JPH02242921A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH02242921A
JPH02242921A JP6454289A JP6454289A JPH02242921A JP H02242921 A JPH02242921 A JP H02242921A JP 6454289 A JP6454289 A JP 6454289A JP 6454289 A JP6454289 A JP 6454289A JP H02242921 A JPH02242921 A JP H02242921A
Authority
JP
Japan
Prior art keywords
carbon fiber
precursor
flame
heat
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6454289A
Other languages
Japanese (ja)
Inventor
Makoto Kobayashi
真 木林
Haruo Ohara
春夫 尾原
Atsushi Tsunoda
敦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6454289A priority Critical patent/JPH02242921A/en
Publication of JPH02242921A publication Critical patent/JPH02242921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a high quality and high performance carbon fiber in a short time by heat treatment of a precursor for carbon fiber production composed of a specific acryl-based copolymer in a fluid bed for disperse means. CONSTITUTION:A precursor for carbon fiber production composed of a copolymer of >=85% acrylonitrile and 1 to 10%, preferably 3 to 8% alkyl ester [preferably propyl ester of (meth)acrylic acid, etc.] of polymerizable unsaturated carboxylic acid is subjected to heat treatment in a fluid bed (preferably being means for subjecting solid heat mediated granules to heat treatment in a fluidized state with a gas and wherein fluidized state of the solid heat mediated granules with an oxidizing gas and heated state at >=240 deg.C coexist in the fluid bed) to provide the objective fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維の製造方法−1特に効率的に高品質
、高性能を有する炭素繊維を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a carbon fiber manufacturing method-1, particularly a method for efficiently manufacturing carbon fibers having high quality and high performance.

[従来の技術] アクリル系繊維から炭素繊維を製造する方法は広く知ら
れており、まず、空気または他の酸化性ガス雰囲気中に
て、200〜300℃で耐炎化して耐炎化繊維となし、
次いでこれを窒素、アルゴン等の不活性ガス雰囲気中に
て800〜2000℃で炭化して製造される。また、さ
らに2000℃以上の否活性ガス雰囲気中で黒鉛化を行
ない、弾性率が一段と高い黒鉛゛繊維を製造することも
行なわれる。
[Prior Art] A method for producing carbon fiber from acrylic fiber is widely known. First, carbon fiber is made flame-resistant by making it flame-resistant at 200 to 300°C in an atmosphere of air or other oxidizing gas.
This is then carbonized at 800 to 2000° C. in an inert gas atmosphere such as nitrogen or argon. Furthermore, graphitization is carried out in an inert gas atmosphere at a temperature of 2000° C. or higher to produce graphite fibers with even higher modulus of elasticity.

上記耐炎化工程は酸化と環化による発熱をともない、そ
の反応を十分コントロールしながら処理する必要がある
。また、物性の高い炭素繊維を得るためには、耐炎化反
応に必要な酸素を充分に単糸内部へ拡散させるのに長時
間を要するため、この耐炎化工程が炭素繊維の製造費に
占める割合は高い。
The above-mentioned flameproofing step involves heat generation due to oxidation and cyclization, and it is necessary to perform the process while sufficiently controlling the reaction. In addition, in order to obtain carbon fibers with high physical properties, it takes a long time to sufficiently diffuse the oxygen necessary for the flame-retardant reaction into the single fibers, so this flame-retardant process accounts for a large proportion of the manufacturing cost of carbon fibers. is expensive.

そこで、耐炎化時間短縮を図るために、前駆体繊維に熱
風を吹き付けたり、また、加熱固体表面に間欠的に接触
させる方法が示されている。
Therefore, in order to shorten the flame resistance time, methods have been proposed in which the precursor fibers are blown with hot air or brought into contact with a heated solid surface intermittently.

[本発明が解決しようとする課題] しかしながら、上記の方法によれば耐炎化時間は従来に
比べて短縮されるものの、得られる炭素繊維の物性は大
幅に低下する。たとえば、一定の弾性率を得るためには
炭化温度を上げるなどして対処しなければならなかフた
。一方、炭素wAQ製進用プリカーサ−を分散手段上の
流動層中で加熱処理することにより、耐炎化時間が大幅
に短縮できることを提案したく特願昭62−19030
1号)。そこで本発明者らは、さらに該炭素繊維製造用
プリカーサ−をアクリルwc維とし、かつその共重合組
成を特定することにより、耐炎化時間の大幅な短縮とと
もに、得られる炭素繊維の物性低下が抑制できることを
見出し、本発明に至ったものである。
[Problems to be Solved by the Present Invention] However, although the above method shortens the flame resistance time compared to the conventional method, the physical properties of the obtained carbon fibers are significantly reduced. For example, in order to obtain a constant elastic modulus, measures such as increasing the carbonization temperature were required. On the other hand, we would like to propose that the flame resistance time can be significantly shortened by heat-treating a precursor made of carbon wAQ in a fluidized bed on a dispersing means.
No. 1). Therefore, the present inventors further determined that by using acrylic WC fiber as the precursor for carbon fiber production and specifying its copolymer composition, the flame resistance time was significantly shortened, and the deterioration of the physical properties of the obtained carbon fiber was suppressed. This is what led to the present invention.

すなわち、本発明の課題は、高品質、高性能な炭素繊維
を、短時間で効率よく製造することにある。
That is, an object of the present invention is to efficiently produce high-quality, high-performance carbon fiber in a short time.

[課題を解決するための手段] 本発明の上記課題は、アクリロニトリル85%以上、重
合性不飽和カルボン酸のアルキルエステル1〜lO%か
らなる共重合体で構成される炭素繊維製造用プリカーサ
−を、分散手段」二の流動層中で加熱処理することを特
徴とする炭素繊維の製造方法によって解決することがで
きる。
[Means for Solving the Problems] The above object of the present invention is to provide a precursor for carbon fiber production composed of a copolymer consisting of 85% or more acrylonitrile and 1 to 10% alkyl ester of a polymerizable unsaturated carboxylic acid. This problem can be solved by a carbon fiber manufacturing method characterized by heat treatment in a fluidized bed.

すなわち、本発明において炭素繊維製造用プリカーサ−
(以下単にプリカーサ−という)は、アクリロニトリル
85%以上、重合性不飽和カルボン酸のアルキルエステ
ル1〜10%からなる共重合体で構成される。前記共重
合成分量が少ないと得られる効果が小さく、一方、多す
ぎると得られる炭素繊維の物性や炭化収率が低下するよ
うになる。従って、共重合量としては2〜9%がより好
ましく、3〜8%がさらに好ましい。
That is, in the present invention, the precursor for carbon fiber production is
(hereinafter simply referred to as precursor) is composed of a copolymer consisting of 85% or more acrylonitrile and 1 to 10% alkyl ester of a polymerizable unsaturated carboxylic acid. If the amount of the copolymerized component is small, the effect obtained will be small, while if it is too large, the physical properties and carbonization yield of the obtained carbon fiber will decrease. Therefore, the amount of copolymerization is more preferably 2 to 9%, and even more preferably 3 to 8%.

重合性不飽和カルボン酸のアルキルエステルの具体例と
しては、アクリル酸メチル、メタクリル酸メチル、イタ
コン酸ジエチル、アクリル酸ノルマルプロピル、メタク
リル酸ノルマルブチル、メタクリル酸イソブチル、イタ
コン酸イソブチル、エタクリル酸ラウリル、アクリル酸
シクロヘキシル、メタクリル酸ステアリル等を挙げるこ
とができるが、汎用性、効果の点からアクリル酸、メタ
クリル酸のエステルが好ましく、また、炭素数が3以上
であるアルキルのエステルが好ましく、ノルマルプロピ
ルエステル、ノルマルブチルエステル、イソブチルエス
テルがより好ましい。
Specific examples of alkyl esters of polymerizable unsaturated carboxylic acids include methyl acrylate, methyl methacrylate, diethyl itaconate, n-propyl acrylate, n-butyl methacrylate, isobutyl methacrylate, isobutyl itaconate, lauryl ethacrylate, and acrylic. Examples include cyclohexyl acid and stearyl methacrylate, but esters of acrylic acid and methacrylic acid are preferred from the viewpoint of versatility and effectiveness, and esters of alkyl having 3 or more carbon atoms are preferred, such as normal propyl ester, Normal butyl ester and isobutyl ester are more preferred.

これらの共重合成分は、それ自身耐炎化反応を促進する
ことはないが、酸素透過性を改善するため、酸素濃度分
布が均一で、そして、不飽和化が進行した単糸内部の水
素濃度が低い耐炎化糸が得られ、しかも、この耐炎化糸
を焼成すると、極めて高い物性の炭素繊維を得ることが
でき、特に、耐炎化時間を短縮した時にも極めて物性低
下を小さくできる。
These copolymerized components do not themselves promote flame-retardant reactions, but they improve oxygen permeability so that the oxygen concentration distribution is uniform and the hydrogen concentration inside the unsaturated single fibers is reduced. A yarn with low flame resistance can be obtained, and when this flame resistance yarn is fired, carbon fibers with extremely high physical properties can be obtained, and in particular, even when the flame resistance time is shortened, the decrease in physical properties can be extremely small.

また、本発明中のプリカーサ−には、−層耐炎化時間を
短縮するため、不飽和カルボン酸等、耐炎化反応を促進
する重合性不飽和単量体を共重合することが好ましい。
Further, in order to shorten the time required for flame-proofing the layer, it is preferable to copolymerize the precursor in the present invention with a polymerizable unsaturated monomer that promotes the flame-proofing reaction, such as an unsaturated carboxylic acid.

不飽和カルボン酸の具体例としては、アクリル酸、メタ
クリル酸、イタコン酸、クロトン酸、シトラコン酸、エ
タクリル酸、マレイン酸゛、メサコン酸等があるが、こ
の中でも、アクリル酸、メタクリル酸、イタコン酸が好
ましい。そして、不飽和カルボン酸の共重合量は0゜2
5〜5%が好ましく、0.5〜4%がより好ましい。
Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, etc. Among these, acrylic acid, methacrylic acid, itaconic acid is preferred. And the amount of copolymerization of unsaturated carboxylic acid is 0゜2
5% to 5% is preferable, and 0.5% to 4% is more preferable.

また、その他のアクリロニトリルと共重合可能な重合性
不飽和単量体と共重合することも可能である。
It is also possible to copolymerize with other polymerizable unsaturated monomers that can be copolymerized with acrylonitrile.

重合方法は、溶液重合、懸濁重合、乳化重合等、公知の
方法いずれに仕ってもよい。
The polymerization method may be any known method such as solution polymerization, suspension polymerization, and emulsion polymerization.

紡糸に用いる溶媒は、有機、無機の公知の溶媒を使用す
ることができる。本発明においてはこのアクリル系重合
体溶液を公知の方法に従って、紡糸、浴中延伸、乾燥緻
密化する。紡糸は直接凝固浴中に紡出してもよいし、−
度、空気中に紡出した後浴中凝固させてもよい。浴中延
伸は紡出糸を直接性なってもよいし、また、−度水洗し
て溶媒を除去したのちに行なってもよい。浴中延伸は通
常50〜98℃の延伸浴中で約2〜6倍に延伸されるが
本発明はこれに限定されない。乾燥緻密化は、浴中延伸
後の糸条をホットドラムなどで乾燥することによって行
なわれるが、乾燥温度、時間等は適宜選択することがで
きる。また、必要に応じて乾燥緻密化後の糸条を加圧ス
チーム延伸することも行なわれる。さらに、前駆体繊維
には、高温で処理して耐炎化時間を短縮しうる耐熱性を
持だせるため、シリコン油剤で処理することもできる。
As the solvent used for spinning, known organic and inorganic solvents can be used. In the present invention, this acrylic polymer solution is subjected to spinning, bath stretching, and drying and densification according to known methods. Spinning may be carried out directly into a coagulation bath, or -
It may also be spun into air and then coagulated in a bath. The bath drawing may be carried out directly on the spun yarn, or may be carried out after washing with water to remove the solvent. The in-bath stretching is usually carried out by about 2 to 6 times in a stretching bath at a temperature of 50 to 98°C, but the present invention is not limited thereto. Drying and densification is carried out by drying the yarn after drawing in a bath using a hot drum or the like, and the drying temperature, time, etc. can be selected as appropriate. Further, if necessary, the yarn after drying and densification is stretched with pressurized steam. Furthermore, the precursor fibers can be treated with a silicone oil agent to impart heat resistance that can be treated at high temperatures to shorten the flame resistance time.

付与の方法としては、工程油剤として伺与する等通常の
方法をとることができる。
As a method of application, usual methods such as application as a process oil agent can be used.

次に、本発明における流動層とは、固体熱媒粒子を気体
で流動化した状態で加熱処理する手段であって、前記熱
媒粒子が酸化性気体で流動化された状態と、所定の温度
、好ましくは200℃以上、より好ましくは240℃以
上に加熱された状態がこの流動層内で共存された状態を
言う。
Next, the fluidized bed in the present invention is a means for heat-treating solid heat transfer particles in a state in which they are fluidized with a gas, and the heat transfer particles are in a state in which they are fluidized in an oxidizing gas and at a predetermined temperature. , preferably at 200° C. or higher, more preferably at 240° C. or higher, coexisting in the fluidized bed.

本発明において酸化性気体とは、空気の他、含硫黄気体
5等、前記前駆体繊維に対して加熱時広義の酸化反応を
生ずる気体が含まれる。
In the present invention, the oxidizing gas includes, in addition to air, gases such as sulfur-containing gas 5 that cause an oxidation reaction in a broad sense on the precursor fibers when heated.

本発明における熱媒粒子とは、気体で流動化された状態
で用いる固体粒子を言い、耐炎化に必要な加熱温度に耐
えうる耐熱性を有するもので、たとえば、主成分として
炭素、アルミナ、炭化ケイ素、ジルコニア、シリカ等が
単独あるいは共存して構成されるセラミックやガラス等
の無機物粒子を用いることができる。特に前記熱媒粒子
のうち、炭素を主成分とする粒子が好ましく、さらには
重量の80%が28メツシユより小さい粒径の黒鉛粒子
が好ましい。
The heating medium particles in the present invention refer to solid particles that are used in a gaseous fluidized state and have heat resistance that can withstand the heating temperature required for flame resistance. Inorganic particles such as ceramic or glass made of silicon, zirconia, silica, etc. singly or in combination can be used. Particularly, among the heat transfer particles, particles whose main component is carbon are preferable, and graphite particles in which 80% of the weight of the particles have a particle size smaller than 28 meshes are particularly preferable.

次に、流動層は次の条件にて形成されるのが好ましい。Next, the fluidized bed is preferably formed under the following conditions.

すなわち、上面レベルから分散手段までの熱媒粒子の静
置時深さH[m]を下記の範囲として分散板上に流動層
を形成せしめ、前記流動層中で前駆体繊維を加熱する。
That is, a fluidized bed is formed on the dispersion plate by setting the standing depth H [m] of the heating medium particles from the upper surface level to the dispersion means in the following range, and the precursor fibers are heated in the fluidized bed.

20Mf/(ρυCpA)<H<500/ρυここで、 Mf :流動層中に存在する前駆体繊維重量[k8]ρ
υ:熱媒粒子の嵩密度[kg/m3]Cp :熱媒粒子
の比熱[kcal/kg’c]A :流動層の流動化面
積[m2] である。
20Mf/(ρυCpA)<H<500/ρυwhere, Mf: weight of precursor fibers present in the fluidized bed [k8]ρ
υ: Bulk density of heating medium particles [kg/m3] Cp: Specific heat of heating medium particles [kcal/kg'c] A: Fluidized area of fluidized bed [m2].

また、流動層で耐炎化する前に、200℃以上260℃
以下の空気中で60秒以下の緊張前処理を施してもよい
In addition, before making it flame resistant in a fluidized bed,
The following tension pretreatment may be performed in air for 60 seconds or less.

また、耐炎化処理中の延伸比は、緊張状態を保ち、また
、得られる耐炎化糸に損傷を与えない範囲で適宜選択す
ることができるが、高物性の炭素繊維を得るためには延
伸比が好ましくは0.8以上、より好ましくは0.9以
上、さらに好ましくは1.0以上である。
In addition, the stretching ratio during the flame-retardant treatment can be appropriately selected within a range that maintains tension and does not damage the resulting flame-retardant yarn, but in order to obtain carbon fiber with high physical properties, the stretching ratio is preferably 0.8 or more, more preferably 0.9 or more, still more preferably 1.0 or more.

さらに、高品質、高性能な炭素繊維を、短時間で効率よ
く製造するという本発明の趣旨から、流動層内の総滞留
時間、すなわち耐炎化時間は短いほうがよく、好ましく
は30分以内、より好ましくは20分以内、さらに好ま
しくは10分以内である。
Furthermore, since the purpose of the present invention is to efficiently produce high-quality, high-performance carbon fibers in a short period of time, the total residence time in the fluidized bed, that is, the flame resistance time, is preferably short, preferably within 30 minutes, and more preferably within 30 minutes. Preferably it is within 20 minutes, more preferably within 10 minutes.

以上のようにして得られる耐炎化糸は、引き続き不活性
ガス雰囲気にて最高熱処理温度が800〜2000℃で
炭化し炭素繊維とする。また、必要に応じてさらに20
00℃以上の不活性ガス雰囲気中で黒鉛化して黒鉛化糸
とすることもてきる。
The flame-resistant yarn obtained as described above is subsequently carbonized in an inert gas atmosphere at a maximum heat treatment temperature of 800 to 2000°C to form carbon fiber. In addition, if necessary, an additional 20
It is also possible to graphitize in an inert gas atmosphere at 00° C. or higher to obtain a graphitized yarn.

[実施例] 以下、実施例を挙げて本発明を具体的に説明する。[Example] The present invention will be specifically described below with reference to Examples.

実施例1 ジメチルスルホキシドを溶媒とする溶液重合法により、
重合体濃度20%の紡糸原液を得て、それを3000ホ
ールの口金を用いてジメチルスルホキシド水溶液中に紡
出した後、沸水中で延伸しながら水洗し、乾燥緻密化し
た後に、加圧スチーム中でさらに延伸することにより、
単糸デニール1、Od、3000フイラメント、第1表
に示した共重合組成の繊維A−Eを得た。この繊維を加
熱空気で流動化した黒鉛粉末熱媒中260〜280℃に
おいて10分間で耐炎化し、窒素気流中1300℃まで
加熱処理して炭素繊維を得た。結果を第2表に示す。
Example 1 By solution polymerization method using dimethyl sulfoxide as a solvent,
A spinning stock solution with a polymer concentration of 20% was obtained, which was spun into a dimethyl sulfoxide aqueous solution using a 3000-hole spinneret, washed with water while being stretched in boiling water, dried and densified, and then spun in a pressurized steam bath. By further stretching with
Fibers AE having a single filament denier of 1, Od, 3000 and a copolymer composition shown in Table 1 were obtained. The fibers were made flame resistant for 10 minutes at 260 to 280°C in a graphite powder heat medium fluidized with heated air, and then heat-treated to 1300°C in a nitrogen stream to obtain carbon fibers. The results are shown in Table 2.

比較例1 実施例1と同様の方法にて第1表に示した共重合組成の
繊維F−Hを得た。この繊維を実施例1と同様の方法で
焼成して炭素繊維を得た。結果を第2表に示す。
Comparative Example 1 Fibers F-H having the copolymerization composition shown in Table 1 were obtained in the same manner as in Example 1. This fiber was fired in the same manner as in Example 1 to obtain carbon fiber. The results are shown in Table 2.

実施例2 水を溶媒とする懸濁重合法により、アクリロニトリル9
2%1.イタコン酸1%、メタクリル酸イソブチル7%
よりなる共重合体を得て、それを重合体濃度25%のジ
メチルホルムアミド溶液とし、ジメチルホルムアミド水
溶液中に紡出する以外は、実施例1と同様に紡糸し、3
000フイラメント、単繊維繊度1.Odの繊維Iを得
た。この繊維を加熱空気で流動化したアルミナ熱媒中て
270〜290℃において5分間で耐炎化し、窒素気流
中1300℃まで加熱処理して炭素繊維を得た。結果を
第2表に示す。
Example 2 Acrylonitrile 9 was produced by a suspension polymerization method using water as a solvent.
2%1. Itaconic acid 1%, Isobutyl methacrylate 7%
A copolymer composed of
000 filament, single fiber fineness 1. Fiber I of Od was obtained. The fibers were made flame resistant for 5 minutes at 270 to 290°C in an alumina heat medium fluidized with heated air, and then heat treated to 1300°C in a nitrogen stream to obtain carbon fibers. The results are shown in Table 2.

比較例2 実施例2で得た繊維Iを、空気中にて、約240℃の熱
風中、60分間耐炎化した。次に、この耐炎化糸を実施
例2と同様に炭化した。得られた炭素繊維は引張強度が
463 kg/mm”、引張弾性率は25 、4 t、
/mm2であった。
Comparative Example 2 The fiber I obtained in Example 2 was flame resistant in air at about 240° C. for 60 minutes. Next, this flame-resistant yarn was carbonized in the same manner as in Example 2. The obtained carbon fiber had a tensile strength of 463 kg/mm", a tensile modulus of 25.4 t,
/mm2.

(以下余白) 第1表 第2表 [発明の効果コ 本発明の炭素繊維の製造方法によって、高品質、高性能
の炭素繊維を、短時間で効率的に製造することができ、
大幅な炭素繊維のコストダウンが可能となる。また、こ
れにより炭素繊維の用途が一段と拡大するなどの効果が
大である。
(The following are blank spaces) Table 1 Table 2 [Effects of the invention] By the method for producing carbon fiber of the present invention, high quality and high performance carbon fiber can be produced efficiently in a short time,
This makes it possible to significantly reduce the cost of carbon fiber. Additionally, this has the effect of further expanding the uses of carbon fiber.

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリル85%以上、重合性不飽和カルボン酸
のアルキルエステル1〜10%からなる共重合体で構成
される炭素繊維製造用プリカーサーを、分散手段上の流
動層中で加熱処理することを特徴とする炭素繊維の製造
方法。
A precursor for producing carbon fibers made of a copolymer consisting of 85% or more acrylonitrile and 1 to 10% alkyl ester of a polymerizable unsaturated carboxylic acid is heat-treated in a fluidized bed on a dispersion means. Carbon fiber manufacturing method.
JP6454289A 1989-03-15 1989-03-15 Production of carbon fiber Pending JPH02242921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6454289A JPH02242921A (en) 1989-03-15 1989-03-15 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6454289A JPH02242921A (en) 1989-03-15 1989-03-15 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH02242921A true JPH02242921A (en) 1990-09-27

Family

ID=13261214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6454289A Pending JPH02242921A (en) 1989-03-15 1989-03-15 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH02242921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (en) * 1996-05-24 1997-12-04 Toray Industries, Inc. Carbon fiber, acrylic fiber, and method of manufacturing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (en) * 1996-05-24 1997-12-04 Toray Industries, Inc. Carbon fiber, acrylic fiber, and method of manufacturing them

Similar Documents

Publication Publication Date Title
US4113847A (en) Process for producing carbon fibers
WO1999010572A1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
CA1040370A (en) Process for producing carbon fibers having excellent physical properties
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JP6998923B2 (en) Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method
JPS58136838A (en) Production of high-performance carbon fiber
JPH02242921A (en) Production of carbon fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JP2869085B2 (en) Precursor for carbon fiber production
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JPH0214013A (en) Precursor for producing carbon fiber
JPS5920004B2 (en) Carbon fiber manufacturing method
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
JPH0931758A (en) Carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPH07292526A (en) Production of acrylic carbon fiber
JPH026629A (en) Production of carbon fiber
KR102404109B1 (en) Method for analyzing gelation behavior of polyacrylonitrile polymer for carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
KR101490530B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
JP4919410B2 (en) Carbon fiber manufacturing method
JPH0255549B2 (en)
JP2018053389A (en) Carbon fiber precursor fiber and method for producing carbon fiber