ポリアミド系熱可
塑性樹脂又はエポキシ系、フェノール系、ポリイミド系
熱硬化性樹脂を使用しても良い。樹脂は耐熱性、吸水性
、塗膜強度、硬化性が異なるので必要に応じて選択する
と良い。但し、熱硬化性樹脂を用いる時は耐湿試験でj
anδ値が大きくなることがあるので特に注意する必要
がある。又、黒鉛−パラジウム系接着剤用導電性塗料の
樹脂としてはエポキシ系樹脂を使用したが、コンデンサ
特性に悪影響を与えないフェノール系、ポリイミド系熱
硬化性樹脂を使用しても良い。特に接着剤用樹脂は塗膜
強度、金属に対しての密着性が優れていな(ではならな
い。その他の耐熱性、吸水性、硬化性については必要に
応じて選択すると良い。
In the examples, acrylic resin was used as the resin for the graphite-palladium cathode conductive paint, but polyethylene, vinyl, or
Cellulose-based, polycarbonate-based, polyamide-based thermoplastic resins, or epoxy-based, phenolic-based, polyimide-based thermosetting resins may be used. Since resins differ in heat resistance, water absorption, coating strength, and curability, they should be selected as necessary. However, when using thermosetting resin, please check the moisture resistance test.
Particular care must be taken because the anδ value may become large. Furthermore, although epoxy resin was used as the resin for the conductive paint for the graphite-palladium adhesive, phenolic or polyimide thermosetting resins that do not adversely affect capacitor characteristics may also be used. In particular, adhesive resins must not have excellent coating strength or adhesion to metals. Other properties such as heat resistance, water absorption, and curing properties may be selected as necessary.

以上のように構成された固体電解コンデンサは陰極層・
接着剤に黒鉛−パラジウム系粉末を用いているため、パ
ラジウム粉末の場合より低価格で、黒鉛粉末の場合より
初期janδ値が小さく、耐湿試験でjanδ値変化、
漏れ電流値変化が小さいものとなる。以上のように本実
施例によれば陰極層と接着剤を、黒鉛−パラジウム系陰
極層、黒鉛−パラジウム系接着剤にかえることにより、
耐湿特性の向上を図ることができる。
The solid electrolytic capacitor constructed as above has a cathode layer and
Since graphite-palladium powder is used as the adhesive, the price is lower than that of palladium powder, the initial Jan δ value is smaller than that of graphite powder, and the Jan δ value changes in the moisture resistance test.
The change in leakage current value becomes small. As described above, according to this embodiment, by changing the cathode layer and adhesive to a graphite-palladium based cathode layer and a graphite-palladium based adhesive,
Moisture resistance characteristics can be improved.

下表に実施例の本発明品と従来品(銀陰極層・銀接着剤
)の耐湿試験(85℃、90%、1000Hr)でのj
anδ値、電気的短絡故障発生数を比較する。
The table below shows the humidity resistance test (85°C, 90%, 1000Hr) of the inventive product and the conventional product (silver cathode layer/silver adhesive) in Examples.
Compare the anδ value and the number of electrical short circuit failures.

サンプル:定格電圧35V、定格容量6.8μF※1 
 tanδは周波数f=IKHzで測定※2 短絡故障
数は100ケ中発生した数測定は定格電圧を1間分印加
して測定 なお、実施例では陰極層、接着剤に同じ黒鉛パラジウム
系粉末を含む導電体を使用したが、溶射による半田、メ
ツキによるニッケルなどからなる陰極層と黒鉛−パラジ
ウム系接着剤との組合せ、逆に黒鉛−パラジウム系陰極
層とカーボン。
Sample: Rated voltage 35V, rated capacity 6.8μF*1
tan δ is measured at frequency f = IKHz *2 The number of short circuit failures is the number that occurred out of 100. The measurement is performed by applying the rated voltage for 1 minute. In the example, the cathode layer and adhesive contain the same graphite palladium powder. Although a conductor was used, a combination of a graphite-palladium adhesive and a cathode layer made of thermally sprayed solder or plating nickel, or a graphite-palladium cathode layer and carbon.

ニッケルなどの導電性接着剤、半田で接続する組合せで
も良い。但しマイグレーションを起す銀粉末と有機高分
子とからなる銀陰極層・銀接着剤と黒鉛−パラジウム系
陰極層、黒鉛−パラジウム系接着剤の組合せを各種おこ
なって固体電解コンデンサを作成し、耐湿試験(85℃
、90%。
A combination of conductive adhesive such as nickel or solder may also be used. However, solid electrolytic capacitors were created using various combinations of silver cathode layers and silver adhesives made of silver powder and organic polymers that cause migration, graphite-palladium cathode layers, and graphite-palladium adhesives, and moisture resistance tests ( 85℃
, 90%.

1000Hr)すると、銀陰極層・銀接着剤、銀陰極層
・黒鉛−パラジウム系接着剤、黒鉛−パラジウム系陰極
層・銀接着剤、黒鉛−パラジウム系陰極層・黒鉛−パラ
ジウム系接着剤の順で電気短絡故障が少な(なるため、
できるだけマイグレーションを起す陰極層・接着剤とは
組合せをしない方が良い。
1000 hours) Then, in the following order: silver cathode layer/silver adhesive, silver cathode layer/graphite-palladium adhesive, graphite-palladium cathode layer/silver adhesive, graphite-palladium cathode layer/graphite-palladium adhesive. There are fewer electrical short circuit failures (because
It is better not to use it in combination with cathode layers and adhesives that cause migration as much as possible.

発明の効果 以上のように本発明は陰極層又は接着剤を黒鉛フレーク
状粉末表面にパラジウム金属を被覆した被覆導電性粉末
と有機高分子とからなる導電体にすることにより、初期
janδ値が小さく、耐湿試験でjanδ値変化が小さ
(、漏れ電流値変化が小さく、電気的短絡故障が少ない
優れた固体電解コンデンサを実現できる。
Effects of the Invention As described above, the present invention uses a conductor consisting of a coated conductive powder whose surface is coated with palladium metal on the surface of graphite flake powder and an organic polymer as the cathode layer or adhesive, so that the initial jan δ value is small. It is possible to realize an excellent solid electrolytic capacitor with a small change in jan δ value in a moisture resistance test (small change in leakage current value, and few electrical short circuit failures).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における固体電解コンデンサ
の側断面図、第2図は黒鉛−パラジウム系粉末と有機高
分子重量比−抵抗値特性曲線図、第3図は黒鉛−パラジ
ウム系粉末の粒径−抵抗値第 嘉 特性曲線図1.第4図はパラジウム金属の厚み一抵抗値
曲線図、第5図は従来の固体電解コンデンサの側断面図
である。 1・・・・・・タンタル陽極導出線、2・・・・・・タ
ンタル多孔質電極体、3・・・・・・タンタル誘電体酸
化皮膜、4・・・・・・固体電解質層、5・・・・・・
カーボン層、8・・・・・・陽極端子、10・・・・・
・陰極端子、11・・・・・・外装樹脂、12・・・・
・・黒鉛−パラジウム系陰極層、13・・・・・・黒鉛
−パラジウム系接着剤。 代理人の氏名 弁理士 粟野重孝 ほか1名W&1 図 第 図 第 兜恍う 図 図 図 /−一−ダングル陽垣1已線 2−ダンダルク7ム貢trIL体 3−fンダル峰電A本酸イ邑、皮、暎 4°−面信p也解買屑 6−cr−iン漕 γ−溶#C部 8・−VS禅4子 IO・−7’を極端子 If−−ダト ラLMナバ喬
Figure 1 is a side cross-sectional view of a solid electrolytic capacitor according to an embodiment of the present invention, Figure 2 is a graphite-palladium powder and organic polymer weight ratio-resistance characteristic curve, and Figure 3 is a graphite-palladium powder and graphite-palladium powder. Particle size-resistance characteristic curve Figure 1. FIG. 4 is a thickness-resistance curve diagram of palladium metal, and FIG. 5 is a side sectional view of a conventional solid electrolytic capacitor. DESCRIPTION OF SYMBOLS 1...Tantalum anode lead wire, 2...Tantalum porous electrode body, 3...Tantalum dielectric oxide film, 4...Solid electrolyte layer, 5・・・・・・
Carbon layer, 8...Anode terminal, 10...
・Cathode terminal, 11...Exterior resin, 12...
...Graphite-palladium-based cathode layer, 13...Graphite-palladium-based adhesive. Name of agent Patent attorney Shigetaka Awano and 1 other person W&1 Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. 1. Fig. fig. Eup, Peel, 暎4°-Menshin p and disassembly 6-cr-in row γ-melt #C part 8・-VS Zen4 child IO・-7' to the extreme terminal If--Datra LM Nava Qiao

Claims (2)

【特許請求の範囲】[Claims] (1)陽極導出線を具備する電極体の表面に誘電体酸化
皮膜を形成させ、更にこの上に固体電解質層,カーボン
層及び粒径1〜50μmの黒鉛フレーク状粉末を核導電
性粉末とし、この表面に0.1〜2μmの厚みでパラジ
ウム金属を被覆した被覆導電性粉末とアクリル系,ポリ
エチレン系,ビニル系,セルロース系,ポリカーボネー
ト系,ポリアミド系熱可塑性樹脂又はエポキシ系,フェ
ノール系,ポリイミド系熱硬化性樹脂のうち少なくとも
1種類の重量比が9.5〜6.0:0.5〜4.0から
なる陰極層を順次形成し、陽極導出線を陽極端子に、前
記陰極層を陰極端子に接続すると共に樹脂外装を施して
なる固体電解コンデンサ。
(1) A dielectric oxide film is formed on the surface of an electrode body equipped with an anode lead wire, and a solid electrolyte layer, a carbon layer, and graphite flake-like powder with a particle size of 1 to 50 μm are used as nuclear conductive powder on this, This surface is coated with a conductive powder coated with palladium metal to a thickness of 0.1 to 2 μm, and a thermoplastic resin such as acrylic, polyethylene, vinyl, cellulose, polycarbonate, polyamide, or epoxy, phenol, or polyimide resin is used. A cathode layer consisting of a thermosetting resin having a weight ratio of 9.5 to 6.0:0.5 to 4.0 is sequentially formed, the anode lead wire is used as an anode terminal, and the cathode layer is used as a cathode. A solid electrolytic capacitor that is connected to terminals and has a resin exterior.
(2)陽極導出線を具備する電極体の表面に誘電体酸化
皮膜を形成させ、更にこの上に固体電解質層,カーボン
層及び陰極層を順次形成し、陽極導出線を陽極端子に、
粒径1〜50μmの黒鉛フレーク状粉末を核導電性粉末
とし、この表面に0.1〜2μmの厚みでパラジウム金
属を被覆した被覆導電性粉末とエポキシ系,フェノール
系,ポリイミド系熱硬化性樹脂のうち少なくとも1種類
の重量比が9.5〜6.0:0.5〜4.0からなる接
着剤で、前記陰極層と、陰極端子とを接続すると共に樹
脂外装を施してなる固体電解コンデンサ。
(2) A dielectric oxide film is formed on the surface of the electrode body equipped with the anode lead wire, and a solid electrolyte layer, a carbon layer, and a cathode layer are sequentially formed thereon, and the anode lead wire is used as the anode terminal.
Graphite flake-like powder with a particle size of 1 to 50 μm is used as a nuclear conductive powder, and the surface of this powder is coated with palladium metal to a thickness of 0.1 to 2 μm, and an epoxy, phenol, or polyimide thermosetting resin is used. The solid electrolyte is formed by connecting the cathode layer and the cathode terminal with an adhesive having a weight ratio of at least one of the following: 9.5 to 6.0:0.5 to 4.0, and which is coated with a resin. capacitor.
JP1086266A 1988-12-07 1989-04-05 Solid-state electrolytic capacitor Pending JPH02265234A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1086266A JPH02265234A (en) 1989-04-05 1989-04-05 Solid-state electrolytic capacitor
DE68914955T DE68914955T2 (en) 1988-12-07 1989-12-06 Solid electrolytic capacitor.
US07/446,908 US5005107A (en) 1988-12-07 1989-12-06 Solid electrolytic capacitor
EP89122472A EP0372519B1 (en) 1988-12-07 1989-12-06 A solid electrolytic capacitor
KR1019890018122A KR920010629B1 (en) 1988-12-07 1989-12-07 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086266A JPH02265234A (en) 1989-04-05 1989-04-05 Solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02265234A true JPH02265234A (en) 1990-10-30

Family

ID=13882018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086266A Pending JPH02265234A (en) 1988-12-07 1989-04-05 Solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02265234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234768A (en) * 2006-02-28 2007-09-13 Kaneka Corp Electrolytic capacitor, and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105536A (en) * 1981-12-17 1983-06-23 松下電器産業株式会社 Solid electrolytic condenser
JPS58110028A (en) * 1981-12-23 1983-06-30 松下電器産業株式会社 Method of producing solid electrolytic condenser
JPS58171811A (en) * 1982-04-02 1983-10-08 日立コンデンサ株式会社 Method of producing solid electrolytic condenser
JPS60192319A (en) * 1984-02-22 1985-09-30 松下電器産業株式会社 Solid electrolytic condenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105536A (en) * 1981-12-17 1983-06-23 松下電器産業株式会社 Solid electrolytic condenser
JPS58110028A (en) * 1981-12-23 1983-06-30 松下電器産業株式会社 Method of producing solid electrolytic condenser
JPS58171811A (en) * 1982-04-02 1983-10-08 日立コンデンサ株式会社 Method of producing solid electrolytic condenser
JPS60192319A (en) * 1984-02-22 1985-09-30 松下電器産業株式会社 Solid electrolytic condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234768A (en) * 2006-02-28 2007-09-13 Kaneka Corp Electrolytic capacitor, and its manufacturing method

Similar Documents

Publication Publication Date Title
KR920010629B1 (en) Solid electrolytic capacitor
CN101622324B (en) Low temperature curable conductive adhesive and capacitors formed thereby
US7348194B2 (en) Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
US8004821B2 (en) Metal capacitor and manufacturing method thereof
US7342772B2 (en) Solid electrolytic capacitor
US20050219802A1 (en) Electrolytic capacitor and method of manufacturing the same
US7550360B2 (en) Solid electrolytic capacitor manufacturing method capable of easily and properly connecting anode electrode portion
CN107275091B (en) Solid electrolytic capacitor
JP5333674B2 (en) Solid electrolytic capacitor
JP4368349B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP7465547B2 (en) Solid electrolytic capacitor and method for manufacturing the same
KR20050109029A (en) Solid electrolytic capacitor
JPH02265234A (en) Solid-state electrolytic capacitor
JP3846930B2 (en) Manufacturing method of electric double layer capacitor
JPH02265233A (en) Solid-state electrolytic capacitor
JPH11102845A (en) Electrical double layer capacitor and manufacture thereof
JP2638162B2 (en) Solid electrolytic capacitors
JPH02264415A (en) Solid electrolytic capacitor
JP2004063543A (en) Solid electrolytic capacitor and its manufacturing method
TWI616911B (en) Solid electrolytic capacitor
WO2024070142A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JPH02264416A (en) Solid electrolytic capacitor
WO2023119843A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JPH02264417A (en) Solid electrolytic capacitor
JP2019075582A (en) Solid-state electrolytic capacitor