JPH02262050A - Ultrasonic inspection method for pipe - Google Patents

Ultrasonic inspection method for pipe

Info

Publication number
JPH02262050A
JPH02262050A JP1083052A JP8305289A JPH02262050A JP H02262050 A JPH02262050 A JP H02262050A JP 1083052 A JP1083052 A JP 1083052A JP 8305289 A JP8305289 A JP 8305289A JP H02262050 A JPH02262050 A JP H02262050A
Authority
JP
Japan
Prior art keywords
pipe
inspected
circumferential direction
tube
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1083052A
Other languages
Japanese (ja)
Other versions
JPH0731159B2 (en
Inventor
Nobuaki Umitachi
宣明 海達
Fuminori Imamura
今村 文典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Osaka Gas Co Ltd
Original Assignee
Kubota Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Osaka Gas Co Ltd filed Critical Kubota Corp
Priority to JP1083052A priority Critical patent/JPH0731159B2/en
Publication of JPH02262050A publication Critical patent/JPH02262050A/en
Publication of JPH0731159B2 publication Critical patent/JPH0731159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to detect flaws accurately even if there is a defect at both sides of the longitudinal direction of a pipe with respect to a part to be inspected of a pipe by using the maximum value of the measured values which are obtained by measuring the entire surface of the circumference of the pipe at the part to be inspected as a reference value. CONSTITUTION:A transmitting probe 3a and a receiving probe 3b are divided and set in the approximately longitudinal direction of a pipe 1 with respect to a part to be inspected 1a of the pipe 1. Then, an ultrasonic wave is transmitted so as to cross the part to be inspected 1a obliquely with respect to the direction of the axial center P of the pipe. Both probes 3a and 3b are moved in the circumferential direction of the pipe as an integrated body at an equal speed. The correlation between the change in flaw detecting position in the circumferential direction of the pipe and the change in the maximum saturated decibel value Dn of the received ultrasonic wave is automatically recorded as a continuous graph. The measurement is performed along the entire surface in the circumferential direction of the pipe. The maximum value Dmax among the measured values Dn is made to be the reference value. The deviation between the reference value Dmax and each measured value Dn is obtained. The progressing state of the defect in the part to be inspected 1a is judged based on the changing state of the deviation in the circumferential direction of the pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば水素製造用リフオーマ−チューブ等の
化学プラント用反応管、その他各種用途の管に対してそ
のほぼ長手方向に超音波を透過させ、前記管の被検査部
を通る超音波の透過量を測定することによって超音波透
過量の減衰状態から探傷する管の超音波探傷方法に関す
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a method for transmitting ultrasonic waves approximately in the longitudinal direction of reaction tubes for chemical plants, such as reformer tubes for hydrogen production, and tubes for various other uses. The present invention relates to an ultrasonic flaw detection method for a tube, in which flaws are detected from the attenuation state of the amount of ultrasonic wave transmitted by measuring the amount of ultrasonic wave transmitted through the inspected portion of the tube.

〔従来の技術〕[Conventional technology]

従来の上記超音波探傷方法は、管の長手方向におけるマ
クロ組織の変化や表面ラフネス等の悪影響を受けないよ
うに、第3図及び第4図に示すように、被検査部(1a
)に対する管長手方向両側の補助検査部(lb)、 (
lc)で、超音波透過量の測定を夫々行うと共に、被検
査部(1a)での超音波透過量の測定を行い、両補助検
査部(lb)。
In the conventional ultrasonic flaw detection method, as shown in FIGS. 3 and 4, the inspection target area (1a
), auxiliary inspection parts (lb) on both sides of the pipe in the longitudinal direction, (
lc) respectively measure the amount of ultrasound transmission, and also measure the amount of ultrasound transmission at the inspected part (1a), and both auxiliary inspection parts (lb).

査部(1a)での測定値(W)との偏差(R)を、管周
方向の全周にわたって求め、その偏差の管周方向におけ
る変化状態に基いて、前記被検査部(1a)の欠陥の進
展状態を判定していた。
The deviation (R) from the measured value (W) at the inspected section (1a) is determined over the entire circumferential direction of the tube, and based on the state of change of the deviation in the circumferential direction of the tube, the The progress status of the defect was determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記両補助検査部(lb)、 (lc)の少な
くとも一方に、クリープ損傷等の欠陥がある場合には、
基準値そのものに誤差が生じ、損傷精度が低くなる欠点
があった。
However, if at least one of the auxiliary inspection parts (lb) and (lc) has a defect such as creep damage,
This had the disadvantage that errors occurred in the reference values themselves, resulting in lower damage accuracy.

本発明の目的は、管の被検査部に対する管長手方向の両
側部分に、たとえ欠陥があったとしても、精度良(探傷
できるようにする点にある。
An object of the present invention is to enable accurate flaw detection (flaw detection) even if there is a defect on both sides of the tube in the longitudinal direction relative to the portion to be inspected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明における管の超音波探傷方法の特徴手段は、被検
査部に対する超音波透過量の測定を、管周方向の全周に
わたって行い、各測定値のうちの最大値を基準値として
前記基準値に対する各測定値の偏差を夫々求め、その偏
差の管周方向における変化状態に基いて、前記被検査部
の欠陥の進展状態を判定することにあり、その作用効果
は、次の通りである。
The characteristic means of the ultrasonic flaw detection method for pipes according to the present invention is to measure the amount of ultrasonic waves transmitted through the part to be inspected over the entire circumference of the pipe circumferential direction, and set the maximum value of each measured value as a reference value to the reference value. The purpose of the present invention is to obtain the deviation of each measured value from the measured value, and to determine the progress state of the defect in the inspected portion based on the state of change of the deviation in the tube circumferential direction.The operation and effect thereof are as follows.

〔作 用〕[For production]

つまり、被検査部における管の全周には、必ず正常で超
音波透過量の大きい箇所が存在するために、被検査部に
おいて管周方向の全周にわたって測定した各測定値の最
大値を、基準値とすることによって、基準値に対する各
測定値の偏差が、誤差な(損傷程度を正確に表わす。
In other words, since there is always a normal point with a large amount of ultrasonic transmission around the entire circumference of the tube in the inspected section, the maximum value of each measurement value measured over the entire circumference of the tube circumferential direction in the inspected section is By using the reference value, the deviation of each measured value from the reference value accurately represents the degree of damage.

〔発明の効果〕〔Effect of the invention〕

従って、たとえ被検査部に対する管長手方向の両側部の
少なくとも一方に、欠陥部分があったとしても、常に精
度良く被検査部の欠陥の進展状態を判定でき、管の寿命
を正確に予測して、メンテナンスを確実に行えながら、
管からのリーク等のトラブルを効果的に防止できるよう
になった。
Therefore, even if there is a defective part on at least one of the longitudinal sides of the pipe relative to the part to be inspected, the progress of the defect in the part to be inspected can always be accurately determined, and the life of the pipe can be accurately predicted. , while ensuring reliable maintenance.
Problems such as leaks from pipes can now be effectively prevented.

〔実施例〕〔Example〕

次に、本発明の実施例を、図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図及び第2図に示すように、管(1)の被検査部(
1a)に対して発信探触子(3a)と受信探触子(3b
)とを管(1)のほぼ長手方向に振分けてセットして、
被検査部(1a)を管軸芯(P)方向に対して斜めに横
断する超音波透過を行いながら、両探触子(3a)、 
(3b)を一体的に管周方向に3゜毎に等速移動させて
、管周方向における探傷位置の変化と、受信探触子(3
b)による受信超音波の最大飽和デシベル値(Dn)の
変化との相関を連続してグラフに自動記録させる。
As shown in Figures 1 and 2, the part to be inspected (
1a), the transmitting probe (3a) and the receiving probe (3b)
) and set it approximately in the longitudinal direction of the tube (1),
Both probes (3a),
(3b) are integrally moved at a constant speed of 3° in the circumferential direction of the tube, and the change in the flaw detection position in the circumferential direction and the receiving probe (3
The correlation with the change in the maximum saturation decibel value (Dn) of the received ultrasonic waves according to b) is automatically recorded continuously on a graph.

前記管周方向に沿った特定位相の被検査部(1a)に対
する超音波透過量の測定は、管周方向の全周にわたって
行うと共に、被検査部(1a)における各測定値(Dn
)のうちの最大値(Dmax)を基準値として前記基準
値(Dmax)に対する各測定値(Dn)の偏差(Dm
ax−Dn)を夫々求め、その偏差の(Dmax−Dn
)の管周方向における変化状態に基づいて、被検査部(
1a)の欠陥の進展状態を判定する。
The measurement of the amount of ultrasonic transmission to the portion to be inspected (1a) at a specific phase along the tube circumferential direction is performed over the entire circumference in the tube circumferential direction, and each measured value (Dn) in the portion to be inspected (1a) is measured.
) of the maximum value (Dmax) as a reference value, the deviation (Dm
ax-Dn), and the deviation (Dmax-Dn
Based on the state of change in the pipe circumferential direction of the part to be inspected (
Determine the progress state of the defect in 1a).

