JPH0224741B2 - - Google Patents

Info

Publication number
JPH0224741B2
JPH0224741B2 JP4283482A JP4283482A JPH0224741B2 JP H0224741 B2 JPH0224741 B2 JP H0224741B2 JP 4283482 A JP4283482 A JP 4283482A JP 4283482 A JP4283482 A JP 4283482A JP H0224741 B2 JPH0224741 B2 JP H0224741B2
Authority
JP
Japan
Prior art keywords
steel plate
virtual
conical surface
traveling direction
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4283482A
Other languages
Japanese (ja)
Other versions
JPS58162457A (en
Inventor
Tadanori Myamoto
Kazuyoshi Hashimoto
Tsuneo Nakano
Goro Fukuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4283482A priority Critical patent/JPS58162457A/en
Publication of JPS58162457A publication Critical patent/JPS58162457A/en
Publication of JPH0224741B2 publication Critical patent/JPH0224741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/32Arrangements for turning or reversing webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/34Modifying, selecting, changing direction of displacement
    • B65H2301/342Modifying, selecting, changing direction of displacement with change of plane of displacement
    • B65H2301/3423Modifying, selecting, changing direction of displacement with change of plane of displacement by travelling an angled curved path section for overturning and changing feeding direction
    • B65H2301/34232Modifying, selecting, changing direction of displacement with change of plane of displacement by travelling an angled curved path section for overturning and changing feeding direction involving conical angled curved path

Landscapes

  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Description

【発明の詳細な説明】 本発明は走行移動される帯状材の進行方向を変
える装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for changing the traveling direction of a traveling strip of material.

鋼板を製造する場合は、いくつかの処理工程を
経なければならない。一方、近年鋼板製造の合理
化の一環として複数の処理工程つまり設備と設備
の連続化が種々検討されているが、いくつかの設
備を直線的に配置することは据付面積及びその他
の面で種々の問題があることから、占有面積的に
無駄のない設備配置を可能とするため、鋼板の進
行方向を変更することが図られている。このこと
は、既設設備の連続化を図る上でも必要なことで
ある。
When manufacturing steel plates, several processing steps must be performed. On the other hand, in recent years, as part of the rationalization of steel sheet manufacturing, various studies have been conducted on the serialization of multiple processing steps, that is, equipment and equipment. Because of this problem, attempts have been made to change the direction in which the steel plates travel in order to enable equipment layout that does not waste space. This is also necessary for the continuity of existing equipment.

従来、鋼板の進行方向を変更する手段としてフ
リーループ方式、ツイストロール方式等が提案さ
れている。フリーループ方式とは、第1図に示す
ように、二つのロール01,02を向きを変えて
設置し、それらの間で鋼板03にたるみを付ける
と共にねじつて鋼板03の向きを変えるようにし
たものであり、又ツイストロール方式とは、多数
のロール04をよじつて並べ、これらのロール0
4に沿わせることによつて鋼板03の向きを変え
るようにしたものである。しかし、先のフリール
ープ方式では、フリーループ部分つまりたるみ部
分の揺動で通板速度が制限されるため、その適用
範囲が限定される。又ツイストロール方式では、
その技術上ロール04に大きな凸クラウンを設け
てあるため、鋼板03の進行方向変更時に鋼板0
3の幅方向で周速度が異なり、それによつてスリ
ツプが発生してしまうので、幅の狭い鋼板03に
しか適用できないという問題があつた。
Conventionally, a free loop method, a twist roll method, and the like have been proposed as means for changing the traveling direction of a steel plate. As shown in Fig. 1, the free loop method is such that two rolls 01 and 02 are installed with different orientations, and the steel plate 03 is given slack between them, and the orientation of the steel plate 03 is changed by twisting it. The twist roll method is a system in which a large number of rolls 04 are twisted and arranged, and these rolls 04 are
The orientation of the steel plate 03 can be changed by aligning the steel plate 03 along the line 4. However, in the above-mentioned free-loop method, the plate passing speed is limited by the swinging of the free-loop portion, that is, the slack portion, so the range of application thereof is limited. Also, in the twist roll method,
Technically, the roll 04 is provided with a large convex crown, so when the steel plate 03 moves direction is changed, the steel plate 04
There was a problem that the circumferential speed of the steel plate 03 differs in the width direction of the steel plate 3, which causes slips, so that it can only be applied to the narrow steel plate 03.

ところが最近では、上記のような従来の鋼板進
行方向変更手段における問題を解決する手段とし
て第3図に示すような帯鋼板の進行方向変更装置
が提案されている。この装置は、仮想円筒面05
のらせん曲線上に複数のガイドローラ06を配置
し、鋼板03をこれらガイドローラ06に沿わせ
てらせん状に移動することによりその向きを変え
るようにしたものである。この装置では、入側に
おける鋼板03の表面が出側では下側となる機構
上の特性がある。ところで、鋼板03の両面の傷
は、ガイド等の関係で表面より裏面がより多く発
生する。従つて、鋼板03の製造工程の途中で、
上記のように鋼板03の表裏が逆になることは品
質の低下を来たすこととなり好ましくない。
Recently, however, a steel strip traveling direction changing device as shown in FIG. 3 has been proposed as a means for solving the problems of the conventional steel plate traveling direction changing means as described above. This device has a virtual cylindrical surface 05
A plurality of guide rollers 06 are arranged on the spiral curve of the steel plate 03, and the direction of the steel plate 03 is changed by moving the steel plate 03 in a spiral shape along these guide rollers 06. This device has a mechanical characteristic that the surface of the steel plate 03 on the entry side is on the lower side on the exit side. By the way, more scratches occur on both sides of the steel plate 03 than on the front side due to the guides and the like. Therefore, during the manufacturing process of steel plate 03,
It is not preferable for the front and back sides of the steel plate 03 to be reversed as described above, as this will result in a decrease in quality.

本発明は上記のような情況にかんがみてなされ
たもので、帯状材をその表裏を変えることなく進
行方向を変えることができるようにするとともに
帯状材に自己調心性を付与し蛇行を防止すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to enable the traveling direction of a strip material to be changed without changing its front and back sides, and to impart self-centering properties to the strip material to prevent it from meandering. With the goal.

上記目的を達成するための本発明の構成は、仮
想錐状面に沿う複数のらせん曲線上に複数のガイ
ド回転子を前記仮想錐状面上で前記らせん曲線と
直交する軸に対して傾斜角を持たせた軸回りに回
転自在に配置し、これらのガイド回転体の包絡面
により形成される錐状面を帯状材の進行通路とし
たことを特徴とする。
The configuration of the present invention for achieving the above object is to arrange a plurality of guide rotors on a plurality of spiral curves along a virtual pyramidal surface at an angle of inclination with respect to an axis perpendicular to the spiral curve on the virtual pyramidal surface. It is characterized in that it is rotatably arranged around an axis having a guide rotor, and the conical surface formed by the envelope surface of these guide rotating bodies is used as a traveling path of the strip material.

以下、本発明に係る帯状鋼板の進行方向変更装
置を図面を参照して詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the traveling direction changing device for a strip steel plate according to the present invention will be explained in detail with reference to the drawings.

本発明の基本概念を示す第4図において、1は
仮想錐状面としての仮想円錐面であり、2は仮想
円錐面1に沿う複数の仮想らせん曲線で、仮想円
錐面1に巻き始めるところで仮想円錐面1の母線
3に対し1なるらせん角をなしている。ガイド
回転子としてのガイドローラ4は仮想円錐面1上
で各らせん曲線2上にその回転軸4aをらせん曲
線2と直交する軸に対して傾斜角θを持たせて複
数配列されており、しかも各らせん曲線2上のガ
イドローラ4のうちの中央部のもの以外、すなわ
ち中心線Gに対して両側のガイドローラ4の回転
軸4aの傾斜角θはそれぞれ中心線Gに向うよう
に設定され中心線Gに対してほぼ線対称に配置し
てある。そして、帯状鋼板5はガイドローラ4の
包絡面が形成する円錐状の曲面を進行通路として
移動される。このようにガイドローラ4を配置す
ることにより、ガイドローラ4が鋼板5と接する
点ローラ周速度の方向は、中心線G上のローラ群
ではらせん曲線2の接線方向と一致するが、中心
線Gを挾む両側のローラ群ではその回転軸4aが
らせん曲線2に直交する軸に対して中心線Gに向
うよう傾斜角θを設定してあるため、これらロー
ラ群のローラ回転方向は傾斜角θだけ中心に寄る
こととなり、これによつて鋼板5に対して中心に
向う側方力が作用する。この結果、鋼板5は両側
から中心線Gに押され自己調心機能が生じて鋼板
5が蛇行することなく送られるとともにその進行
方向を変更させることとなる。
In FIG. 4 showing the basic concept of the present invention, 1 is a virtual conical surface as a virtual conical surface, 2 is a plurality of virtual spiral curves along the virtual conical surface 1, and the virtual conical curves 2 are at the point where they start winding around the virtual conical surface 1. It forms a helical angle of 1 with respect to the generatrix 3 of the conical surface 1. A plurality of guide rollers 4 as guide rotors are arranged on each helical curve 2 on the virtual conical surface 1 with their rotational axes 4a having an inclination angle θ with respect to an axis orthogonal to the helical curve 2. The inclination angles θ of the rotating shafts 4a of the guide rollers 4 on each helical curve 2 other than the central part, that is, the rotation shafts 4a of the guide rollers 4 on both sides with respect to the center line G, are set so as to face the center line G. They are arranged almost line-symmetrically with respect to line G. The belt-shaped steel plate 5 is moved along the conical curved surface formed by the envelope surface of the guide roller 4 as a traveling path. By arranging the guide rollers 4 in this way, the direction of the circumferential speed of the rollers at the point where the guide rollers 4 contact the steel plate 5 coincides with the tangential direction of the helical curve 2 in the roller group on the center line G, but In the roller groups on both sides sandwiching the , the inclination angle θ is set so that the rotation axis 4a is directed toward the center line G with respect to the axis perpendicular to the spiral curve 2. Therefore, the roller rotation direction of these roller groups is set at the inclination angle θ. As a result, a lateral force toward the center acts on the steel plate 5. As a result, the steel plate 5 is pushed toward the center line G from both sides and a self-aligning function occurs, so that the steel plate 5 is fed without meandering and its direction of movement is changed.

図中、Bは帯状鋼板5の幅である。 In the figure, B is the width of the strip steel plate 5.

第5図には第4図を展開した様子を示す。ガイ
ドローラ4群は仮想円錐面1と鋼板5とが接触し
始める母線3と角度1をなした幅Bを持つ帯状
台形ACFEの中にあり、その回転軸4aは鋼板5
の進行方向に直交する軸に対して中心線Gに向う
よう傾斜角がθとなるよう配列されている。
FIG. 5 shows an expanded version of FIG. 4. The 4 groups of guide rollers are located in a band-shaped trapezoid ACFE having a width B that forms an angle 1 with the generatrix 3 where the virtual conical surface 1 and the steel plate 5 begin to contact, and the rotation axis 4a thereof
They are arranged so that the inclination angle is θ toward the center line G with respect to the axis perpendicular to the direction of travel.

尚、帯状台形ACFEを外れたところの鋼板5の
部分は平面となるが、この部分にもガイドローラ
を設ける場合にはガイドローラの回転軸が上記同
様の傾斜角をもつよう説定すれば良い。
Note that the part of the steel plate 5 outside the band-shaped trapezoid ACFE is a flat surface, but if a guide roller is provided in this part as well, the rotating shaft of the guide roller should have the same inclination angle as above. .

次に、進行方向の変更角度と仮想円錐面1の頂
角αとの関係について検討する。
Next, the relationship between the change angle of the traveling direction and the apex angle α of the virtual conical surface 1 will be considered.

まず、第4図を参照して、仮想円錐面1への入
側と出側とで鋼板5の進行方向が90゜をなす場合
(β=90゜の場合)を考えると、仮想円錐面1への
鋼板5の入側5aと出側5bにおける鋼板5と母
線3とのなす角度12との和は90゜となるため、
第5図より仮想円錐面1の展開図における頂角α
も90゜となることがわかる。同様に考えると、鋼
板5の出側5bの進行方向を入側5aと同一平面
においてその進行方向に対して角度βだけ変更し
たい場合には、仮想円錐面1の展開図の頂角をα
=βに選び、その仮想円錐面に鋼板5を1周巻き
付ければよいことになる。
First, with reference to FIG. 4, if we consider the case where the advancing direction of the steel plate 5 forms 90 degrees between the entrance and exit sides of the virtual conical surface 1 (when β = 90 degrees), the virtual conical surface 1 Since the sum of the angles 1 and 2 between the steel plate 5 and the generating line 3 at the entrance side 5a and exit side 5b of the steel plate 5 is 90°,
From Fig. 5, the apex angle α in the developed view of the virtual conical surface 1
It can be seen that the angle is also 90°. Considering the same way, if you want to change the traveling direction of the exit side 5b of the steel plate 5 by an angle β with respect to the traveling direction on the same plane as the entrance side 5a, the apex angle of the developed view of the virtual conical surface 1 should be α
= β and wrap the steel plate 5 around the virtual conical surface once.

もちろんα≠βの場合でも、仮想円錐面に巻き
付き付ける量を調整することにより、即ち仮想円
錐面上を丁度1周ではなく、1周以上又は1周以
下に巻き付けることにより、仮想円錐面への鋼板
5の入出側の両進行方向のなす角度を見かけ上β
に選ぶことにより、鋼板5の進行方向を任意に設
定することができる。ただし、この場合は鋼板5
は入側5aと出側5bとは同一平面にないため、
鋼板5を方向転換した後、必要に応じて鋼板5の
進行方向を水平、垂直等に再修正する必要がある
ことは言うまでもない。
Of course, even in the case of α≠β, by adjusting the amount of wrapping around the virtual conical surface, that is, by wrapping it around the virtual conical surface more than one time or less than one time, instead of just one time around the virtual conical surface. The apparent angle between the two advancing directions on the entrance and exit sides of the steel plate 5 is β
By selecting , the traveling direction of the steel plate 5 can be arbitrarily set. However, in this case, the steel plate 5
Since the entrance side 5a and the exit side 5b are not on the same plane,
It goes without saying that after changing the direction of the steel plate 5, it is necessary to readjust the traveling direction of the steel plate 5 to horizontal, vertical, etc. as necessary.

又、仮想円錐面1での鋼板5の入出側を同一平
面上に選ぶ必要がない場合には、仮想錐状面を、
第6図に示すように底面1aがらせん曲線をなす
ようならせん円錐面1′として、ここに鋼板5を
巻き付けても同様の効果を得ることができる。
In addition, if it is not necessary to select the entrance and exit sides of the steel plate 5 on the same plane on the virtual conical surface 1, the virtual conical surface is
As shown in FIG. 6, the same effect can be obtained even if the bottom surface 1a is formed into a spiral conical surface 1' forming a spiral curve, and the steel plate 5 is wound around the spiral conical surface 1'.

かようにガイドローラ4の回転軸4aを鋼板5
の進行方向に直交する軸Zに対して中心線Gに向
うよう傾斜角θを設けたことで、鋼板5に作用す
る力は、第7図に示すようになる。すなわち、鋼
板5を前方に移動させる力をFとし、これを中心
線Gを挾む一対のガイドローラ4で支持するとす
れば、それぞれのガイドローラ4に作用する力
FL,FRとの間には次式が成り立つ。
In this way, the rotating shaft 4a of the guide roller 4 is connected to the steel plate 5.
By providing an inclination angle θ toward the center line G with respect to the axis Z perpendicular to the traveling direction of the steel plate 5, the force acting on the steel plate 5 becomes as shown in FIG. That is, if the force that moves the steel plate 5 forward is F, and it is supported by a pair of guide rollers 4 sandwiching the center line G, the force acting on each guide roller 4 is
The following equation holds true between F L and FR .

F=FL+FR このとき、ガイドローラ4の回転軸4aが軸Z
に対して傾斜角θが0であれば、通常、軸Z方向
の力は作用しないが、傾斜角θが設けてあるので
側方力fL,fRがそれぞれガイドローラ4の回転軸
4a方向に向つて作用するとともにその値は次式
で表わすことができる。
F=F L +F R At this time, the rotating shaft 4a of the guide roller 4 is aligned with the axis Z.
If the inclination angle θ is 0, normally no force will act in the direction of the axis Z, but since the inclination angle θ is provided, the lateral forces f L and f R will be applied in the direction of the rotation axis 4a of the guide roller 4, respectively. The value can be expressed by the following equation.

fL=FL・sinθ,fR=FR・sinθ したがつて、鋼板5の進行方向と直角方向には
求心力f′L,f′Rが生じることとなり、その値は次
式となる。
f L = F L · sin θ, f R = F R · sin θ Therefore, centripetal forces f' L and f' R are generated in the direction perpendicular to the traveling direction of the steel plate 5, and their values are expressed by the following equation.

f′L=FL・sinθ・cosθ,f′R=FR・sinθ・cosθ 今、中心線Gに対し鋼板5の中心がずれたとす
れば左右の求心力f′L,f′Rに差が生じ、例えば左
側に鋼板5が片寄つた場合にはf′L>f′Rとなり鋼
板5に対してf′L−f′Rの求心力が作用することと
なり鋼板5は右側に戻され、中心に戻つたときに
f′L=f′Rとなりバランスが取れて中心位置を保つ
こととなる。すなわち、自己調心機能を有するこ
ととなる。
f′ L = F L・sinθ・cosθ, f′ R =F R・sinθ・cosθ Now, if the center of the steel plate 5 is shifted with respect to the center line G, there will be a difference between the left and right centripetal forces f′ L and f′ R. For example, if the steel plate 5 is shifted to the left side, f′ L > f′ R and a centripetal force of f′ L − f′ R will act on the steel plate 5, and the steel plate 5 will be returned to the right side and centered. when I get back
f′ L = f′ R , and the balance is maintained and the center position is maintained. In other words, it has a self-centering function.

第8図には本発明に係る進行方向変更装置の一
具体例を示す。仮想円錐面1の母線3に沿つて複
数の仮想円錐用フレーム6が図示されていない軸
受を介して配設される。ガイドローラ4は、仮想
円錐面1に沿う複数のらせん曲線2上においてそ
の回転軸4aがらせん曲線2と直交する軸に対し
て傾斜角θを持つように、前記仮想円錐用フレー
ム6上に支持されるが、本具体例では、同一母線
3上に並ぶガイドローラ4群をベース7に組み込
んでガイドローラアセンブリ8とし、これを前記
仮想円錐用フレーム6上に取付けている。
FIG. 8 shows a specific example of the traveling direction changing device according to the present invention. A plurality of virtual cone frames 6 are arranged along the generatrix 3 of the virtual cone surface 1 via bearings (not shown). The guide roller 4 is supported on the virtual cone frame 6 so that its rotation axis 4a has an inclination angle θ with respect to an axis orthogonal to the spiral curves 2 on the plurality of spiral curves 2 along the virtual cone surface 1. However, in this specific example, four groups of guide rollers arranged on the same generatrix 3 are assembled into the base 7 to form a guide roller assembly 8, which is mounted on the virtual cone frame 6.

前記ガイドローラ4の包絡面はらせん面を形成
し、鋼板5がこのらせん面に沿つて通板されるの
で、表裏を変えることなく進行方向をスムーズに
変更することができるとともにガイドローラ4群
からの求心力によつて鋼板5を常に中心に位置さ
せる自己調心機能があるので、鋼板5が蛇行する
ことがない。また、この装置では、ガイドローラ
4群をアセンブリとしているので、その保守・点
検は容易となる。
The envelope surface of the guide roller 4 forms a spiral surface, and the steel plate 5 is threaded along this spiral surface, so that the traveling direction can be changed smoothly without changing the front and back sides, and the steel plate 5 can be smoothly changed from the guide roller group 4. Since the steel plate 5 has a self-centering function that always positions the steel plate 5 at the center by the centripetal force, the steel plate 5 does not meander. Further, in this device, since the four groups of guide rollers are assembled, maintenance and inspection thereof are easy.

尚、本発明は帯状鋼板5に限らず、ガイドロー
ラ4と接触することによつて品質上の問題を起こ
さないいかなる帯状材についても適用できる。
又、上記具体例では、仮想錐状面として正規円錐
を例として説明したが、本発明は正規円錐ではな
い一般的な円錐、角錐でもよいことはいうまでも
ない。更に、上記具体例では、ガイド回転子とし
て、回転軸4aがらせん曲線2に直交する軸に対
して傾斜角θを有するガイドローラ4を採用して
いるが、そのほか、表面が帯状材と点又は面で接
触する球状物体などを使用することも可能であ
る。
Note that the present invention is not limited to the steel strip 5, but can be applied to any strip that does not cause quality problems due to contact with the guide roller 4.
Further, in the above specific example, a regular cone is used as an example of the virtual conical surface, but it goes without saying that the present invention may be applied to a general cone or pyramid that is not a regular cone. Furthermore, in the above specific example, the guide roller 4 whose rotating shaft 4a has an inclination angle θ with respect to the axis perpendicular to the spiral curve 2 is used as the guide rotor, but in addition to that, the guide roller 4 whose surface has a strip material and a point or It is also possible to use a spherical object or the like that makes surface contact.

以上、具体例を挙げて詳細に説明したように、
本発明による帯状材の進行方向変更装置によれ
ば、錐状面に沿いらせん状に配置されその回転軸
がらせん曲線と直交する軸に対して傾斜角を設け
た回転子によつて帯状材の進行方向を変えるよう
にしたので、帯状材の表裏を変えることなく帯状
材の進行方向を変えることができるとともに自己
調心機能によつて蛇行することもない。又、帯状
材の幅が大であつても小であつてもスムーズに進
行方向変更をすることができる。
As explained above in detail with specific examples,
According to the device for changing the traveling direction of a strip material according to the present invention, the strip material is moved by a rotor arranged spirally along a conical surface and whose rotation axis is inclined at an angle with respect to an axis perpendicular to the spiral curve. Since the traveling direction is changed, the traveling direction of the strip material can be changed without changing the front and back sides of the strip material, and the self-aligning function prevents it from meandering. In addition, whether the width of the strip material is large or small, the direction of movement can be changed smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図はそれぞれ従来の帯
状材の進行方向変更装置の概略図、第4図は本発
明に係る進行方向変更装置の一例の概念図、第5
図はその展開図、第6図は他の例の概念図、第7
図はガイドローラによる自己調心機能の説明図、
第8図は本発明の一具体例の概略斜視図である。 図面中、1は仮想円錐面、2はらせん曲線、4
はガイドローラ、5は鋼板、6は仮想円錐用フレ
ーム、7はベース、8はガイドローラアセンブリ
である。
1, 2, and 3 are schematic diagrams of a conventional device for changing the traveling direction of a strip material, FIG. 4 is a conceptual diagram of an example of the traveling direction changing device according to the present invention, and FIG.
The figure is a developed diagram, Figure 6 is a conceptual diagram of another example, and Figure 7 is a conceptual diagram of another example.
The figure is an explanatory diagram of the self-aligning function using guide rollers.
FIG. 8 is a schematic perspective view of one embodiment of the present invention. In the drawing, 1 is a virtual conical surface, 2 is a spiral curve, and 4 is a virtual conical surface.
1 is a guide roller, 5 is a steel plate, 6 is a virtual cone frame, 7 is a base, and 8 is a guide roller assembly.

Claims (1)

【特許請求の範囲】[Claims] 1 仮想錐状面に沿う複数のらせん曲線上に複数
のガイド回転子を前記仮想錐状面上で前記らせん
曲線と直交する軸に対して傾斜角を持たせた軸回
りに回転自在に配置し、これらのガイド回転体の
包絡面により形成される錐状面を帯状材の進行通
路としたことを特徴とする帯状材の進行方向変更
装置。
1. A plurality of guide rotors are disposed on a plurality of spiral curves along a virtual pyramidal surface so as to be rotatable around an axis that has an inclination angle with respect to an axis perpendicular to the spiral curve on the virtual pyramidal surface. A device for changing the traveling direction of a strip material, characterized in that a conical surface formed by the envelope surfaces of these guide rotors is used as a traveling path for the strip material.
JP4283482A 1982-03-19 1982-03-19 Moving sense altering device for belt material Granted JPS58162457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283482A JPS58162457A (en) 1982-03-19 1982-03-19 Moving sense altering device for belt material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4283482A JPS58162457A (en) 1982-03-19 1982-03-19 Moving sense altering device for belt material

Publications (2)

Publication Number Publication Date
JPS58162457A JPS58162457A (en) 1983-09-27
JPH0224741B2 true JPH0224741B2 (en) 1990-05-30

Family

ID=12646995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283482A Granted JPS58162457A (en) 1982-03-19 1982-03-19 Moving sense altering device for belt material

Country Status (1)

Country Link
JP (1) JPS58162457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074520A (en) * 2006-09-20 2008-04-03 Toyo Kohan Co Ltd Turn bar and method for changing travelling direction of band-like body
JP2010180062A (en) * 2010-04-13 2010-08-19 Toyo Kohan Co Ltd Turning bar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074520A (en) * 2006-09-20 2008-04-03 Toyo Kohan Co Ltd Turn bar and method for changing travelling direction of band-like body
JP4726755B2 (en) * 2006-09-20 2011-07-20 東洋鋼鈑株式会社 How to change the direction of travel of the band
JP2010180062A (en) * 2010-04-13 2010-08-19 Toyo Kohan Co Ltd Turning bar

Also Published As

Publication number Publication date
JPS58162457A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
EP0064844B1 (en) Pressure rollers for toner fusing station
US4876873A (en) Antirotation method to straighten sections and antirotation straightening machine which employs such method
JPH0224741B2 (en)
US4804152A (en) Web winding apparatus
JPS627100B2 (en)
US6915978B2 (en) Method of rod coil forming and set of equipment for its realization
GB2178347A (en) Method of and apparatus for manufacturing core wire for optical fibers
JPH07249323A (en) Cable form correcting apparatus
JPS6146381B2 (en)
JPS59229231A (en) Support roll
JPH0760301A (en) Method for guideless rolling
KR100636471B1 (en) Wire sizing-rolling method
JPS6397565A (en) Prevention for meandering of strip-shaped transported article
JP3560818B2 (en) Tape winding flat conductor guide device and composite tape winding device
US5367352A (en) Direction-changing roller for suspension frames of photographic material developing machines
JPH0394905A (en) Rolling mill for linear body
JPS6142653Y2 (en)
JP3117312B2 (en) Spiral looper
JPS59229230A (en) Device for changing advancing direction of strip
JPS6149724A (en) Transfer direction changing device of band-shaped material
WO1993013892A1 (en) Wire straightening method
EP0801167B1 (en) Machine for the single-twist stranding of cables composed of a plurality of wires, particularly for large-diameter cables
JP3451970B2 (en) Loop deflector device
JPS5823452Y2 (en) Mechanical descaler device
SU1641754A1 (en) Method and device for pulling tape material