JPH02237026A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02237026A
JPH02237026A JP5757189A JP5757189A JPH02237026A JP H02237026 A JPH02237026 A JP H02237026A JP 5757189 A JP5757189 A JP 5757189A JP 5757189 A JP5757189 A JP 5757189A JP H02237026 A JPH02237026 A JP H02237026A
Authority
JP
Japan
Prior art keywords
film
melting point
high melting
films
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5757189A
Other languages
Japanese (ja)
Other versions
JP2864518B2 (en
Inventor
Hirobumi Sumi
博文 角
Takashi Noguchi
隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1057571A priority Critical patent/JP2864518B2/en
Publication of JPH02237026A publication Critical patent/JPH02237026A/en
Application granted granted Critical
Publication of JP2864518B2 publication Critical patent/JP2864518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To reduce junction leakage current, contact resistance and sheet resistance by a method wherein a high melting point metallic silicide film is irradiated with specific laser beams in an atmosphere containing N to form a high melting point nitride film. CONSTITUTION:The surface of an interlayer insulating film 10 excluding the parts of contact holes C1 to C3 is covered with a reflection film 11 and then the whole surface is irradiated with laser beams B in an atmosphere containing N so that only TiSi2 films 9a to 9c inside these contact holes C1 to C3 may be locally heated at high temperature. Accordingly, TiN films 13a to 13c can be formed in self-alignment with these contact holes C1 to C3 on the TiSi2 films 9a to 9c. In this case, the parts not irradiated with the laser beams B are not heated at high temperature so that the surface of the TiSi2 films 9a to 9c on the parts not nitrified may not be subjected to the deterioration in morphology even if any hillock is formed on the surface. Through these procedures, contact resistance, sheet resistance and leakage current can be kept small.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置の製造方法に関し、更に詳し《は
、配線のコンタクト部に高融点金属シリサイド膜と高融
点金属窒化物膜との二層構造の膜を有する半導体装置の
製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device. The present invention relates to a method of manufacturing a semiconductor device having a layered film.

[発明の概要] 本発明は、高融点金属シリサイド膜と、該高融点金属シ
リサイド膜上に形成された高融点金属窒化物膜とを有す
る半導体装置の製造方法において、N(窒素)を含む雰
囲気中で前記高融点金属シリサイド膜に、エネルギー密
度1400〜220Q m J / c m ’のレー
ザビームを選択的に照射することにより前記高融点金属
窒化物膜を形成するようにしたことにより、 接合リーク電流,コンタクト抵抗及びシート抵抗を低く
するようにしたのもである。
[Summary of the Invention] The present invention provides a method for manufacturing a semiconductor device having a high melting point metal silicide film and a high melting point metal nitride film formed on the high melting point metal silicide film. In this method, the high melting point metal nitride film is formed by selectively irradiating the high melting point metal silicide film with a laser beam having an energy density of 1400 to 220 Q m J/cm', thereby reducing junction leakage. It is designed to reduce current, contact resistance, and sheet resistance.

[従来の技術] 半導体装置においては、半導体基板中に形成された拡散
層に、層間絶縁膜に形成されたコンタクトホールを通じ
てアルミニウム(A1)の配線がコンタクトしている。
[Prior Art] In a semiconductor device, aluminum (A1) wiring contacts a diffusion layer formed in a semiconductor substrate through a contact hole formed in an interlayer insulating film.

従来、この拡散層のシート抵抗の低減及びAI配線とこ
の拡散層との反応防止、(図るために、例えばチタンシ
リサイド(TiSt,)膜とその上に形成された窒化チ
タン(TiN)WJとの二層構造の膜を介してAI配線
を拡散層にコンタクトさせる技術が知られている。
Conventionally, in order to reduce the sheet resistance of this diffusion layer and prevent the reaction between AI wiring and this diffusion layer, for example, a titanium silicide (TiSt) film and a titanium nitride (TiN) WJ formed thereon have been used. A technique is known in which an AI wiring is brought into contact with a diffusion layer through a two-layered film.

特開昭62−169412号公報には、このTisiz
膜上にTiN膜を形成する方法として、拡散層上にTi
Si*膜を形成した後に、窒素(N)を含む雰囲気中に
おいて900℃以上の高温でアニールを行ってこのTi
Si,膜の表面を窒化することによりTiN膜を形成す
る方法が開示されている。
JP-A-62-169412 describes this Tisiz
As a method of forming a TiN film on a film, TiN film is formed on a diffusion layer.
After forming the Si* film, annealing is performed at a high temperature of 900°C or higher in an atmosphere containing nitrogen (N) to remove this Ti film.
A method of forming a TiN film by nitriding the surface of the Si film is disclosed.

[発明が解決しようとする課題] しかしながら、上述の特開昭62−1694 12号公
報に開示された方法は、半導体基板全体が900℃以上
の高温に加熱されることに起因して、窒化されない部分
におけるTiSi,膜の表面のモフォロジ−(morp
hology)が劣化し、その結果、電気的特性の劣化
が生じてしまうという問題点があった。また、特に、近
年素子の微細化に伴ってソース・ドレイン領域の深さ寸
法(X,)が浅くなっているため、このように半導体基
板全体が高温に加熱されることにより、拡散層中の不純
物の再拡散が生じて拡散層が広がってしまうという問題
もあった。
[Problems to be Solved by the Invention] However, in the method disclosed in the above-mentioned Japanese Patent Application Laid-open No. 1694-12-1983, the entire semiconductor substrate is heated to a high temperature of 900° C. or higher, and therefore, it is not nitrided. The morphology of the surface of the TiSi film in the part
There was a problem in that the electrical characteristics deteriorated as a result of the deterioration of the electrical characteristics. In addition, in particular, as the depth dimension (X,) of the source/drain region has become shallower with the miniaturization of devices in recent years, the entire semiconductor substrate is heated to high temperatures, causing There was also the problem that impurity re-diffusion occurred and the diffusion layer expanded.

本発明は、このような従来の問題点に着目して創案され
たものであって、高融点金属シリサイド膜のモフォロジ
ーの劣化や不純物の再拡散を生じることなく高融点金属
窒化物膜を高融点金属シリサイド膜上に形成可能とする
と共に、接合リーク電流,コンタクト抵抗及びシート抵
抗を低減化させることを可能にする半導体装置の製造方
法を得んとするものである。
The present invention was devised by focusing on such conventional problems, and it is possible to convert a high melting point metal nitride film to a high melting point without causing deterioration of the morphology of the high melting point metal silicide film or re-diffusion of impurities. The present invention aims to provide a method for manufacturing a semiconductor device that can be formed on a metal silicide film and that can reduce junction leakage current, contact resistance, and sheet resistance.

[課題を解決するための手段] そこで、本発明は、高融点金属シリサイド膜と、該高融
点金属シリサイド膜上に形成された高融点金属窒化物膜
とを有する半導体装置の製造方法において、N(窒素)
を含む雰囲気中で前記高融点金属シリサイド膜に、エネ
ルギー密度1400〜2 2 0 0 m J / c
 m冨のレーザビームを選択的に照射することにより前
記高融点金属窒化物膜を形成するようにしたことを、そ
の解決手段としている。
[Means for Solving the Problems] Therefore, the present invention provides a method for manufacturing a semiconductor device having a high melting point metal silicide film and a high melting point metal nitride film formed on the high melting point metal silicide film. (nitrogen)
The high melting point metal silicide film has an energy density of 1400 to 2200 mJ/c in an atmosphere containing
The solution is to form the high melting point metal nitride film by selectively irradiating the laser beam with m-thickness.

[作用] Nを含む雰囲気中で、レーザピームを選択的に照射する
ことにより、高融点金属シリサイド膜の窒化を行うべき
部分のみが局所的に高温に加熱されてこの部分に高融点
金属窒化物膜が形成されるが、その他の部分は高温に加
熱されない。このため、この窒化が行われない部分にお
ける高融点金属シリサイド膜の表面のモフォロジーの劣
化や不純物の再拡散が生じるのを防止することが可能と
なる。また、レーザビームのエネルギー密度を1400
〜2 2 0 0 m J / c m倉とすることに
より、コンタクト抵抗,シート抵抗及びリーク電流を低
く保つことが可能となる。
[Operation] By selectively irradiating the laser beam in an atmosphere containing N, only the part of the high melting point metal silicide film to be nitrided is locally heated to a high temperature, and the high melting point metal nitride film is formed in this part. is formed, but other parts are not heated to high temperatures. Therefore, it is possible to prevent deterioration of the morphology of the surface of the high melting point metal silicide film and re-diffusion of impurities in the portions where this nitridation is not performed. In addition, the energy density of the laser beam was increased to 1400
By setting the resistance to ~2200 mJ/cm, it is possible to keep contact resistance, sheet resistance, and leakage current low.

[実施例] 以下、本発明に係る半導体装置の製造方法の詳細を図面
に示す実施例に基づいて説明する。この実施例は、本発
明をMOSトランジスタの製造に適用した実施例である
[Example] Hereinafter, details of a method for manufacturing a semiconductor device according to the present invention will be described based on an example shown in the drawings. This example is an example in which the present invention is applied to manufacturing a MOS transistor.

第l図A〜第1図トIは、本実施例の製造方法の工程を
示す断面図である。
FIGS. 1A to 1I are cross-sectional views showing the steps of the manufacturing method of this embodiment.

本実施例においては、第l図Aに示すように、例えばp
型のシリコン基板である半導体基板1の表面に例えばS
iO,膜のようなフィールド絶縁膜2を選択的に形成し
て素子間分離を行った後、このフィールド絶縁膜2で囲
まれた活性領域の表面に例えば熱酸化により例えばSi
O!膜のようなゲート絶縁MJ3を形成する。次に、こ
のゲート絶縁膜3上に例えば不純物をドープした多結晶
Si膜を形成した後、これらの多結晶Si膜及びゲート
絶縁膜3をエッチングにより所定形状にパターンニング
する。これによって、ゲート電極4が形成される。この
後、このゲート電極4をマスクとして半導体基板1中に
例えばリン(P)のようなn型不純物を低濃度にイオン
注入する。次に、例えばCVDにより全面に例えばSi
O,膜を形成した後、例えば反応性イオンエッチング(
RlE)によりこのSin.膜を基板表面と垂直方向に
異方性エッチングしてSin,から成る側壁(サイドウ
ォールスペーサ)5を形成する。次に、この側壁5をマ
スクとして半導体甚板1中に例えばヒ素(As)のよう
なn型不純物を比較的高濃度にイオン注入する。これに
よって、例えばn0型のソース領域6及びドレイン領域
7がゲート電極4に対して自己整合的に形成される。こ
れらのゲート電極4、ソース領域6及びドレイン領域7
により、nチャンネルMOSFETが構成される。
In this embodiment, as shown in FIG.
For example, S is applied to the surface of the semiconductor substrate 1, which is a type of silicon substrate.
After selectively forming a field insulating film 2 such as an iO, film to perform element isolation, the surface of the active region surrounded by this field insulating film 2 is coated with, for example, Si by thermal oxidation.
O! A film-like gate insulator MJ3 is formed. Next, a polycrystalline Si film doped with impurities, for example, is formed on the gate insulating film 3, and then the polycrystalline Si film and the gate insulating film 3 are patterned into a predetermined shape by etching. As a result, gate electrode 4 is formed. Thereafter, using the gate electrode 4 as a mask, an n-type impurity such as phosphorus (P) is ion-implanted into the semiconductor substrate 1 at a low concentration. Next, the entire surface is coated with, for example, Si by, for example, CVD.
O, after forming the film, for example, reactive ion etching (
RlE), this Sin. The film is anisotropically etched in a direction perpendicular to the substrate surface to form sidewalls (sidewall spacers) 5 made of Sin. Next, using this side wall 5 as a mask, an n-type impurity such as arsenic (As) is ion-implanted into the semiconductor substrate 1 at a relatively high concentration. As a result, for example, an n0 type source region 6 and drain region 7 are formed in a self-aligned manner with respect to the gate electrode 4. These gate electrode 4, source region 6 and drain region 7
Thus, an n-channel MOSFET is configured.

これらのソース領域6及びドレイン領域7は、側壁5の
下方の部分に例えばn一型の低不純物濃度部6a,7a
を有しており、従ってこのnチャンネルMOSFETは
この低不純物濃度部7aによりドレイン領域7の近傍の
電界を緩和した、いわゆるL D D (Lightl
y Doped Drain)構造を有する。なお、こ
のnチャンネルMOSFETは必ずしもLDD構造を有
する必要はない。この後、アニールを行うζとにより、
イオン注入された不純物の電気的活性化を行う。
These source regions 6 and drain regions 7 are provided with low impurity concentration regions 6a, 7a of n-type, for example, in the lower part of the sidewall 5.
Therefore, this n-channel MOSFET has a so-called LDD (Lightl
y Doped Drain) structure. Note that this n-channel MOSFET does not necessarily have to have an LDD structure. After this, by annealing ζ,
The ion-implanted impurities are electrically activated.

次に第1図Bに示すように、例えばスパッタや蒸着によ
り全面チタン(Ti)膜8を形成する。
Next, as shown in FIG. 1B, a titanium (Ti) film 8 is formed on the entire surface by, for example, sputtering or vapor deposition.

次に、例えば800℃程度の温度でアニールを行うこと
により、Ti膜8とこのTi膜8が直接接しているゲー
ト電極4、ソース領域6及びドレイン領域7とを反応さ
せる。これによって、これらのゲート電極4、ソース領
域6及びドレイン領域7の表面がシリサイド化される。
Next, by performing annealing at a temperature of about 800° C., for example, the Ti film 8 is reacted with the gate electrode 4, source region 6, and drain region 7 with which the Ti film 8 is in direct contact. As a result, the surfaces of gate electrode 4, source region 6, and drain region 7 are silicided.

この後、未反応のTi膜8をエッチング除去する。この
ようにして、第1図Cに示すように、ゲート電極4、ソ
ース領域6及びドレイン領域7の表面にそれぞれTiS
i.膜9a〜9Cが形成される。これらのTiSi.膜
9a〜9Cの膜厚は例えば1000人程度である。これ
らのTiSi.膜9a〜9Cにより、ゲート電極4、ソ
ース領域6及びドレイン領域7のシート抵抗の低減を図
ることができる。
Thereafter, the unreacted Ti film 8 is removed by etching. In this way, as shown in FIG.
i. Films 9a-9C are formed. These TiSi. The thickness of the films 9a to 9C is, for example, about 1000. These TiSi. The films 9a to 9C can reduce the sheet resistance of the gate electrode 4, source region 6, and drain region 7.

なお、上述のアニールは例えば赤外線(IR)アニール
により行うことも可能である。
Note that the above-mentioned annealing can also be performed by, for example, infrared (IR) annealing.

次に第1図Dに示すように、例えばCVDにより全面に
例えばリンシリケートガラス(PSG)膜のような層間
絶縁膜10を形成し、さらにこの層間絶縁膜10の上に
例えばスパッタや蒸膜により例えばAI膜のような後述
のレーザビームBに対する反射膜l1を形成した後、リ
ソグラフィーによりこの反射膜11の上に所定形状のレ
ジストパターンl2を形成する。
Next, as shown in FIG. 1D, an interlayer insulating film 10 such as a phosphosilicate glass (PSG) film is formed on the entire surface by, for example, CVD, and then an interlayer insulating film 10 such as a phosphosilicate glass (PSG) film is formed on the interlayer insulating film 10 by, for example, sputtering or vapor deposition. After forming a reflective film l1 such as an AI film for the laser beam B, which will be described later, a resist pattern l2 of a predetermined shape is formed on the reflective film 11 by lithography.

次に、このレジストパターンl2をマスクとして反射膜
】1及び層間絶縁膜10の所定部分を例えばRIEによ
りエッチングして、第1図Eに示すようにコンタクトホ
ールC,−C.を形成する。
Next, using the resist pattern 12 as a mask, predetermined portions of the reflective film 1 and the interlayer insulating film 10 are etched by, for example, RIE to form contact holes C, -C and the like, as shown in FIG. 1E. form.

この後、レジストパターン12を除去する。After this, the resist pattern 12 is removed.

次に第1図Fに示すように、Nを含む雰囲気、例えばN
,ガスやアンモニア(N H s)ガス中(70QmT
orr)で全面にレーザビームBを照射する。このレー
ザビームBとしては、例えばXeClエキシマーレーザ
のようなエキシマーレーザによるパルスレーザビーム(
波&3 0 8 n m) ヲ用いることができる。こ
の場合、レーザビームBの照射エネルギー密度は140
0〜2200mJ/ c m ”に設定する。そして、
反射膜l1に入射したレーザビームBは反射されるため
、結果的に反射膜11で覆われていないコンタクトホー
ルC,−C.内部のT + S r *膜9a〜9cに
のみレ−fビ−ABが照射される一このレーザビームB
の照射によってコンタクトホールCI〜C3内部のTi
Si,膜9a〜9cのみが局所的に高温に加熱され、こ
の部分がレーザビームBの照射により分解された雰囲気
ガス中のNによって所定深さまで窒化される。これによ
って、TiN膜13a〜13cがコンタクトホールC1
〜C3に対して自己整合的に形成される。これらのTi
N膜13a〜13cによって、後述の配線14a−14
cとゲート電極4、ソース領域6及びドレイン領域7と
の反応を防止することができる。なお、この反応を効果
的に防止するためには、これらのTiN膜13a〜13
cの厚さは例えば500人程度以上であるのが好ましい
Next, as shown in FIG. 1F, an atmosphere containing N, for example, N
, gas or ammonia (NHs) gas (70QmT
orr) to irradiate the entire surface with laser beam B. As this laser beam B, for example, a pulsed laser beam (
Waves & 308 nm) can be used. In this case, the irradiation energy density of laser beam B is 140
Set to 0~2200mJ/cm''.And,
Since the laser beam B incident on the reflective film l1 is reflected, the contact holes C, -C. Only the internal T + S r * films 9a to 9c are irradiated with laser beam B.
By irradiating Ti inside contact holes CI to C3,
Only the Si films 9a to 9c are locally heated to a high temperature, and this portion is nitrided to a predetermined depth by N in the atmospheric gas decomposed by the laser beam B irradiation. As a result, the TiN films 13a to 13c are connected to the contact hole C1.
~C3 is formed in a self-aligned manner. These Ti
By the N films 13a to 13c, wirings 14a to 14, which will be described later, are connected.
Reactions between C and the gate electrode 4, source region 6, and drain region 7 can be prevented. Note that in order to effectively prevent this reaction, these TiN films 13a to 13
The thickness of c is preferably about 500 or more, for example.

次に、例えばスパッタや蒸着により全面に例えば.A 
J膜を形成した後、このAI膜をエッチングにより所定
形状にパターンニングして第11!!aHに示すように
配線148〜14cを形成し、これによって目的とする
MOSLSIを完成させる。
Next, for example, the entire surface is coated by sputtering or vapor deposition. A
After forming the J film, this AI film is patterned into a predetermined shape by etching to form the 11th! ! Wires 148 to 14c are formed as shown in aH, thereby completing the desired MOSLSI.

以上のように、この実施例によれば、コンタクトホール
C,〜C3の部分を除いた層間絶縁膜10の表面を反射
膜11で覆い、この状態でNを含む雰囲気中においてレ
ーザビームBを照射することによりこれらのコンタクト
ホールC.〜C,の内部におけるTiSi.膜9a〜9
Cのみを局所的に高温に加熱しているので、これらのコ
ンタクトホールC.〜C.の内部におけるTiSit膜
9a〜9cの上にこれらのコンタクトホールC1〜C3
に対して自己整合的にTiN膜13a〜13Cを形成す
ることができる。この場合、レーザビームBが照射され
ない部分は高温に加熱されないので、窒化が行われない
部分におけるTiSi,膜9a〜9cの表面にヒロック
(hillock)が形成されたりしてモフォロジーの
劣化が生じることがなく、従って電気的特性の劣化は生
じない。さらにまた、ソース領域6及びドレイン領域7
中の不純物の再拡散が生じることのないので、これらの
ソース領域6及びドレイン領域7が広がることもない。
As described above, according to this embodiment, the surface of the interlayer insulating film 10 except for the contact holes C and C3 is covered with the reflective film 11, and in this state, the laser beam B is irradiated in an atmosphere containing N. These contact holes C. ~C, TiSi. Membranes 9a-9
Since only C.C is locally heated to a high temperature, these contact holes C. ~C. These contact holes C1 to C3 are formed on the TiSit films 9a to 9c inside the
The TiN films 13a to 13C can be formed in a self-aligned manner. In this case, since the portions that are not irradiated with the laser beam B are not heated to a high temperature, hillocks may be formed on the surfaces of the TiSi films 9a to 9c in the portions where nitridation is not performed, resulting in deterioration of morphology. Therefore, no deterioration of electrical characteristics occurs. Furthermore, source region 6 and drain region 7
Since re-diffusion of impurities therein does not occur, these source regions 6 and drain regions 7 do not spread.

なお、第2図及び第3図は、上記実施例における方法に
より600〜700人の厚さのTiSi*膜に照射する
エキシマレーザのエネルギー密度を変化させた場合のコ
ンタクト抵抗及びシート抵抗を測定した結果を示すグラ
フである。なお、両図において示す矢印はエキシマレー
ザを照射しない場合の値を示している。また、第4図は
、p型MOSトランジスタにおけるリーク電流を、上記
実施例ニよるエキシマレーザのエネルギー密度を変えて
測定した結果を示すグラフである。なお、同図中矢印は
、エキシマレーザを照射しない場合の値を示している。
In addition, FIGS. 2 and 3 show the contact resistance and sheet resistance measured when the energy density of the excimer laser irradiated to a TiSi* film with a thickness of 600 to 700 people was varied by the method in the above example. It is a graph showing the results. Note that the arrows shown in both figures indicate values when the excimer laser is not irradiated. Moreover, FIG. 4 is a graph showing the results of measuring leakage current in a p-type MOS transistor by changing the energy density of the excimer laser according to the above embodiment. Note that the arrows in the figure indicate values when the excimer laser is not irradiated.

これらグラフが示すように、コンタクト抵抗,シート抵
抗及びリーク電流に対して、レーザ照射条件が大きく影
響を及ぼすことが判る。例えばエキシマレーザのエネル
ギー密度が3000mJ以上になると抵抗値が非常に高
《なると共に、80QmJではリークレベルが、エキシ
マレーザを照射しない場合と同程度となる(〜1000
nA)。
As these graphs show, it can be seen that the laser irradiation conditions have a large effect on the contact resistance, sheet resistance, and leakage current. For example, when the energy density of the excimer laser exceeds 3000 mJ, the resistance value becomes extremely high, and at 80 QmJ, the leakage level becomes the same as when no excimer laser is used (~1000 mJ).
nA).

また、1400mJ〜2200mJにおいて、コンタク
ト抵抗,シート抵抗及びリーク電流が低く保たれている
ことが判る。
Furthermore, it can be seen that the contact resistance, sheet resistance, and leakage current are kept low in the range of 1400 mJ to 2200 mJ.

次に、第5図は、本発明に係る他の実施例を示している
Next, FIG. 5 shows another embodiment according to the present invention.

本実施例においては、上記した実施例の第l図Eに示す
工程の後に、TiSit9a, 9b,9C表面上にS
i゛を例えば、出力2 0 K e V,  ド人を行
ないTiSi,の表面をアモルファス層(図中X印で示
す)を形成する。
In this example, after the step shown in FIG. 1E of the above-mentioned example, S
For example, an amorphous layer (indicated by an X mark in the figure) is formed on the surface of TiSi by performing an amorphous process at an output of 20 K e V, for example.

次に、上記した実施例の第1図Fに相当する工程を行な
いTiSi.表面の前記アモルファス層をTiN膜に変
化させる。なお、本工程においては、エキシマレーザの
照射は、パルスショット処理を行なってもよい。また、
注入するイオンはSi゜の他、Ti゜やN゜.等を用い
てもよい。
Next, a step corresponding to FIG. 1F of the above-described embodiment is performed to form a TiSi. The amorphous layer on the surface is changed to a TiN film. Note that in this step, the excimer laser irradiation may be performed by pulse shot processing. Also,
In addition to Si°, the ions to be implanted include Ti° and N°. etc. may also be used.

本実施例においては、形成されたアモルファス層の融点
が低いため、エネルギー効率を向上することが可能とな
る。また、TiSi.表面にイオン注入するのではなく
、Si基板上にイオン注入を行なってもよい。本実施例
は、特に径寸法の小さいコンタクトホール(0.35μ
以下のプロセス)に適用した場合に効果的である。さら
に、アモルファス層の融点が低くなるため、レーザピー
ムの大面積化及びレーザ装置の小型化を可能にする利点
がある。
In this example, since the formed amorphous layer has a low melting point, it is possible to improve energy efficiency. Moreover, TiSi. Ion implantation may be performed on the Si substrate instead of ion implantation on the surface. In this example, a contact hole with a particularly small diameter (0.35μ
It is effective when applied to the following processes. Furthermore, since the melting point of the amorphous layer is lowered, there is an advantage that the area of the laser beam can be increased and the size of the laser device can be reduced.

以上、本発明の実施例につき具体的に説明したが、本発
明は、上述の実施例に限定されるものではなく、本発明
の技術的思想に基づく各種の変形が可能である。
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

例えば、上記両実施例においては、高融点金属としてT
iを用いたが、タングステン(W),モリブデン(MO
)等を適用しても同様である。
For example, in both of the above embodiments, T is used as the high melting point metal.
i was used, but tungsten (W), molybdenum (MO
) etc. are applied.

また、上記実施例においては、最終構造に反射膜l1を
残しているが、この反射膜1lは例えば配線14〜14
cを形成する前に例えばリン酸によりエッチング除去す
ることも可能である。また、この反射膜l1としては、
例えばTi膜のようなバリアメタル膜を用いることも可
能である。さらに、この反射膜l1の代わりにレーザピ
ームBに対して吸収性のある他の金属膜を用いても、コ
ンタクトホールC,−C3の内部におけるTiSi,1
1Q9a〜9CにのみレーザビームBを選択的に照射す
ることが可能である。
Further, in the above embodiment, the reflective film l1 is left in the final structure, but this reflective film l1 is, for example, the wiring 14 to 14.
It is also possible to perform etching removal using, for example, phosphoric acid before forming c. Moreover, as this reflective film l1,
For example, it is also possible to use a barrier metal film such as a Ti film. Furthermore, even if another metal film that absorbs the laser beam B is used instead of the reflective film l1, the TiSi,1
It is possible to selectively irradiate only 1Q9a to 9C with the laser beam B.

また、上述の実施例においては、本発明をMOSトラン
ジスタに適用した場合について説明したが、本発明は、
例えばバイポーラLSIやバイポーラCMOSLSIの
ようなMOSLSI以外の半導体集積回路装置の製造に
適用することも可能である。
Furthermore, in the above-mentioned embodiments, the case where the present invention is applied to a MOS transistor was explained, but the present invention
For example, it is also possible to apply the present invention to the manufacture of semiconductor integrated circuit devices other than MOSLSI, such as bipolar LSI and bipolar CMOS LSI.

[発明の効果] 以上述べたように、本発明によれば、窒素を含む雰囲気
中で高融点金属シリサイド膜にレーザビームを選択的に
照射することにより高融点金属窒化物膜を形成するよう
にしているので、レーザビームが照射されない部分は高
温に加熱されず、従って、高融点金属シリサイド膜の表
面のモフォロジーの劣化や不純物の再拡散が生じるのを
防止することかできる。
[Effects of the Invention] As described above, according to the present invention, a high melting point metal nitride film is formed by selectively irradiating a high melting point metal silicide film with a laser beam in an atmosphere containing nitrogen. Therefore, the portions that are not irradiated with the laser beam are not heated to a high temperature, and therefore, it is possible to prevent deterioration of the morphology of the surface of the high melting point metal silicide film and re-diffusion of impurities.

また、本発明によれば、コンタクト抵抗,シート抵抗及
びリーク電流を低《保てる効果がある。
Further, according to the present invention, there is an effect that contact resistance, sheet resistance, and leakage current can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第l図A〜第l図Hは本発明の実施例によるMoSトラ
ンジスタの製造方法を工程順に示す断面図、第2図はエ
キシマレーザのエネルギー密度とコンタクト抵抗との関
係を示すグラフ、第3図はエキシマレーザのエネルギー
密度とシート抵抗との関係を示すグラフ、第4図はエキ
シマレーザのエネルギー密度とリーク電流の関係を示す
グラフ、第5図は本発明の他の実施例を示す断面図であ
る。 l・・・半導体基板、2・・・フィールド絶縁膜、4・
・・ゲート電極、6・・・ソース領域、7・・・ドレイ
ン領域、8・ Ti膜、9 a〜9 c−・−T i 
S i ,膜、11・・・反射膜、13a−l3c−T
 i N膜、14〜14C・・・配線、01〜C,・・
・コンタクトホール。 実施例 第1図A 実施例 第1図B 第1図D 実1例 Bレーザーと一二 $ −実施例 第1図F 第1 図G 一実施例 第1図H エネルギー(mj) エキシマレーザのエネルギー密度とリーク電流を示すグ
ラフ第4図 他の1j施例 第5図
Figures 1A to 1H are cross-sectional views showing step-by-step a method for manufacturing a MoS transistor according to an embodiment of the present invention, Figure 2 is a graph showing the relationship between excimer laser energy density and contact resistance, and Figure 3 is a graph showing the relationship between excimer laser energy density and contact resistance. 4 is a graph showing the relationship between the energy density and sheet resistance of the excimer laser, FIG. 4 is a graph showing the relationship between the energy density of the excimer laser and leakage current, and FIG. 5 is a cross-sectional view showing another embodiment of the present invention. be. l...Semiconductor substrate, 2...Field insulating film, 4...
. . . Gate electrode, 6. Source region, 7. Drain region, 8. Ti film, 9 a to 9 c-.-Ti
S i , film, 11... reflective film, 13a-l3c-T
i N film, 14~14C... wiring, 01~C,...
・Contact hole. Example Fig. 1 A Example Fig. 1 B Fig. 1 D Actual Example B Laser and $12 - Example Fig. 1 F Fig. 1 G Example Fig. 1 H Energy (mj) of excimer laser Graph showing energy density and leakage current Figure 4 Other 1j examples Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)高融点金属シリサイド膜と、該高融点金属シリサ
イド膜上に形成された高融点金属窒化物膜とを有する半
導体装置の製造方法において、N(窒素)を含む雰囲気
中で前記高融点金属シリサイド膜に、エネルギー密度1
400〜2200mJ/cm^2のレーザビームを選択
的に照射することにより前記高融点金属窒化物膜を形成
するようにしたことを特徴とする半導体装置の製造方法
(1) In a method for manufacturing a semiconductor device having a high melting point metal silicide film and a high melting point metal nitride film formed on the high melting point metal silicide film, the high melting point metal is In the silicide film, the energy density is 1
A method for manufacturing a semiconductor device, characterized in that the high melting point metal nitride film is formed by selectively irradiating a laser beam of 400 to 2200 mJ/cm^2.
JP1057571A 1989-03-09 1989-03-09 Method for manufacturing semiconductor device Expired - Fee Related JP2864518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057571A JP2864518B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057571A JP2864518B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02237026A true JPH02237026A (en) 1990-09-19
JP2864518B2 JP2864518B2 (en) 1999-03-03

Family

ID=13059532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057571A Expired - Fee Related JP2864518B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2864518B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583052B2 (en) 2001-09-05 2003-06-24 Hynix Semiconductor Inc. Method of fabricating a semiconductor device having reduced contact resistance
WO2010042121A1 (en) * 2008-10-09 2010-04-15 Sionyx Inc. Method for contact formation in semiconductor device
FR2992957A1 (en) * 2012-07-09 2014-01-10 Saint Gobain THIN FILM DEPOSITION METHOD WITH CONTROLLED ATMOSPHERE TREATMENT STEP AND PRODUCT OBTAINED
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186531A (en) * 1986-02-03 1987-08-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and apparatus for manufacturing integrated circuit structure with smooth boundary surface
JPS62298109A (en) * 1986-06-18 1987-12-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6384024A (en) * 1986-09-26 1988-04-14 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186531A (en) * 1986-02-03 1987-08-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and apparatus for manufacturing integrated circuit structure with smooth boundary surface
JPS62298109A (en) * 1986-06-18 1987-12-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6384024A (en) * 1986-09-26 1988-04-14 Seiko Epson Corp Manufacture of semiconductor device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US6583052B2 (en) 2001-09-05 2003-06-24 Hynix Semiconductor Inc. Method of fabricating a semiconductor device having reduced contact resistance
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
WO2010042121A1 (en) * 2008-10-09 2010-04-15 Sionyx Inc. Method for contact formation in semiconductor device
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9666636B2 (en) 2011-06-09 2017-05-30 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US10224359B2 (en) 2012-03-22 2019-03-05 Sionyx, Llc Pixel isolation elements, devices and associated methods
FR2992957A1 (en) * 2012-07-09 2014-01-10 Saint Gobain THIN FILM DEPOSITION METHOD WITH CONTROLLED ATMOSPHERE TREATMENT STEP AND PRODUCT OBTAINED
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods

Also Published As

Publication number Publication date
JP2864518B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US4646426A (en) Method of producing MOS FET type semiconductor device
US5840626A (en) Semiconductor device and method of manufacturing the same
US5913139A (en) Method of manufacturing a semiconductor device with local interconnect of metal silicide
JPH065536A (en) Manufacture of semiconductor device
JPH02237026A (en) Manufacture of semiconductor device
US7538030B2 (en) Semiconductor device and method of manufacturing same
JPH07142726A (en) Manufacture of field effect transistor
US6057215A (en) Process for forming a refractory metal silicide film having a uniform thickness
JP2821598B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3119190B2 (en) Method for manufacturing semiconductor device
US6340617B1 (en) Manufacture of semiconductor device
JP3371875B2 (en) Method for manufacturing semiconductor device
JP3185235B2 (en) Method for manufacturing semiconductor device
JP2948486B2 (en) Method for manufacturing semiconductor device
JP2910064B2 (en) Method for manufacturing semiconductor device
JPH0766152A (en) Fabrication of semiconductor device
JP2926897B2 (en) Method for manufacturing semiconductor device
JP3297770B2 (en) Method for manufacturing semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH02260630A (en) Manufacture of semiconductor device
US20030022489A1 (en) Method of fabricating high melting point metal wiring layer, method of fabricating semiconductor device and semiconductor device
JPH0897420A (en) Semiconductor device and its manufacture
JPH0629310A (en) Semiconductor device and manufacture thereof
KR20010084418A (en) Method for fabricating of semiconductor device
JP2785734B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees