JPH04161848A - Automatic ultrasonic flaw detecting apparatus - Google Patents

Automatic ultrasonic flaw detecting apparatus

Info

Publication number
JPH04161848A
JPH04161848A JP2287917A JP28791790A JPH04161848A JP H04161848 A JPH04161848 A JP H04161848A JP 2287917 A JP2287917 A JP 2287917A JP 28791790 A JP28791790 A JP 28791790A JP H04161848 A JPH04161848 A JP H04161848A
Authority
JP
Japan
Prior art keywords
signal
probe
ultrasonic
water
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287917A
Other languages
Japanese (ja)
Inventor
Tetsuro Hashiguchi
哲朗 橋口
Takashi Soma
惣万 隆
Junichi Fujisawa
淳一 藤沢
Yukiro Sugimoto
幸郎 杉元
Fumio Kin
金 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP2287917A priority Critical patent/JPH04161848A/en
Publication of JPH04161848A publication Critical patent/JPH04161848A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To correct the effect of the temperature of water by detecting the temperature of water in contact with an ultrasonic-wave probe which is provided around the outer surface of a long body under test whose cross section has a circular shape, and adjusting the amplitude of an amplifier for the received ultrasonic-wave signal based on the water temperature signal. CONSTITUTION:The main body of a flaw detecting apparatus is rotated at a high speed. A probe 10 is rotated together. A material to be measured 9 passes the center. The detected flaw signal R from the probe 10 is sent into a detected-flaw-signal processing part 18. The signal is amplified in a receiving amplifier part 21 and transmitted into a defective-signal judging part 22. The signal is judged, and the result is outputted as the flaw-detection result FO. When the temperature of water as a contact material between the probe 10 and the material to be measured rises up, the water temperature is detected with a temperature detector 24 and converted into a sensitivity correcting signal AT in a water-temperature-signal converting part 23. Then, the amplitude in the amplifier part 21 is increased by the decreased amount of the sensitivity caused by the increase in water temperature. On the contracy, when the water temperature is lowered, the amplitude is lowered by the amount of the increase in sensitivity. The detecting sensitivity is kept constant by this correction without large cost increase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄鋼製造ラインにおいて搬送されてくる鋼
管や丸棒鋼のような被検査材の内部に存在する欠陥の有
無を超音波を利用して検査する探触子回転型超音波探傷
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses ultrasonic waves to detect the presence or absence of defects inside inspected materials such as steel pipes and round steel bars that are being transported on a steel manufacturing line. The present invention relates to a rotating probe type ultrasonic flaw detection device for inspection.

〔従来の技術〕[Conventional technology]

超音波探傷法は、一般に探触子と呼ばれる超音波センサ
ーから超音波を送信し、その超音波を水なとの音響伝搬
媒体(接触媒質と呼ぶ。)を介して被検査材中に入射す
るとともに、被検査材中の欠陥からの反射エコーを受信
して欠陥の有無を検知するものであり、被検査材の形状
や寸法などに合わせて種々の装置が用いられている。例
えば鉄鋼生産ラインにおいて直進搬送されてくる鋼管や
丸棒鋼のような外周が円形断面をもつ長尺の圧延製品の
超音波探傷を行うためには、探触子を被検査材の周囲に
高速回転させながら被検査材を軸方向に送り、被検査材
外周に螺旋状の探触子走査を行わせ、もって全面全長を
探傷するいわゆる探触子回転型超音波探傷装置が多用さ
れている。
In the ultrasonic flaw detection method, ultrasonic waves are transmitted from an ultrasonic sensor generally called a probe, and the ultrasonic waves enter the material to be inspected through an acoustic propagation medium such as water (called a couplant). At the same time, the presence or absence of defects is detected by receiving reflected echoes from defects in the material to be inspected, and various devices are used depending on the shape and size of the material to be inspected. For example, in order to perform ultrasonic flaw detection on long rolled products with a circular cross section, such as steel pipes and round steel bars that are conveyed straight on a steel production line, the probe must be rotated at high speed around the material to be inspected. A so-called probe rotation type ultrasonic flaw detection device is often used, which detects flaws over the entire length of the surface by feeding the material to be inspected in the axial direction while moving the material to be inspected, and scanning the outer circumference of the material in a spiral manner with a probe.

この方式の超音波探傷装置では多チャンネルの探触子を
装着した探触子ホルダーを高速で回転させるため、探傷
速度が早(極めて高能率で検査できることから、鋼管や
丸棒鋼の製造ラインでは重要な非破壊検査機器として用
いられている。一方。
This type of ultrasonic flaw detection equipment rotates the probe holder equipped with multi-channel probes at high speed, so the flaw detection speed is fast (this is important on manufacturing lines for steel pipes and round steel bars because it can perform inspections with extremely high efficiency). It is used as a non-destructive testing device.

この探触子回転型超音波探傷装置において探触子と被検
査材との良好な音響結合を得るためには。
In order to obtain good acoustic coupling between the probe and the material to be inspected in this probe rotating type ultrasonic flaw detection device.

探触子と被検査材との間に常時安定した水柱を保つこと
が重要である。
It is important to maintain a stable water column between the probe and the material to be inspected at all times.

第2図は一般的な探触子回転型超音波探傷装置の全体を
示す概略図で、探触子回転型超音波探傷装置の本体(1
)は昇降架台(2)の上に搭載され。
Figure 2 is a schematic diagram showing the entirety of a typical rotating probe type ultrasonic flaw detection system.
) is mounted on the lifting platform (2).

本体(1)内に内蔵され図示されていない探触子ホルダ
ーは電動機(3)によってタイミングベルト(4)を介
して高速で回転している。また(5) 、 (6)は被
検査材入側に設置されたピンチロール、 (7) 。
A probe holder (not shown) built into the main body (1) is rotated at high speed by an electric motor (3) via a timing belt (4). In addition, (5) and (6) are pinch rolls installed on the entrance side of the material to be inspected, and (7).

(8)は出側に設置されたピンチロールである。ここで
探傷時においては被検査材(9)が本体(1)を貫通し
、かつ入側および出側のピンチロール(5)〜(8)に
よって被検査材の振動を抑制しながら図の矢印の方向に
搬送される。
(8) is a pinch roll installed on the exit side. During flaw detection, the material to be inspected (9) passes through the main body (1), and the vibrations of the material to be inspected are suppressed by pinch rolls (5) to (8) on the entry and exit sides, as shown in the arrow in the figure. transported in the direction of

ここで、上記の超音波探傷機構装置の本体(1)に内蔵
されている超音波探触子ホルダー(拡大断面図)および
従来採用されている探傷信号処理部を第3図を用いて簡
単に説明する。第3図において、(9)は搬送ライン上
を軸長方向へ直進する被検査材、 (10)は超音波探
触子、 (11)は超音波探触子(10)を保持する探
触子ホルダーであり、上記探触子ホルダーはフランジ部
(12)を介して回転機構装置(13)へ取付けられる
。接触媒質である探傷水は探触子ホルダー(11)に設
けられた給水孔(14)へ上記回転機構装置から供給さ
れ、給水路(15)を通つて各探触子部へ導かれる。そ
して上記探触子ホルダー内は9例えば実用新案公報 昭
59−8194”超音波探触子装置”や特許公報 平1
−51142”超音波探傷機の探触子ホルダに記載され
ているように、探触子ホルダーに取付けられたノズルブ
ロック(16)の各ノズル孔(17)より上記探傷水が
吐出し、超音波探触子(10)と被検査材(9)との間
に音響結合を得るための水柱を形成するように構成され
ている。また、第3図に示したようなノズルブロックが
無い例もあるが、その場合は探触子ホルダー(11)の
被検査材の入口と出口とに。
Here, the ultrasonic probe holder (enlarged sectional view) built into the main body (1) of the above-mentioned ultrasonic flaw detection mechanism and the flaw detection signal processing section conventionally employed will be briefly explained using Fig. 3. explain. In Fig. 3, (9) is the material to be inspected that moves straight in the axial direction on the conveyance line, (10) is the ultrasonic probe, and (11) is the probe that holds the ultrasonic probe (10). The probe holder is a child holder, and the probe holder is attached to a rotating mechanism device (13) via a flange portion (12). Flaw detection water, which is a couplant, is supplied from the rotating mechanism device to the water supply hole (14) provided in the probe holder (11), and guided to each probe section through the supply channel (15). The interior of the probe holder is 9, for example, Utility Model Publication 1981-8194 "Ultrasonic Probe Device" and Patent Publication 1994.
-51142" As described on the probe holder of the ultrasonic flaw detector, the above flaw detection water is discharged from each nozzle hole (17) of the nozzle block (16) attached to the probe holder, and the ultrasonic wave It is configured to form a water column to obtain acoustic coupling between the probe (10) and the material to be inspected (9).There is also an example without a nozzle block as shown in Fig. 3. However, in that case, at the entrance and exit of the material to be inspected of the probe holder (11).

供給された探傷水ができるだけ外部に洩れないようにす
るためにオリフィス(堰)を設けたりしていることが多
い。
An orifice (weir) is often provided to prevent the supplied flaw detection water from leaking to the outside as much as possible.

一方、探傷信号処理部(18)は、探触子ホルダーに取
付けられた探触子(10)を電気パルスによって駆動す
るとともに、探触子(10)からの信号を受信し処理す
るものである。この探傷信号処理部(18)は同期信号
Sを出力する同期信号発生部(19)、同期信号Sを受
けて探触子(lO)に送信パルスTを供給する送信部(
20)、探触子(10)からの受信信号Rを受けた後、
内蔵している増幅器を介して探傷信号RAを出力する受
信増幅器(21)、探傷信号RAおよび同期信号Sを受
け2探傷信号RAの必要な区間において一定レベル以上
の信号を欠陥出力FOとして外部に出力する欠陥信号判
定部(22)とから構成されている。
On the other hand, the flaw detection signal processing section (18) drives the probe (10) attached to the probe holder with electric pulses, and also receives and processes signals from the probe (10). . This flaw detection signal processing section (18) includes a synchronization signal generation section (19) that outputs a synchronization signal S, and a transmission section (19) that receives the synchronization signal S and supplies a transmission pulse T to the probe (lO).
20), after receiving the received signal R from the probe (10),
A receiving amplifier (21) that outputs the flaw detection signal RA via a built-in amplifier receives the flaw detection signal RA and the synchronization signal S and outputs a signal of a certain level or higher in the required section of the two flaw detection signals RA to the outside as a defect output FO. It is composed of a defect signal determining section (22) that outputs a defect signal.

ところで、一般に探触子内には振動子で発生した超音波
を外部へ伝搬させるためにアクリルなとのクサビが使用
されている。これまで説明した従来の構成において、探
触子(10)は多くの部分が接触媒質である水に接して
いるが、水温が変化した場合、探触子内のアクリルに代
表されるクサビの減衰度も変化し、結果として探傷感度
が変動することとなって、正確な検査の実施が困難とな
る。
By the way, an acrylic wedge is generally used inside the probe to propagate the ultrasonic waves generated by the transducer to the outside. In the conventional configuration described so far, many parts of the probe (10) are in contact with water, which is the couplant, but when the water temperature changes, the wedge, typically made of acrylic, inside the probe attenuates. The flaw detection sensitivity also changes, and as a result, the flaw detection sensitivity fluctuates, making it difficult to conduct accurate inspections.

第4図はその感度変動の様子をグラフで示したものであ
り1例えば水温20°Cで感度校正を実施後、探傷時の
水温が給水系統における発熱などにより40°Cまで上
昇したとすると、感度の低下量dSは一般的な探触子の
場合では4−5dBにもなりうる。
Figure 4 is a graph showing how the sensitivity changes. 1For example, after performing sensitivity calibration at a water temperature of 20°C, suppose that the water temperature at the time of flaw detection rises to 40°C due to heat generation in the water supply system, etc. The amount of decrease in sensitivity dS can be as high as 4-5 dB in the case of a typical probe.

上記の水温の影響を極力少なくするためには。In order to minimize the influence of water temperature mentioned above.

水温を一定に制御する装置を給水系統に装置するか、ま
たは水温の変化か探傷感度の点から無視できるはとの短
い期間ごとに感度の校正を実施する必要がある。
It is necessary to install a device in the water supply system to control the water temperature at a constant level, or to calibrate the sensitivity every short period when the water temperature changes or is negligible from the point of view of flaw detection sensitivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の探触子回転型超音波探傷装置において。 In conventional rotating probe type ultrasonic flaw detection equipment.

水温変化の影響を少なくするためには、感度校正を度々
実施する必要があるか、鉄鋼生産ラインなどに導入され
る自動探傷装置では操業上そのような時間は一般的には
許されない。また、水温を一定にするための温度制御装
置を具備することによっても解決できるか、このような
装置は非常に大掛かりとなり、大幅なコスト増を招くこ
とになる。
In order to reduce the influence of water temperature changes, it is necessary to perform sensitivity calibration frequently, or automatic flaw detection equipment installed in steel production lines generally does not allow such time for operational reasons. The problem could also be solved by providing a temperature control device to keep the water temperature constant; however, such a device would be very large-scale and would lead to a significant increase in cost.

この発明が解決しようとする課題は9度々感度校正しな
くても水温変化の影響を極力小さくする手段を低コスト
で提供するものである。
The problem to be solved by this invention is to provide a low-cost means for minimizing the influence of water temperature changes without having to calibrate the sensitivity nine times.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る探触子回転型超音波探傷装置は。 The probe rotating type ultrasonic flaw detection device according to the present invention is as follows.

探傷機構装置の探触子ホルダーへの給水経路に水温を検
出する検出器を設け9探信実行時の水温信号によって受
信信号増幅部の増幅度または欠陥信号判定部の判定値を
制御するようにしたものである。
A detector for detecting water temperature is installed in the water supply route to the probe holder of the flaw detection mechanism device, and the amplification degree of the received signal amplification section or the judgment value of the defect signal judgment section is controlled by the water temperature signal when performing the detection. This is what I did.

〔作用〕[Effect]

この発明は、探傷実行時の水温信号をフィードバックし
、水温が高いときは受信信号増幅部の増幅度を上げ、水
温が低いときは増幅度を下げるように制御することによ
って常に一定の感度で試験することができるものである
。また、他の方法としてフィードバックした水温信号に
よって、水温が高いときは欠陥判定部の判定レベルを低
くシ。
This invention feeds back the water temperature signal during flaw detection, and when the water temperature is high, the amplification of the received signal amplification section is increased, and when the water temperature is low, the amplification is controlled to be lowered, so that the test always maintains a constant sensitivity. It is something that can be done. Another method is to use the feedback water temperature signal to lower the judgment level of the defect judgment unit when the water temperature is high.

水温が低いときは判定レベルを高(するように制御する
ことによって、感度が変化しても同じような評価結果を
得ることができるものである。
By controlling the determination level to be high when the water temperature is low, it is possible to obtain similar evaluation results even if the sensitivity changes.

〔実施例〕〔Example〕

以下、この発明による一実施例を添付図面を参照して詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明に係る探触子回転型超音波探傷装置の
探触子ホルダーの拡大断面図および探傷信号処理部のブ
ロック図を示すものであり1図において(9)〜(22
)は第3図と同一部分を示している。また、 (23)
は検出された水温信号を受けて変換し、受信増幅部(2
1)へ増幅度を補正するための制御信号を送ったり、欠
陥信号判定部(22)へ判定レベルを変化させるための
制御信号を送るための水温信号変換部、 (24)は探
傷機構装置の適切な部分に設けられた水温検出器である
FIG. 1 shows an enlarged sectional view of a probe holder and a block diagram of a flaw detection signal processing section of a rotating probe type ultrasonic flaw detection device according to the present invention.
) shows the same parts as in Fig. 3. Also, (23)
receives the detected water temperature signal, converts it, and sends it to the receiving amplification section (2
(24) is a water temperature signal conversion unit for sending a control signal for correcting the amplification degree to 1) and for sending a control signal for changing the judgment level to the defect signal judgment unit (22); A water temperature sensor located at the appropriate location.

いま、上記のように構成された超音波探傷装置において
、探触子ホルダー(11)自体はフランジ部(12)を
介して常時回転機構本体(13)に取付けられており、
給水孔である(14)から一定量の必要な水が供給され
る。ここで例えば被検査材(9)の外径変更があり、超
音波探触子(10)やノズルブロック(16)を交換す
る場合、まずノズルブロック(16)を取り外し、その
後で超音波探触子(10)が入れ替えられる。次の外径
サイズに対する超音波探触子は探触子ホルダー(11)
の内側から挿入され、所定の位置において探触子ホルダ
ーの外側からネジにょつて固定される。そして各々の探
触子がすべて探触子ホルダーに取付けられた後9次サイ
ズ用のノズルブロック(16)を取付けて準備が完了す
る。探傷時においては探傷機橋本体が高速回転すること
で上記探触子ホルダー(11)および探触子(10)も
−緒に回転し、その中を被検査材(9)が通過すること
によって螺旋状に検査される。
Now, in the ultrasonic flaw detection device configured as described above, the probe holder (11) itself is attached to the constantly rotating mechanism main body (13) via the flange part (12).
A certain amount of necessary water is supplied from the water supply hole (14). For example, when changing the outer diameter of the material to be inspected (9) and replacing the ultrasonic probe (10) or nozzle block (16), first remove the nozzle block (16), then replace the ultrasonic probe. Child (10) is swapped. The ultrasonic probe for the following outer diameter sizes is the probe holder (11).
It is inserted from the inside of the probe holder and fixed at a predetermined position with a screw from the outside of the probe holder. After all the probes are attached to the probe holder, a nozzle block (16) for the ninth size is attached, and preparation is completed. During flaw detection, as the flaw detector bridge body rotates at high speed, the probe holder (11) and probe (10) also rotate together, and the material to be inspected (9) passes through them. Tested spirally.

一方、探触子(10)によって検出された探傷信号Rは
探傷信号処理部(18)に送られ、受信増幅器(21)
に内蔵されている増幅器で増幅された後、探傷信号RA
が欠陥信号判定部に伝えられて判定され。
On the other hand, the flaw detection signal R detected by the probe (10) is sent to the flaw detection signal processing section (18), and is sent to the receiving amplifier (21).
After being amplified by the amplifier built in, the flaw detection signal RA
is transmitted to the defect signal determination section and determined.

その結果が外部に探傷結果FOとして出力される。The results are output to the outside as flaw detection results FO.

いま、探触子(10)と被検査材(9)との間に供給さ
れ9両者間で音波を伝達する接触媒質である水の温度が
高くなった場合、第4図に示すように探触子自体の感度
は低下する。そこでこの発明においては温度検出器(2
4)によって水温を検出し、水温信号変換部(23)で
感度補正信号ATに変換した後、受信増幅部(Q)に送
り内蔵されている増幅器の増幅度を探触子の感度低下分
だけ上げるように制御することで、結果として一定の感
度で探傷するものである。逆に水の温度が低くなった場
合は。
Now, if the temperature of water, which is a couplant that is supplied between the probe (10) and the material to be inspected (9) and transmits sound waves between them, becomes high, the probe as shown in Figure 4 The sensitivity of the feeler itself decreases. Therefore, in this invention, a temperature detector (2
4) detects the water temperature, converts it into a sensitivity correction signal AT in the water temperature signal converter (23), and then sends it to the reception amplifier (Q) where the amplification degree of the built-in amplifier is increased by the amount of sensitivity reduction of the probe. By controlling the sensitivity to increase, the result is flaw detection with a constant sensitivity. Conversely, if the water temperature becomes low.

増幅器の増幅度を探触子の感度上昇分だけ下げるように
制御する。
The amplification degree of the amplifier is controlled to be lowered by the increase in sensitivity of the probe.

一方、水温検出器(24)からの信号を水温信号変換部
(23)で判定値補正信号JRに変換した後、欠陥信号
判定部(22)に送り欠陥判定値を制御することで、水
温によって感度が変化しても結果としてその影響を受け
ない探傷を実施することができる。
On the other hand, the water temperature signal converter (23) converts the signal from the water temperature detector (24) into a judgment value correction signal JR, and then sends it to the defect signal judgment unit (22) to control the defect judgment value. Even if the sensitivity changes, flaw detection can be performed without being affected by the change.

以上説明した水温検出信号による補正制御は。The correction control using the water temperature detection signal explained above is as follows.

鉄鋼生産ラインに導入された超音波探傷装置の場合、連
続搬送されてくる被検査材の間または適当な一定時間ご
とに実行すればよいので、実際の探傷動作にはほとんど
影響を及ぼすことな(目的を達成することが可能である
In the case of ultrasonic flaw detection equipment installed in steel production lines, it can be carried out between continuously conveyed specimens or at regular intervals, so it has almost no effect on the actual flaw detection operation. It is possible to achieve the goal.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば探触子に接している接
触媒質である水温を検出し、その水温信号によって受信
信号増幅部の増幅器の増幅度を補正することで、水温が
変化しても常に一定の感度での試験を大幅なコスト増を
伴うことなく実現できる効果がある。また、上記の水温
信号で欠陥信号判定部の判定値を制御することによって
も同様の効果を得ることができる。
As described above, according to the present invention, the temperature of the water, which is the couplant in contact with the probe, is detected, and the amplification degree of the amplifier in the received signal amplification section is corrected based on the water temperature signal, thereby changing the water temperature. This also has the effect of making it possible to always perform tests with a constant sensitivity without a significant increase in cost. Further, the same effect can be obtained by controlling the determination value of the defect signal determination section using the water temperature signal described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による探触子回転型超音波探傷装置
の探触子ホルダーおよび探傷信号処理部の一実施例を示
す図、第2図は探触子回転型超音波探傷機構の全貌を示
す概略図、第3図は従来の回転探触子ホルダ一部の被検
査材の軸方向の断面および探傷信号処理部を示す図、第
4図は水温の変化に対する感度の変化する様子を示した
図である。図において、(1)は探触子回転型超音波探
傷装置の本体、(2)は昇降架台、(3)は回転駆動用
電動機、(4)は回転伝達用タイミングベルト、 (5
)。 (6) 、 (7) 、 (8)はピンチロール、(9
)は被検査材、 (10)は超音波探触子、 (11)
は探触子ホルダー。 (12)は探触子ホルダーのフランジ部、 (13)は
回転機構装置の探触子ホルダー取付は部、 (14)は
給水孔、 (15)は給水路、 (16)はノズルブロ
ック、 (17)はそのノズル孔、 (18)は探傷信
号処理部全体、(19)は同期信号発生部、 (20)
は送信部、 (21)は受信増幅部、 (22)は欠陥
信号判定部、 (23)は水温信号変換部、 (24)
は水温検出器である。 なお9図中同一符号は同一または相当部分を示す。
Fig. 1 is a diagram showing an embodiment of the probe holder and flaw detection signal processing section of the probe rotating type ultrasonic flaw detection device according to the present invention, and Fig. 2 is an overall view of the probe rotating type ultrasonic flaw detection mechanism. Fig. 3 is a diagram showing the axial cross section of a part of the test material in a conventional rotary probe holder and the flaw detection signal processing section, and Fig. 4 shows how the sensitivity changes with respect to changes in water temperature. FIG. In the figure, (1) is the main body of the probe rotating type ultrasonic flaw detection device, (2) is the lifting frame, (3) is the electric motor for rotational drive, (4) is the timing belt for rotation transmission, (5)
). (6), (7), (8) are pinch rolls, (9
) is the material to be inspected, (10) is the ultrasonic probe, (11)
is the probe holder. (12) is the flange part of the probe holder, (13) is the probe holder mounting part of the rotating mechanism device, (14) is the water supply hole, (15) is the water supply channel, (16) is the nozzle block, ( 17) is the nozzle hole, (18) is the entire flaw detection signal processing section, (19) is the synchronization signal generation section, (20)
is a transmitting section, (21) is a receiving amplifying section, (22) is a defective signal determining section, (23) is a water temperature signal converting section, (24)
is a water temperature detector. Note that the same reference numerals in Figure 9 indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)搬送ライン上を直進搬送されてくる鋼管や棒鋼の
ような外周が円形断面をもつ長尺の被検査材の外周まわ
りに、複数の超音波探触子および超音波探触子を保持す
る探触子ホルダーを具備し、この探触子ホルダーが回転
することで超音波探触子と被検査材との間に水柱を形成
しながら、その水柱を介して超音波探触子と被検査材間
を超音波が伝搬するように構成した超音波探傷装置にお
いて、上記超音波探触子に送信信号を供給する送信部と
、上記超音波探触子からの受信信号を受けて増幅する受
信増幅部と、上記受信増幅部の出力を受けて欠陥判定レ
ベルと比較判定した後、外部に判定結果を出力する欠陥
信号判定部と、上記送信部および欠陥信号判定部に同期
信号を供給する同期信号発生部と、上記探触子ホルダー
に供給されている水の水温を検出する検出器、および上
記水温検出器からの水温信号を受けて水温によつて変化
する制御信号を出力するとともにその制御信号によつて
上記の受信増幅部に内蔵されている増幅器の増幅度を制
御する水温信号変換部とを具備したことを特徴とする超
音波自動探傷装置。
(1) Multiple ultrasonic probes and ultrasonic probes are held around the outer periphery of a long material to be inspected with a circular cross section, such as a steel pipe or steel bar, which is being transported straight on a transport line. When the probe holder rotates, a water column is formed between the ultrasonic probe and the material to be inspected, and the ultrasonic probe and the material to be inspected are connected through the water column. In an ultrasonic flaw detection device configured to allow ultrasonic waves to propagate between inspection materials, the transmitter includes a transmitter that supplies a transmitted signal to the ultrasonic probe, and a transmitter that receives and amplifies a received signal from the ultrasonic probe. a reception amplification section; a defect signal determination section that receives the output of the reception amplification section, compares it with a defect determination level, and then outputs the determination result to the outside; and supplies a synchronization signal to the transmission section and the defect signal determination section. A synchronization signal generator, a detector for detecting the temperature of the water supplied to the probe holder, and a control signal that receives the water temperature signal from the water temperature detector and outputs a control signal that changes depending on the water temperature. 1. An automatic ultrasonic flaw detection device comprising: a water temperature signal converter that controls the amplification degree of an amplifier built in the reception amplifier according to a control signal.
(2)搬送ライン上を直進搬送されてくる鋼管や棒鋼の
ような外周が円形断面をもつ長尺の被検査材の外周まわ
りに、複数の超音波探触子および超音波探触子を保持す
る探触子ホルダーを具備し、この探触子ホルダーが回転
することで超音波探触子と被検査材との間に水柱を形成
しなから、その水柱を介して超音波探触子と被検査材間
を超音波が伝搬するように構成した超音波探傷装置にお
いて、上記超音波探触子に送信信号を供給する送信部と
、上記超音波探触子からの受信信号を受けて増幅する受
信増幅部と、上記受信増幅部の出力を受けて欠陥判定レ
ベルと比較判定した後、外部に判定結果を出力する欠陥
信号判定部と、上記送信部および欠陥信号判定部に同期
信号を供給する同期信号発生部と、上記探触子ホルダー
に供給されている水の水温を検出する検出器、および上
記水温検出器からの水温信号を受けて水温によつて変化
する制御信号を出力するとともにその制御信号によつて
前記の欠陥信号判定部において欠陥があるかどうかのレ
ベルを判断している判定値を制御する水温信号変換部と
を具備したことを特徴とする超音波自動探傷装置。
(2) Multiple ultrasonic probes and ultrasonic probes are held around the outer periphery of a long material to be inspected with a circular cross section, such as a steel pipe or steel bar, which is being transported straight on the transport line. When the probe holder rotates, a water column is formed between the ultrasonic probe and the material to be inspected. In an ultrasonic flaw detection device configured so that ultrasonic waves propagate between materials to be inspected, there is a transmitter that supplies a transmission signal to the ultrasonic probe, and a transmitter that receives and amplifies the received signal from the ultrasonic probe. a reception amplification section that receives the output of the reception amplification section, compares it with a defect determination level, and then outputs the determination result to the outside, and supplies a synchronization signal to the transmission section and the defect signal determination section. a synchronous signal generator for detecting the temperature of the water supplied to the probe holder, a detector for detecting the temperature of the water supplied to the probe holder, and a control signal that receives the water temperature signal from the water temperature detector and outputs a control signal that changes depending on the water temperature An automatic ultrasonic flaw detection apparatus comprising: a water temperature signal converter that controls a determination value for determining the level of whether or not there is a defect in the defect signal determination section based on the control signal.
JP2287917A 1990-10-25 1990-10-25 Automatic ultrasonic flaw detecting apparatus Pending JPH04161848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287917A JPH04161848A (en) 1990-10-25 1990-10-25 Automatic ultrasonic flaw detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287917A JPH04161848A (en) 1990-10-25 1990-10-25 Automatic ultrasonic flaw detecting apparatus

Publications (1)

Publication Number Publication Date
JPH04161848A true JPH04161848A (en) 1992-06-05

Family

ID=17723406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287917A Pending JPH04161848A (en) 1990-10-25 1990-10-25 Automatic ultrasonic flaw detecting apparatus

Country Status (1)

Country Link
JP (1) JPH04161848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324482A (en) * 2000-05-12 2001-11-22 Kawasaki Steel Corp Ultrasonic flaw detector
JP2011237421A (en) * 2010-04-16 2011-11-24 Olympus Ndt Rotational array probe system for nondestructive examination
CN106802324A (en) * 2016-12-26 2017-06-06 中核北方核燃料元件有限公司 The passage probe regulating device of bar ultrasound detection eight
JP2021501320A (en) * 2017-10-27 2021-01-14 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Improved corrosion thinning detectors and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229021A (en) * 1985-07-30 1987-02-07 シャープ株式会社 Mounting of slide body on metal plate
JPS62153744A (en) * 1985-12-27 1987-07-08 Tokyo Keiki Co Ltd Probe rotating type ultrasonic flaw detection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229021A (en) * 1985-07-30 1987-02-07 シャープ株式会社 Mounting of slide body on metal plate
JPS62153744A (en) * 1985-12-27 1987-07-08 Tokyo Keiki Co Ltd Probe rotating type ultrasonic flaw detection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324482A (en) * 2000-05-12 2001-11-22 Kawasaki Steel Corp Ultrasonic flaw detector
JP2011237421A (en) * 2010-04-16 2011-11-24 Olympus Ndt Rotational array probe system for nondestructive examination
CN106802324A (en) * 2016-12-26 2017-06-06 中核北方核燃料元件有限公司 The passage probe regulating device of bar ultrasound detection eight
JP2021501320A (en) * 2017-10-27 2021-01-14 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Improved corrosion thinning detectors and methods

Similar Documents

Publication Publication Date Title
JP2503000Y2 (en) Rotating probe ultrasonic flaw detector
US4068524A (en) Ultrasonic inspection of articles
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP2017075828A (en) Ultrasonic flaw detection device
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JPH06118068A (en) Nondestructive inspection device and method for material
JPS6342744B2 (en)
JP3629908B2 (en) Line focus type ultrasonic flaw detection method and apparatus
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
KR102308070B1 (en) Ultrasonic inspection system of fuel tube for pressurized water reactor
JPS5831871B2 (en) Ultrasonic flaw detection method
JP2875942B2 (en) Ultrasonic flaw detector
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPH06288991A (en) Nondestructive testing device
JPS59120952A (en) Flaw detector for copying welded steel pipe
JP2564558Y2 (en) Ultrasonic flaw detector
JPH05126808A (en) Ultrasonic flaw detecting method
JPS63256851A (en) Ultrasonic flaw detector
JP2922508B1 (en) Automatic ultrasonic flaw detector
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPH07294498A (en) Ultrasonic flaw detecting method and device therefor
JPS6258467B2 (en)