つまり、例えば化学プラント用反応管等においては、一
定単位長さの管(1)を溶接して、10m以上もの熱交
換用管(1)が製作される。そして、その熱交換用管(
1)は、特に熱応力と圧力によって管(1)内面にクリ
ープ損傷が生じやすく、第1図に示すように、溶接部(
4)近辺では特にワレ等の損傷が生じやすい。
That is, for example, in reaction tubes for chemical plants, heat exchange tubes (1) of 10 m or more are manufactured by welding tubes (1) of a certain unit length. And the heat exchange tube (
1) is particularly prone to creep damage on the inner surface of the pipe (1) due to thermal stress and pressure, and as shown in Figure 1, the welded part (
4) Damage such as cracks is particularly likely to occur in the vicinity.

そこで、前記管(1)における特に溶接部(4)等の被
検査部(1a)を、前記超音波探傷法を利用してその欠
陥の進展状態を判定するのであるが、その判定に際して
は、前記偏差(Dmax−Dn)が設定値以上ある測定
箇所の数によって、特定位相の被検査部(1a)の欠陥
の進展状態を判定し、被検査部(1a)の寿命を予測す
るのである。
Therefore, the progress state of the defect is determined using the ultrasonic flaw detection method, especially in the inspected part (1a) such as the welded part (4) in the pipe (1). Based on the number of measurement points where the deviation (Dmax-Dn) is greater than or equal to a set value, the progress state of defects in the inspected portion (1a) of a specific phase is determined, and the life of the inspected portion (1a) is predicted.

〔別実施例〕[Another example]

前記超音波透過量の測定は、管(1)の全周にわたって
約lO°毎以下に移動させて行えば良く、連続的に管(
1)周方向に移動させながら測定しても良い。
The measurement of the amount of ultrasonic transmission can be carried out by moving the tube (1) at intervals of about 10° or less over the entire circumference of the tube (1).
1) Measurement may be performed while moving in the circumferential direction.

前記被検査部(1a)は、管(1)の溶接部(4)以外
に、管(1)長手方向のいずれの位相であってもよい。
The inspected portion (1a) may be at any phase in the longitudinal direction of the tube (1) other than the welded portion (4) of the tube (1).

前記発信探触子(3a)及び受信探触子(3b)を−体
的に管周方向に移動させるに、一般に、それら探触子(
3a)、 (3b)を管に取付けるホルダーに駆動回転
機構を設け、自動的に等速移動が行われるようにするが
、その具体的な構成は各種変更自在であり、また人為的
に等速移動させることも考えられ、さらには、自動的あ
るいは人為的に微小距離ずつ間歇移動させて、停止時に
探傷データーを採ることもできる。
Generally, when moving the transmitting probe (3a) and the receiving probe (3b) in the circumferential direction, the transmitting probe (3a) and the receiving probe (3b) are moved circumferentially.
A drive rotation mechanism is installed in the holder that attaches 3a) and (3b) to the pipe so that they automatically move at a constant speed, but the specific configuration can be changed in various ways, and the constant speed It is also conceivable to move it, and furthermore, it is also possible to automatically or artificially move it intermittently by small distances and collect flaw detection data when it is stopped.

探傷の対象管はいかなるものでもよく、また、利用する
超音波探傷装置の具体的構成は各種変更が可能である。
The target tube for flaw detection may be any type, and the specific configuration of the ultrasonic flaw detection device to be used can be modified in various ways.

例えば、被検査部(1a)に対する超音波透過方向を、
管軸心(P)方向と平行にしたり、あるいは、適当な角
度で管軸心(P)方向と傾斜するようにする等が可能で
ある。
For example, the ultrasound transmission direction for the inspected part (1a) is
It is possible to make it parallel to the tube axis (P) direction, or to make it inclined to the tube axis (P) direction at an appropriate angle.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る管の超音波探傷方法の実施例を示し
、第1図は本発明の説明をする要部正面図、第2図は要
部横断面図、第3図は従来例の説明をする要部正面図、
第4図は従来例の要部縦断面図である。 (1)・・・・・・管、 (1a)・・・・・・被検査
部、(Dn)・・・・・・測定値、 (Dmax)・・
・・・・基準値。
The drawings show an embodiment of the ultrasonic flaw detection method for pipes according to the present invention. Figure 1 is a front view of the main part for explaining the present invention, Figure 2 is a cross-sectional view of the main part, and Figure 3 is a diagram of the conventional example. Front view of main parts for explanation,
FIG. 4 is a longitudinal sectional view of the main part of the conventional example. (1)...Pipe, (1a)...Test part, (Dn)...Measurement value, (Dmax)...
····Reference value.

Claims (1)

【特許請求の範囲】[Claims] 管(1)に対してそのほぼ長手方向に超音波を透過させ
、前記管(1)の被検査部(1a)を通る超音波の透過
量を測定することによって探傷する管の超音波探傷方法
であって、前記被検査部(1a)に対する超音波透過量
の測定を、管周方向の全周にわたって行い、各測定値(
Dn)のうちの最大値を基準値(Dmax)として前記
基準値(Dmax)に対する各測定値(Dn)の偏差を
夫々求め、その偏差の管周方向における変化状態に基い
て、前記被検査部(1a)の欠陥の進展状態を判定する
管の超音波探傷方法。
An ultrasonic flaw detection method for a tube in which flaws are detected by transmitting ultrasonic waves through the tube (1) substantially in the longitudinal direction and measuring the amount of ultrasonic waves transmitted through the inspected portion (1a) of the tube (1). The amount of ultrasound transmitted through the inspected portion (1a) is measured over the entire circumference of the tube circumferential direction, and each measurement value (
The deviation of each measured value (Dn) from the reference value (Dmax) is determined using the maximum value of Dn) as a reference value (Dmax), and based on the state of change of the deviation in the pipe circumferential direction, (1a) An ultrasonic flaw detection method for a tube to determine the progress state of the defect.
JP1083052A 1989-03-31 1989-03-31 Ultrasonic flaw detection for tubes Expired - Lifetime JPH0731159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083052A JPH0731159B2 (en) 1989-03-31 1989-03-31 Ultrasonic flaw detection for tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083052A JPH0731159B2 (en) 1989-03-31 1989-03-31 Ultrasonic flaw detection for tubes

Publications (2)

Publication Number Publication Date
JPH02262050A true JPH02262050A (en) 1990-10-24
JPH0731159B2 JPH0731159B2 (en) 1995-04-10

Family

ID=13791423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083052A Expired - Lifetime JPH0731159B2 (en) 1989-03-31 1989-03-31 Ultrasonic flaw detection for tubes

Country Status (1)

Country Link
JP (1) JPH0731159B2 (en)

Also Published As

Publication number Publication date
JPH0731159B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
BRPI0615382B1 (en) “ULTRASONIC TESTING METHOD, ULTRASONIC TESTING EQUIPMENT IMPLEMENTING THE SUCH METHOD, AND SEAMLESS PIPE OR PIPE MANUFACTURING METHOD”
CN101710102B (en) Ultrasonic detection method of variable-wall thick-walled pipe
CN109307568B (en) Nondestructive testing method for welding residual stress and probe adopting same
JP2007187593A (en) Inspection device for piping and inspection method for piping
CN109781860B (en) Reference block and calibration method
KR20080106766A (en) Inspecting scanner using ultrasonic wave
CN111239251B (en) Ultrasonic detection method for defects of welding positions of wall penetrating pipes of peak shaving unit
JP4730123B2 (en) Nondestructive inspection jig and ultrasonic nondestructive inspection equipment
WO2023274089A1 (en) Curved-surface sonolucent wedge design method for circumferential ultrasonic detection of small-diameter tube
JPH02262050A (en) Ultrasonic inspection method for pipe
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
JPH02262051A (en) Ultrasonic inspection method for pipe
CN210514191U (en) Ultrasonic guided wave detection calibration reference test block
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
JPS61191960A (en) Ultrasonic inspection of tube or bar material
JPS60205254A (en) Ultrasonic flaw detection for pipe
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
US3929005A (en) Ultrasonic inspection recess in heat exchanger and nuclear steam generator tubesheets
KR910002657B1 (en) Method of tube search by ultra sonic
JPS6459152A (en) Ultrasonic flaw detection of steel pipe
JPS60135760A (en) Ultrasonic flaw detecting method of tube base material part
JP2002090352A (en) Axial flaw detecting ultrasonic flaw detector
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus