JPS5873019A - Manufacture for magnetic recording medium - Google Patents

Manufacture for magnetic recording medium

Info

Publication number
JPS5873019A
JPS5873019A JP17037781A JP17037781A JPS5873019A JP S5873019 A JPS5873019 A JP S5873019A JP 17037781 A JP17037781 A JP 17037781A JP 17037781 A JP17037781 A JP 17037781A JP S5873019 A JPS5873019 A JP S5873019A
Authority
JP
Japan
Prior art keywords
vapor
substrate
electron beam
incident angle
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17037781A
Other languages
Japanese (ja)
Other versions
JPH0226294B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Takashi Fujita
藤田 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17037781A priority Critical patent/JPS5873019A/en
Publication of JPS5873019A publication Critical patent/JPS5873019A/en
Publication of JPH0226294B2 publication Critical patent/JPH0226294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the reliability of short wavelength recording, by improving the rectangular ratio, durability and corrosion resistance, through the irradiation of electron rays on an area of a high polymer base vapor-deposited with a high incident angle component simultaneously with the vapor-deposition. CONSTITUTION:While a high polymer base 1 is carried along a rotating support 2 from a payoff shaft 3 in a vacuum atmosphere to a winding shaft 4, a vapor flow 6 of ferromagnetic metal obtained from an evaporation source 5 with an electron beam 8 through heating is vapor-deposited on the base 1 via a mask 7. Another electron beam 9 is irradiated by taking a high incident angle D0 as a center.

Description

【発明の詳細な説明】 本発明は高分子形成物基板に、強磁性金属を蒸着して磁
気記録媒体を得る方法の改良に係わり長尺の媒体製造に
於て、角形比が良好で耐久性、耐蝕性の優れたものを確
実に得ることのできる方法を提供しようとするものであ
る。
Detailed Description of the Invention The present invention relates to an improvement in a method for obtaining a magnetic recording medium by vapor depositing a ferromagnetic metal onto a polymer formed substrate. The present invention aims to provide a method that can reliably obtain products with excellent corrosion resistance.

短波長記録を実現するには、高抗磁力で、大きい飽和磁
束密度の磁性体を薄く、基板上に形成するのが、得策で
あることは良く知られており、古くから、いわゆる金属
薄膜形の磁気記録媒体の実用化への努力が続けられてお
り、最近では一部オーディオ用途で実用可能な媒体が発
表されビデオ用途への改良も急速に進められている。
It is well known that in order to realize short wavelength recording, it is a good idea to form a thin magnetic material with high coercive force and large saturation magnetic flux density on a substrate. Efforts are continuing to put magnetic recording media into practical use, and recently some media that can be used for audio applications have been announced, and improvements for video applications are also progressing rapidly.

ところでこの場合斜方蒸着が抗磁力の増加に有効である
が、蒸着効率の面で難点があり、そこで本発明者は、既
に、斜方蒸着の変形と酸素を利用することで、生産性の
向上が可能であることを示した(特開昭53−4201
0号公報)。
Incidentally, in this case, oblique evaporation is effective in increasing coercive force, but it has a drawback in terms of evaporation efficiency, so the present inventor has already improved productivity by using a modification of oblique evaporation and oxygen. It was shown that it is possible to improve the
Publication No. 0).

本発明は各種環境下での耐久性、耐蝕性について詳細な
検討を加えた結果、角形比を改良することで、両者の特
性にも改良効果がみられることを見出したことによりな
されたものである。
The present invention was made based on the results of detailed studies on durability and corrosion resistance under various environments, and it was discovered that by improving the squareness ratio, improvements can be seen in both properties. be.

以下本発明の説明を行う。The present invention will be explained below.

゛本発明の要件は、基板が高分子であることと、その基
板が支持体に沿った状態で蒸着することと、蒸着原子の
入射角が900〜7o0といった高入射角成分で蒸着さ
れる領域を蒸着と同時に電子線を照射することである。
゛The requirements of the present invention are that the substrate is a polymer, that the substrate is vapor deposited along the support, and that the area where the vapor deposited atoms are vapor deposited has a high incident angle component of 900 to 7o0. The method is to irradiate electron beams at the same time as vapor deposition.

電子線照射することで、次の3つの作用が考えられ後述
する効果を生んでいると思われる。
Irradiation with electron beams seems to have the following three effects, which will be described later.

(1)高入射角部の照射は蒸着の行われない位置での基
板の照射を同時に行える照射域を選ぶことにより、基板
が前処理されることになるため、付着強度が改良される
(1) For irradiation at a high incident angle, by selecting an irradiation area where the substrate can be irradiated at the same time at a position where vapor deposition is not performed, the substrate is pretreated and the adhesion strength is improved.

(II)注入され°た電子による静電気力により回転支
持体への垂直圧力が増加し、回転支持体により基板の冷
却作用が充分行われるため、蒸着中基板からの放出ガス
量が抑制され、酸素の効果が安定に作用する。
(II) The vertical pressure on the rotating support increases due to the electrostatic force caused by the injected electrons, and the rotating support sufficiently cools the substrate, so the amount of gas released from the substrate during vapor deposition is suppressed, and oxygen The effect of this works stably.

(iit)  薄膜の初期成長に荷電粒子を作用させた
時の効果のひとつとして良く知られる結晶性の改善があ
る。
(iit) One of the effects of applying charged particles to the initial growth of a thin film is the well-known improvement in crystallinity.

これは、角形比の改良につながるものである。This leads to an improvement in the squareness ratio.

父、結晶性が良くなることで耐蝕性も改良される傾向を
有している。
Furthermore, as crystallinity improves, corrosion resistance tends to improve as well.

これらの効果を最大限に発揮させるために、電子線のエ
ネルギーは16KeV以上であることが好ましく、基板
の厚みにも若干左右されるが、4μm〜30μmの範囲
の厚みであれば、25 KeV〜30KeVであれば充
分である。
In order to maximize these effects, the energy of the electron beam is preferably 16 KeV or more, and although it depends somewhat on the thickness of the substrate, if the thickness is in the range of 4 μm to 30 μm, the energy of the electron beam is 25 KeV or more. 30 KeV is sufficient.

又、電流密度も60μA〜 以上であることが好ましい
Further, it is preferable that the current density is also 60 μA or more.

800以上であれば、本発明の効果は充分期待できるが
、それより低い入射角成分まで含んでも特に逆効果はみ
られないので、要は実施し易い範囲を選ぶのが良い。
If it is 800 or more, the effect of the present invention can be fully expected, but even if it includes incident angle components lower than that, no particular adverse effect will be observed, so it is better to choose a range that is easy to implement.

図は本発明の実施例において用いられる製造装置の一例
を示す。
The figure shows an example of a manufacturing apparatus used in an embodiment of the present invention.

図に示すように、基板1は回転支持体2に沿って、送り
出し軸3より巻き取り軸4へ移動するように配設される
。蒸発源6より放射された蒸気流6の一部はマスク7で
限定された入射角以上で、斜方蒸着に供される。蒸着さ
れる部分は回転支持体2の周上に沿ってDoからり、ま
でであるODoは9o0の入射角を示したものである0
蒸発源6の加熱は模式的に示した電子ビーム8により行
われる。
As shown in the figure, the substrate 1 is disposed along a rotary support 2 so as to move from a delivery shaft 3 to a take-up shaft 4. A part of the vapor flow 6 emitted from the evaporation source 6 is subjected to oblique evaporation at an angle of incidence greater than or equal to the angle of incidence limited by the mask 7 . The part to be vapor deposited starts from Do along the circumference of the rotating support 2, and ODo indicates an incident angle of 9o0.
The evaporation source 6 is heated by an electron beam 8 schematically shown.

Doを中心にして、もう一つの電子ビーム9を照射する
よう、電子線照射装置を配設する0この電子ビーム9は
、電磁コイル10の磁界により走査される。これにより
高入射角部と、蒸着直前の基板の電子線照射が行われる
An electron beam irradiation device is arranged to irradiate another electron beam 9 with Do as the center. This electron beam 9 is scanned by the magnetic field of the electromagnetic coil 10. As a result, the high incident angle portion and the substrate immediately before vapor deposition are irradiated with the electron beam.

次により具体的に本発明の詳細な説明する。Next, the present invention will be explained in more detail.

〈実施例1〉 ポリエチレンテレフタレート(フィルム基板厚さ9.6
μm)上に、Coを3.5 X 10−5Torr  
の酸素分圧中で、入射角400以上で0.16μm の
厚さに蒸着した。
<Example 1> Polyethylene terephthalate (film substrate thickness 9.6
μm) on top of Co at 3.5 X 10-5 Torr
The film was deposited to a thickness of 0.16 μm at an incident angle of 400 or more in an oxygen partial pressure of .

基板の移動速度は42 m/min で回転支持体(直
径1 m )は接地電位とし、内部に5℃の媒体を循環
させ、基板の冷却を行うようにした。電子線は30Ke
Vで、Doを中心とし局長で前後に10m照射した。電
流密度はフィルム幅50tMにわたり均一に走査し、1
20μA/ crIとした。
The substrate was moved at a speed of 42 m/min, the rotating support (diameter 1 m) was at ground potential, and a 5° C. medium was circulated inside to cool the substrate. The electron beam is 30Ke
At V, irradiation was performed for 10 m in front and behind the station centering on Do. The current density was uniformly scanned over a film width of 50 tM, and the current density was 1
The voltage was set at 20 μA/crI.

又比較として未照射の場合も実施した。For comparison, a case without irradiation was also conducted.

全長3500mにわたり、蒸着してそれぞれ4のテープ
を作成し20℃60%RH930℃86%RH,40℃
10%RHの環境下で、500パスのくり返し走行を行
ったところ、本発明により製造されたテープは、目づま
りもなく、耐久性。
Over a total length of 3,500 m, 4 tapes were created by vapor deposition each at 20°C, 60% RH, 930°C, 86% RH, 40°C.
When repeatedly run for 500 passes in an environment of 10% RH, the tape manufactured according to the present invention did not clog and was durable.

耐蝕性の良さを示したが、従来法により製造されたもの
では目づまり、ドロップアウトの増加がみられた。
Although it showed good corrosion resistance, those manufactured using the conventional method showed an increase in clogging and dropouts.

又、角形比も、本発明によるものが0.91 に対し、
従来法のものでは0.77で、記録波長0.6μm で
出力に1.s dBの開きがあった点をあわせて、本発
明により製造された記録媒体の優秀性が伺い知れる。
In addition, the squareness ratio of the one according to the present invention is 0.91, whereas
In the conventional method, it is 0.77, and at a recording wavelength of 0.6 μm, the output is 1. The superiority of the recording medium manufactured according to the present invention can be seen from the fact that there was a wide difference in s dB.

〈実施例2〉 ポリエチレンテレフタレートフィルム基板(厚さ13.
5.am)上に、Co80%Ni2O%からなる合金を
2 X 10−5Torr  の酸素分圧中で入射角4
4°以上で0.13μmの厚さに蒸着した0基板の移動
速度は55 m/min で、回転支持体(直径1.2
rn)は接地電位とし、内部に0℃の媒体を循環させ、
基板を冷却した。
<Example 2> Polyethylene terephthalate film substrate (thickness 13.
5. am), an alloy consisting of 80% Co and 80% Ni2O was placed at an angle of incidence of 4 in an oxygen partial pressure of 2 x 10-5 Torr.
The moving speed of the zero substrate deposited to a thickness of 0.13 μm at an angle of 4° or more was 55 m/min, and the rotating support (diameter 1.2
rn) is at ground potential, and a medium at 0°C is circulated inside.
The substrate was cooled.

電子線は、25KeVでDoを中心とし、同長で前後に
16crn照射した。電流密度は100μA/ca〜2
00 pA/ct/Iとした0 又比較として未照射の場合も実施した。
The electron beam was irradiated with Do at the center at 25 KeV, and 16 crn was irradiated back and forth with the same length. Current density is 100μA/ca~2
00 pA/ct/I Also, for comparison, a case without irradiation was also conducted.

全長5,000 mにわたり蒸着してそれぞれイのテー
プを作成し、26℃60%RH,30℃90%RH,4
0’C10%RHの各環境下で500バスのくり返し走
行を行った。
Each tape was made by vapor deposition over a total length of 5,000 m, and heated at 26°C, 60% RH, 30°C, 90% RH, 4
500 buses were run repeatedly under each environment of 0'C and 10% RH.

この場合にも本発明により製造されたものは、目づまり
、ドロップアウトは変化せvlかつ低いレベルであった
のに対し、従来法によるものでは、目づまり、ドロップ
アウトが初期値の12倍にまで増加し、−力出力も0.
56μmで本発明によるものは1.8 dB従来法によ
るものを上まわ−〕た。
In this case as well, in the case of the product manufactured by the present invention, clogging and dropout did not change and were at a low level, whereas in the case of the product manufactured by the conventional method, clogging and dropout increased to 12 times the initial value. The force output also increases to 0.
At 56 μm, the inventive method outperformed the conventional method by 1.8 dB.

〈実施例3〉 ポリイミドフィルム基板(厚さ25μm)トにCo86
%Cr14%の合金を酸素は導入せず、1X 10−5
Torrの真空中で入射角45°以上で・0.2μmの
厚さに蒸着した。基板の移動速度は33m /m i 
nで、回転支持体(直径1 m )は接地電位とし内部
に20℃の媒体を循環させ基板を冷却した0 電子線は40KeVでり。を中心とし、局長で前後に1
9cm照射した。電流密度は42071A/CJとし、
未照射の場合と比較した。全長2000mVこした〇 25℃6o%RH,30℃90%RH,40℃10%R
Hの各環境下での600パス試験において、本発明によ
るものは目づまり、ドロップアウトが低いレベルで安定
であったが、従来法によるものでは、目づまり、ドロッ
プアウトが初期値の1Q倍に増加し、平均出力も3.6
dB減少した。
<Example 3> Co86 on a polyimide film substrate (thickness 25 μm)
%Cr14% alloy without introducing oxygen, 1X 10-5
It was deposited to a thickness of 0.2 μm in a vacuum of Torr at an incident angle of 45° or more. The moving speed of the substrate is 33m/m i
The rotating support (diameter 1 m) was set at ground potential, and the substrate was cooled by circulating a 20°C medium inside.The electron beam was 40 KeV. 1 in front and behind the director.
Irradiated 9cm. The current density is 42071A/CJ,
Comparison was made with the case without irradiation. Total length 2000mV 〇25℃6o%RH, 30℃90%RH, 40℃10%R
In 600 pass tests under various H environments, the method according to the present invention had stable clogging and dropout at a low level, but with the conventional method, clogging and dropout increased to 1Q times the initial value. increased, and the average output was also 3.6
dB decreased.

他に、ポリアセテート、ポリアミドフィルム基板を用い
、あらかじめ、At、 T t、 S t、 Cr、 
Cu等を0.05μ〜0.16μm の厚さに蒸着しそ
の上にCo、Co−Cr 合金、Co−Ni合金、Fe
を蒸着し、本発明の効果をたしかめた。いずれの場合も
、基板に直接磁性層を形成した場合上回じ効果が確認さ
れた。
In addition, using a polyacetate or polyamide film substrate, At, T t, S t, Cr,
Co, Co-Cr alloy, Co-Ni alloy, Fe
The effect of the present invention was confirmed by vapor-depositing. In both cases, an upward effect was confirmed when the magnetic layer was directly formed on the substrate.

以上のように本発明によると、短波長記録の信頼性を大
きく向上せしめることができその工業的有価値性は大で
ある。
As described above, according to the present invention, the reliability of short wavelength recording can be greatly improved, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例において用いられる製造装置の一例
を示す図である。 1・・・・・基板、2・・・・・・回転支持体、5・・
・・・・蒸発源、6・・・・・・蒸気流、7・・・・・
・マスク、8゜9・・・・・・電子ビーム。
The figure is a diagram showing an example of a manufacturing apparatus used in an embodiment of the present invention. 1...Substrate, 2...Rotating support, 5...
...Evaporation source, 6...Vapor flow, 7...
・Mask, 8°9...Electron beam.

Claims (1)

【特許請求の範囲】[Claims] 支持体に沿って移動する高分子成形物基板上に強磁性金
属層を蒸着にて形成する際、前記基板の高入射角で蒸着
の行われる部分を電子線照射することを特徴とする磁気
記録媒体の製造方法。
Magnetic recording characterized in that when a ferromagnetic metal layer is formed by vapor deposition on a polymer molded substrate that moves along a support, a portion of the substrate where vapor deposition is to be performed is irradiated with an electron beam at a high incident angle. Method of manufacturing media.
JP17037781A 1981-10-23 1981-10-23 Manufacture for magnetic recording medium Granted JPS5873019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17037781A JPS5873019A (en) 1981-10-23 1981-10-23 Manufacture for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17037781A JPS5873019A (en) 1981-10-23 1981-10-23 Manufacture for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5873019A true JPS5873019A (en) 1983-05-02
JPH0226294B2 JPH0226294B2 (en) 1990-06-08

Family

ID=15903802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17037781A Granted JPS5873019A (en) 1981-10-23 1981-10-23 Manufacture for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5873019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201226A (en) * 1983-04-27 1984-11-14 Tdk Corp Manufacture of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201226A (en) * 1983-04-27 1984-11-14 Tdk Corp Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPH0226294B2 (en) 1990-06-08

Similar Documents

Publication Publication Date Title
JPH0546014B2 (en)
JPS5873019A (en) Manufacture for magnetic recording medium
US4743467A (en) Method for preparing magnetic recording medium
EP0517411A1 (en) Magnetic recording medium
JPH0227732B2 (en)
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0799581B2 (en) Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor
JPH03134819A (en) Magnetic recording medium and its production
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPS60175220A (en) Manufacture of magnetic recording medium
JPH04328322A (en) Manufacture of magnetic recording medium
JPH0341898B2 (en)
JPS615424A (en) Magnetic recording medium
JPH05159287A (en) Production of magnetic recording medium
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPH0223530A (en) Production of magnetic recording medium
JPH04195924A (en) Manufacturing device for magnetic recording medium
JPH0991659A (en) Magnetic recording medium and its production
JPH04147417A (en) Magnetic recording medium
JPH06111266A (en) Magnetic recording medium
JPH08102054A (en) Production of magnetic recording medium and production device therefor
JPS6154040A (en) Manufacture of magnetic recording medium
JPH0479043B2 (en)
JPS6378336A (en) Production of magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium