JPH0225094A - Manufacture of ceramic multilayer wiring board - Google Patents

Manufacture of ceramic multilayer wiring board

Info

Publication number
JPH0225094A
JPH0225094A JP17479888A JP17479888A JPH0225094A JP H0225094 A JPH0225094 A JP H0225094A JP 17479888 A JP17479888 A JP 17479888A JP 17479888 A JP17479888 A JP 17479888A JP H0225094 A JPH0225094 A JP H0225094A
Authority
JP
Japan
Prior art keywords
binder
wiring board
green sheet
paste
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17479888A
Other languages
Japanese (ja)
Inventor
Kenichi Hoshi
健一 星
Shoichi Tosaka
正一 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP17479888A priority Critical patent/JPH0225094A/en
Publication of JPH0225094A publication Critical patent/JPH0225094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the time of a de-binder process and to prevent the insulation failure or cracks generated due to the oxidation of a conductor by a method wherein binder contained in a green sheet and a conductive paste is decomposed to be removed, and a wiring board is fired in a reducing atmosphere. CONSTITUTION:An organic binder and a plasticizer are added to a ceramic powder to form a ceramic slurry, of which a green sheet 1 is formed, and a viahole is provided to the green sheet 1 after the sheet 1 has been cut off. Next, an organic binder is added to a metal copper powder to form a copper paste 2, which is screen-printed on the green sheet 1, and a glass powder is added to the paste 2 to form a surface conductor paste 4, which is printed on the sheet 1. Then, required numbers of the sheet 1, where a wiring pattern is printed, are overlapped each other and pressure-bonded as heated. Next, the laminated wiring board is subjected to a de-binder process, where it is heated or cooled in a weakly oxidizing atmosphere. Then, the wiring board is heated or cooled in a reducing atmosphere and fired.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子回路に用いられるセラミック多B配線基
板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a ceramic multi-B wiring board used in electronic circuits.

[従来の技術] 近年、電子回路に対する小型化、高密度化、高速化の要
求はますます強くなっている。これに呼応して、配線基
板も片面配線から両面配線へ、さらに両面配線から多層
配線へと、配線密度の向上が図られてきた。なかでもセ
ラミック多層配線基板は、配線の高密度化が可能なので
、小型、高密度化が強(要求される場合に、多く採用さ
れている。
[Prior Art] In recent years, demands for electronic circuits to be smaller, more dense, and faster have become stronger. In response to this, efforts have been made to improve the wiring density of wiring boards, from single-sided wiring to double-sided wiring, and from double-sided wiring to multilayer wiring. Among these, ceramic multilayer wiring boards are often used in cases where small size and high density are required because they allow high wiring density.

この皿のセラミック多層配線基板の配線パターンを形成
するのに用いられる導体材料として、これまで、タング
ステン(W)、モリブデン(MO)、白金(Pt)、金
(Au)、パラジウム(Pd)、銀(A g>、ニッケ
ル(Ni)、銅(Cu)などが用いられているが、導電
性、耐マイグレーシ式ン性、材料価格等、様々な条件を
考え合わせた場合、銅が最も優れた導体材料であると言
える。
The conductive materials used to form the wiring pattern of the ceramic multilayer wiring board of this plate have so far been tungsten (W), molybdenum (MO), platinum (Pt), gold (Au), palladium (Pd), silver (A g>), nickel (Ni), copper (Cu), etc. are used, but when considering various conditions such as conductivity, migration resistance, material price, etc., copper is the best conductor. It can be said that it is a material.

導体材料として、銅を用いたセラミック多層配線基板の
製造方法にはこれまで2つの方法があった。
There have been two methods for manufacturing ceramic multilayer wiring boards using copper as a conductor material.

一つは導体の原材料に金属銅粉を主として用いたもので
、バインダ成分の分解と除去、導電ペーストの焼付け、
及びセラミック成分の焼結処理を兼ねる焼成工程は、中
性雰囲気中(一般には窒素中)で行なわれる。焼成を中
性雰囲気で行なう理由は、大気中では銅が酸化されて、
電気抵抗が極端に増大し、導体として役立たなくなるた
めである。
One type mainly uses metallic copper powder as the raw material for the conductor, which requires decomposition and removal of the binder component, baking of the conductive paste,
The firing step, which also serves as sintering of the ceramic component, is performed in a neutral atmosphere (generally in nitrogen). The reason why firing is performed in a neutral atmosphere is that copper is oxidized in the atmosphere,
This is because the electrical resistance increases extremely, making it useless as a conductor.

もう一つは導体の原材料として酸化第二銅(Cub)を
用いたもので、焼成を熱処理の目的に応じて三段階に分
けて行う方法である。すなわち、まず第一段階として、
大気中で加熱を行い、絶な材料や導体材料に含まれてい
るバインダーを分解し、除去する。この時、導体の原材
料はもともと酸化銅なので酸化による間口は発生しない
。次の段階では、還元雰囲気中で加熱が行なわれる。こ
の段階で酸化銅が還元され、金B銅となる。そして、最
後の段階では、中性雰囲気中で焼成される。 (特開昭
62−2597号)[発明が解決しようとする問題コ 前者の方法では、絶縁材料や導体材料に含まれるバイン
ダーを中性雰囲気中で除去す゛ることとなるが、中性雰
囲気中ではバインダの分解反応が著しく遅いため、これ
を除去するためには非常に長い時間(24〜120時間
)と大量の窒素ガスを必要とする。このため、生産性が
悪く、生産コストが高いという欠点を持つ。
The other method uses cupric oxide (Cub) as the raw material for the conductor, and the firing is performed in three stages depending on the purpose of the heat treatment. That is, as a first step,
Heating is performed in the atmosphere to decompose and remove binders contained in indestructible materials and conductive materials. At this time, since the raw material of the conductor is originally copper oxide, no openings due to oxidation occur. The next step involves heating in a reducing atmosphere. At this stage, copper oxide is reduced to become gold B copper. The final step is firing in a neutral atmosphere. (Unexamined Japanese Patent Publication No. 62-2597) [Problem to be solved by the invention: In the former method, the binder contained in the insulating material or conductive material is removed in a neutral atmosphere; Since the decomposition reaction of the binder is extremely slow, removing it requires a very long time (24 to 120 hours) and a large amount of nitrogen gas. For this reason, it has the drawbacks of poor productivity and high production costs.

後者の方法では上記の問題はないが、導体材料の原料と
して酸化第二銅を用いているために、これが還元して金
属銅となる時に体積が減少する。この結果、配線パター
ンの導体断面が粗になり、配線抵抗が高くなる七いう欠
点を生ずる。
The latter method does not have the above problem, but since cupric oxide is used as the raw material for the conductor material, the volume decreases when it is reduced to metallic copper. As a result, the cross-section of the conductor in the wiring pattern becomes rough, resulting in a disadvantage that the wiring resistance increases.

そこで本発明は、前記従来の問題点を解決することを目
的とする。
Therefore, the present invention aims to solve the above-mentioned conventional problems.

[問題を解決するための手段] すなわち、前記目的を達成するため、本発明において採
用した手段の要旨は、金属銅粉末を主成分とする導電ペ
ーストを用いてグリーンシートに配線パターンを印刷し
たものを、弱酸化性雰囲気中で加熱して前記グリーンシ
ートと導電ペーストに含まれるバインダーを分解除去し
、その後、還元性界・囲気中で焼成することを特徴とす
るセラミック多層配線基板の製造方法である。
[Means for solving the problem] In other words, the gist of the means adopted in the present invention to achieve the above object is to print a wiring pattern on a green sheet using a conductive paste containing metallic copper powder as a main component. is heated in a weakly oxidizing atmosphere to decompose and remove the binder contained in the green sheet and the conductive paste, and then fired in a reducing field/ambience. be.

[作   用] 前記本発明によれば、導体材料の原料に金属銅を主とし
て用いるために、配線抵抗の低いセラミック多層配線基
板を得ることができる。しかも、弱酸化雰囲気中でバイ
ンダの除去を行なうために、中性雰囲気中と比較して短
時間(5〜24時間)でバインダが分解、除去される。
[Function] According to the present invention, since metallic copper is mainly used as the raw material for the conductor material, it is possible to obtain a ceramic multilayer wiring board with low wiring resistance. Furthermore, since the binder is removed in a weakly oxidizing atmosphere, the binder is decomposed and removed in a shorter time (5 to 24 hours) than in a neutral atmosphere.

また、弱酸化雰囲気中でバインダの除去をおこなうため
、金B銅を主とする導体材料の酸化を最小限とすること
ができる。そして、最後に還元雰囲気中で焼成をおこな
うことにより、わずかに酸化していた配線パターンを形
成する導体材料が還元されて金Iil!I銅となる。
Furthermore, since the binder is removed in a weakly oxidizing atmosphere, oxidation of the conductive material mainly made of gold, B, and copper can be minimized. Finally, by firing in a reducing atmosphere, the slightly oxidized conductor material forming the wiring pattern is reduced to gold! Becomes I copper.

なお、ここでいう弱酸化雰囲気中とはバインダの除去に
十分な酸素濃度であり、しかも金属銅の酸化を最小限と
する酸素濃度であり、具体的には酸素濃度が100pI
) m 〜10000p p mの範囲が望ましい。酸
素濃度が1100pp未満の場合は、バインダの分解除
去を短時間でおこなうには不十分な場合が多く、100
00pI) mを超える場合は、金属銅の酸化を最小限
にすることができず、金属銅の酸化による体積増により
、基板にクラック等の不良が発生しやすい。
Note that the weakly oxidizing atmosphere referred to here means an oxygen concentration sufficient to remove the binder, and also an oxygen concentration that minimizes oxidation of metal copper, specifically an oxygen concentration of 100 pI.
)m to 10,000 ppm is desirable. If the oxygen concentration is less than 1100pp, it is often insufficient to decompose and remove the binder in a short time;
If it exceeds 00 pI) m, oxidation of the metal copper cannot be minimized, and defects such as cracks are likely to occur in the substrate due to volume increase due to oxidation of the metal copper.

[実 施 例コ 次に、本発明の具体的な実施例について詳細に説明する
[Example] Next, specific examples of the present invention will be described in detail.

(実施例1) A1203が45w t%、S t 02が35w t
%、B2O3が8wt%、CaOが5wt%、MgOが
3.5W t%、Cr2O3が3wt%、Li2Oが0
.5wt%の組成からなるセラミック粉末に、ポリビニ
ルブチラールをトルエンとエタノールとの1対1の溶媒
に溶解したを機バインダと、ジブチルフタレートからな
る可塑剤と、オレイン酸からなる分散剤とを加え、これ
をポールミルで混合してセラミックスラリ−を作った。
(Example 1) A1203 was 45 wt%, S t 02 was 35 wt%
%, B2O3 is 8wt%, CaO is 5wt%, MgO is 3.5Wt%, Cr2O3 is 3wt%, Li2O is 0
.. A binder made of polyvinyl butyral dissolved in a 1:1 ratio of toluene and ethanol, a plasticizer made of dibutyl phthalate, and a dispersant made of oleic acid were added to a ceramic powder having a composition of 5 wt%. A ceramic slurry was prepared by mixing in a pole mill.

次にこのスラリーを真空脱泡機で脱泡した後、ドクター
ブレード法により、前記セラミックスラリ−から厚さ2
50μmのグリーンシートを製作した。つぎに、このグ
リーンシートを所定の大きさに切断した後、必要な■所
に直径200μmのピアホールを形成した。
Next, after degassing this slurry with a vacuum defoaming machine, a doctor blade method was used to remove the foam from the ceramic slurry to a thickness of 2 mm.
A 50 μm green sheet was produced. Next, this green sheet was cut into a predetermined size, and then pier holes with a diameter of 200 μm were formed at the required locations.

次に、金B銅粉(平均粒子径2.2μm)に、エチルセ
ルロースをテレピネオールで溶解した有機バインダを加
えて銅ペーストを作り、これを内部導体用ペーストとし
て用い、これをスクリーン印刷法によって前記グリーン
シートに印刷した。また表面導体用ペーストとして前記
ペーストにガラス粉末を添加したものを用い、これを同
様にしてグリーンシートに印刷した。なお、この印刷工
程において、前記ピアホールの内部にも銅ペーストが充
填される。
Next, an organic binder made by dissolving ethyl cellulose in terpineol was added to gold B copper powder (average particle size 2.2 μm) to make a copper paste, and this was used as an internal conductor paste. printed on a sheet. Further, as a paste for the surface conductor, a paste prepared by adding glass powder to the above paste was used, and this was printed on a green sheet in the same manner. In addition, in this printing process, the inside of the said peer hole is also filled with copper paste.

その後、上記の様に配線パターンを印刷したグリーンシ
ートを所望枚数重ね合わせ、90°C1200K g 
/ c m”の圧力で熱圧若した。圧着後の断面図を第
1図に示す。同図において、■は、グリーンシート、2
は、内部導体ペースト、3は、ピアホールに充填された
導体ペースト、4は、外部導体ペーストである。
After that, the desired number of green sheets with wiring patterns printed on them as described above were stacked together and heated at 90°C at 1200Kg.
/cm'' pressure.The cross-sectional view after pressure bonding is shown in Fig. 1. In the figure, ■ indicates green sheet, 2
3 is the inner conductor paste, 3 is the conductor paste filled in the peer hole, and 4 is the outer conductor paste.

次に、窒素ガスに空気を混合して酸素濃度が1000p
 p mとなる様に調整した弱酸化雰囲気中において、
1.5°C/minの温度勾配で室温から650°Cま
で昇温し、このまま650℃の揚程、で1時間保持した
後、−1O℃/rninの温度勾配で650℃から室温
まで冷却し、脱バインダ処理を行なった。次に、窒素ガ
ス96%と水素ガス4%を混合した還元雰囲気中におい
て、20°C/minの温度勾配で室温から920℃ま
で昇温し、このまま920℃の温度で10分間保持した
後−20”C/minの温度勾配で920°Cから室温
まで冷却し、焼成した。この製造条件を、表1に示した
Next, mix air with nitrogen gas until the oxygen concentration reaches 1000p.
In a weak oxidizing atmosphere adjusted so that p m,
The temperature was raised from room temperature to 650°C with a temperature gradient of 1.5°C/min, maintained at a lift of 650°C for 1 hour, and then cooled from 650°C to room temperature with a temperature gradient of -10°C/rnin. , the binder was removed. Next, in a reducing atmosphere containing a mixture of 96% nitrogen gas and 4% hydrogen gas, the temperature was raised from room temperature to 920°C with a temperature gradient of 20°C/min, and the temperature was maintained at 920°C for 10 minutes. It was cooled from 920° C. to room temperature and fired at a temperature gradient of 20”C/min. The manufacturing conditions are shown in Table 1.

以上の工程により作製されたセラミック多層基板の内部
の配線の抵抗値を測定したところ、1.9mΩ/口であ
った。また、目視観察の結果、クラック等の発生は認め
られず、さらに脱バインダが不十分な場合に多く起こる
絶縁不良もなかった。この結果を、表1に示した。
When the resistance value of the internal wiring of the ceramic multilayer substrate produced by the above steps was measured, it was 1.9 mΩ/hole. Furthermore, as a result of visual observation, no cracks or the like were observed, and there were no insulation defects that often occur when binder removal is insufficient. The results are shown in Table 1.

(実施例2〜7) 表  1 等の発生はなく、絶縁不良も無かった。(Examples 2 to 7) Table 1 There were no occurrences of such problems, and there were no insulation defects.

(実施例8〜10) 内部導体ペーストの導体材料を金B銅粉から表2の組成
のものに各々変、え、それ以外は、実施例1と同様の条
件でセラミック多層配線基板を製作した。その結果、表
2に示したような内部の配線抵抗が得られた。また、ク
ラック等の発生はなく、絶縁不良もなかった。
(Examples 8 to 10) Ceramic multilayer wiring boards were manufactured under the same conditions as in Example 1, except that the conductor material of the internal conductor paste was changed from gold, B, and copper powder to those with the compositions shown in Table 2. . As a result, internal wiring resistances as shown in Table 2 were obtained. Further, there were no occurrences of cracks, etc., and no insulation defects.

表  2 実施例1と同様な方法で、脱バイダの時の酸素濃度と昇
温速度を表1の様に変え、それ以外は実施例1と同様な
条件でセラミック多層配線基板を製作した。その結果、
表1に示したような内部の配線抵抗が得られた。また、
タラツク(比較例1.2) 実施例1と同様な方法で、脱バイダの時の酸素濃度と昇
温速度を表3の様に変え、それ以外は実施例1と同様な
条件でセラミック多層配線基板を製作した。その結果、
酸素濃度を50ppmとした比較例1では、脱バインダ
が不完全なため絶縁不良が生じた。また、酸素濃度を2
0000ppmとした比較例2では、配線部分に内部の
銅導体の酸化による体積増が原因とみられるクラックが
認められた。
Table 2 Ceramic multilayer wiring boards were manufactured in the same manner as in Example 1, except that the oxygen concentration and temperature increase rate during binder removal were changed as shown in Table 1, and other conditions were the same as in Example 1. the result,
Internal wiring resistances as shown in Table 1 were obtained. Also,
Tarataku (Comparative Example 1.2) Ceramic multilayer wiring was fabricated using the same method as in Example 1, except that the oxygen concentration and temperature increase rate during debindering were changed as shown in Table 3, and the other conditions were the same as in Example 1. I made the board. the result,
In Comparative Example 1 in which the oxygen concentration was 50 ppm, insulation failure occurred due to incomplete binder removal. Also, increase the oxygen concentration to 2
In Comparative Example 2 where the concentration was 0,000 ppm, cracks were observed in the wiring portion, which appeared to be caused by an increase in volume due to oxidation of the internal copper conductor.

表  3 (比較例3) 実施例1と同様な方法で、内部導体ペーストの導体材料
を金属銅粉から酸化第二銅粉に変え、それ以外は実施例
1と同様な条件でセラミック多層配線基板を製作した。
Table 3 (Comparative Example 3) A ceramic multilayer wiring board was fabricated using the same method as in Example 1, except that the conductor material of the internal conductor paste was changed from metallic copper powder to cupric oxide powder, and the other conditions were the same as in Example 1. was produced.

その結果、表4に示された通り、内部の配線抵抗が5.
2mΩ/口と高かった。
As a result, as shown in Table 4, the internal wiring resistance was 5.
It was high at 2 mΩ/mouth.

表  4 [発明の効果コ 以上説明した通り、本発明のセラミック多層配線基板の
製造方法によれば、弱酸化性雰囲気中で脱バインダを行
なうことにより、脱パインダニ程の時間が短(て済むた
め生産性が高く、かつ、脱バインダが不十分なために生
ずる絶縁不良や、導体の酸化により生ずるクラック等の
発生がない。また、導体の原材料として金属銅を主成分
として用いるため、導体の配線抵抗が低(、優れた回路
基板が得られる。
Table 4 [Effects of the Invention] As explained above, according to the method for manufacturing a ceramic multilayer wiring board of the present invention, by removing the binder in a weakly oxidizing atmosphere, the time required for removing the binder mites is shortened. Productivity is high, and there are no insulation defects caused by insufficient binder removal or cracks caused by oxidation of the conductor.In addition, since metallic copper is used as the main component as the raw material for the conductor, the wiring of the conductor is Low resistance (allows for an excellent circuit board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、セラミック多層配線基板の中間工程品の一例
を示す断面図である。 1・・・グリーンシート 2・・・内部導体ペースト3
・・・ピアホールに充填された導電ペースト 4・・・
外部導体ペースト
FIG. 1 is a sectional view showing an example of an intermediate process product of a ceramic multilayer wiring board. 1...Green sheet 2...Inner conductor paste 3
...Conductive paste filled in the peer hole 4...
outer conductor paste

Claims (2)

【特許請求の範囲】[Claims] (1)金属銅粉末を主成分とする導電ペーストを用いて
グリーンシートに配線パターンを印刷したものを、弱酸
化性雰囲気中で加熱して前記グリーンシートと導電ペー
ストに含まれるバインダーを分解、除去し、その後、還
元性雰囲気中で焼成することを特徴とするセラミック多
層配線基板の製造方法。
(1) A green sheet with a wiring pattern printed using a conductive paste containing metallic copper powder as a main component is heated in a slightly oxidizing atmosphere to decompose and remove the binder contained in the green sheet and conductive paste. and then firing in a reducing atmosphere.
(2)前記特許請求の範囲第1項におけるバインダを分
解、除去する熱処理工程を行なう弱酸化性雰囲気が、1
00ppm以上、10000ppm以下の酸素濃度を有
する雰囲気であるセラミック多層配線基板の製造方法。
(2) The weakly oxidizing atmosphere in which the heat treatment step for decomposing and removing the binder in claim 1 is
A method for manufacturing a ceramic multilayer wiring board in an atmosphere having an oxygen concentration of 00 ppm or more and 10000 ppm or less.
JP17479888A 1988-07-13 1988-07-13 Manufacture of ceramic multilayer wiring board Pending JPH0225094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17479888A JPH0225094A (en) 1988-07-13 1988-07-13 Manufacture of ceramic multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17479888A JPH0225094A (en) 1988-07-13 1988-07-13 Manufacture of ceramic multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH0225094A true JPH0225094A (en) 1990-01-26

Family

ID=15984852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17479888A Pending JPH0225094A (en) 1988-07-13 1988-07-13 Manufacture of ceramic multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH0225094A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213679A (en) * 1991-10-18 1993-08-24 Internatl Business Mach Corp <Ibm> Interface area between metal and ceramics in metal/ceramic substrate and formation method thereof
JPH06338214A (en) * 1993-05-27 1994-12-06 Nec Corp Conductive paste for ceramic wiring board
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM
JP4691809B2 (en) * 2001-03-23 2011-06-01 株式会社村田製作所 Thick film circuit board and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213679A (en) * 1991-10-18 1993-08-24 Internatl Business Mach Corp <Ibm> Interface area between metal and ceramics in metal/ceramic substrate and formation method thereof
JPH06338214A (en) * 1993-05-27 1994-12-06 Nec Corp Conductive paste for ceramic wiring board
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM
JP4691809B2 (en) * 2001-03-23 2011-06-01 株式会社村田製作所 Thick film circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4795512A (en) Method of manufacturing a multilayer ceramic body
JPH0225094A (en) Manufacture of ceramic multilayer wiring board
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JPH06223621A (en) Conductor paste composition
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JPH05159621A (en) Conductive paste
JPH0650703B2 (en) Paste composition and method for manufacturing laminated ceramic capacitor
JPH05167253A (en) Manufacture of multilayer ceramic board
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JP4420137B2 (en) Manufacturing method of ceramic molded body
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JPS61144813A (en) Laminated ceramic capacitor and manufacture thereof
JPS62211890A (en) Heater element and manufacture of the same
JPH05218652A (en) Manufacture of ceramic multilayer wiring board
JPH05167262A (en) Ceramic multilayer wiring board and manufacture thereof
JPH0321109B2 (en)
JPH06268373A (en) Manufacture of multilayer circuit board
JPH066038A (en) Manufacturing method of low temperature baking multilayer ceramic board
JPS61292392A (en) Manufacture of ceramic wiring board
JPH01230214A (en) Manufacture of laminated ceramic capacitor
JP3856946B2 (en) Thick film paste, inorganic powder composition for thick film paste, ceramic wiring board and method for producing the same, and semiconductor device
JP4590674B2 (en) Manufacturing method of multilayer ceramic substrate
JPH0685468B2 (en) Method for manufacturing ceramic multilayer substrate
JPH0554718B2 (en)
JPH05308193A (en) Manufacture of multilayer ceramic board