JPH02232308A - Manufacture of amorphous alloy fine particles - Google Patents

Manufacture of amorphous alloy fine particles

Info

Publication number
JPH02232308A
JPH02232308A JP5136089A JP5136089A JPH02232308A JP H02232308 A JPH02232308 A JP H02232308A JP 5136089 A JP5136089 A JP 5136089A JP 5136089 A JP5136089 A JP 5136089A JP H02232308 A JPH02232308 A JP H02232308A
Authority
JP
Japan
Prior art keywords
aqueous solution
reducing agent
metal ion
fine particles
alloy fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5136089A
Other languages
Japanese (ja)
Inventor
Junji Saida
才田 淳治
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5136089A priority Critical patent/JPH02232308A/en
Publication of JPH02232308A publication Critical patent/JPH02232308A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain alloy fine particles having little impurity and excellent amorphous property at good yield by specifying mol concn. ratio of concn. of boron hydride compound or amine borane derivative in reducing agent water solution and concn. of metal ion in metal ion water solution. CONSTITUTION:In the reducing agent water solution dissolving the boron hydride compound or a amine borane derivative, the metal ion water solution containing one or more kinds of Fe, Co, Ni or the water solution adding transition metal ion thereto is dripped and mixed. Then, the mol concn. ratio of the reducing agent concn. and the metal ion concn., is made to >=1 the boron hydride compound or the amine borane derivative/the metal ion. Further, desirably, the reducing agent water solution is made to <=80 deg.C temp. and <=13.5pH of the water solution. By this method, composition of precipitation can be fixed and good quality fine particles can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属イオン水溶液と半金属含有化合物水溶液
との反応により非晶質合金微粒子を製造する際、高品質
のものを工業的に高収率で安価に製造する方法に関する
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an industrial method for producing high-quality amorphous alloy fine particles by the reaction between an aqueous solution of metal ions and an aqueous solution of a semimetal-containing compound. The present invention relates to a method of manufacturing at a high yield and at low cost.

(従米技術) 非晶質合金微粒子は、リボン材やワイヤー材に比べ、成
形性、表面特性、複合化、混合化に優れているので、近
年磁性材料、触媒材料、強度材料、耐食材料などの分野
で注目されている.従来、この非晶質合金微粒子の量産
的製造は、溶融原料をガス圧で霧化して急冷するアトマ
イズ法、溶融合金を微小すき開の2本の高速回転ロール
の間に噴出させで、ロール間で生じる溶融合金のキャビ
テーシッンにより霧化、急冷するキャビテーン3ン法、
または溶融合金をlili1転液中に噴出させで急冷す
る回転液中噴出法などにより行なわれている。
(Jumei technology) Amorphous alloy particles have superior formability, surface properties, composites, and mixability compared to ribbon materials and wire materials, so in recent years they have been used for magnetic materials, catalytic materials, strength materials, corrosion-resistant materials, etc. It is attracting attention in the field. Conventionally, the mass production of amorphous alloy fine particles has been carried out using the atomization method, in which molten raw materials are atomized using gas pressure and rapidly cooled, or the molten alloy is ejected between two high-speed rotating rolls with a minute gap between them. The cavitane method involves atomizing and rapidly cooling the molten alloy produced by cavitation,
Alternatively, the molten alloy is jetted into a rotating liquid and quenched, such as by a jetting method in a rotating liquid.

しかし、これらの方法は、いずれも装置が大型になワ、
また、量産性にも劣るため、製造コストが高くなる。ま
た、合金を溶融させて、急冷させる方法であるため、合
金の融点が高くなる程、製造が難しくなる。さらに、低
温での成形性(焼結性)は粒径が小さい程良好になるが
、萌記方法で得られる粒子は、粒径が大きく、しかも不
均一であり、比較的ばらつきの小さなものでも0.1〜
50μ1轟の範囲であった.このため、使用にあたって
は分級、MSl!を必要としていた。
However, all of these methods require large equipment;
In addition, it is inferior in mass productivity, resulting in high manufacturing costs. Furthermore, since the method involves melting the alloy and rapidly cooling it, the higher the melting point of the alloy, the more difficult it is to manufacture. Furthermore, the smaller the particle size, the better the formability (sinterability) at low temperatures; however, the particles obtained by the Moeki method have large particle sizes and are non-uniform, even if they have relatively small variations. 0.1~
It was in the range of 50μ1 roar. For this reason, when using the MSl! was needed.

そこで、本発明者らは、かかる問題を解決した非晶質合
金微粒子の製造方法として、先に水素化ホウ素化合物ま
たはアミンポラン誘導体の水溶液中1: Fe, Co
, Niイオンのillまたは2種以上を含む水溶液ま
たはこの金属イオン水溶液中にさらに遷移金属イオンの
1種または2種以上を添加した水溶液を混合して反応さ
せる方法を提案した(特願昭6 2 − 2 2 1 
5 6 7号).この方法は、水素化ホウ素化合物また
はアミンボラン誘導体を還元剤に用い、この水溶液中に
金属イオン水溶液を滴下混合して、水溶液反応により鉄
族金属や遷移金属のイオンを還元すると同時にホウ素と
化合させてホウ素含有非晶質合金微粒子を析出させる方
法で、粒径が10μ請以下で、ばらつ島が小さく、しか
も、ホウ素成分を従末法より高くすることら可能な非晶
質合=k微粒子を常温付近の温度で量産できるという特
徴を有している。
Therefore, the present inventors developed a method for producing amorphous alloy fine particles that solved this problem by first preparing 1: Fe, Co in an aqueous solution of a boron hydride compound or an amineporane derivative.
, proposed a method of reacting by mixing an aqueous solution containing an ill or two or more types of Ni ions, or an aqueous solution containing one or more types of transition metal ions added to this metal ion aqueous solution (Patent Application No. 62 -2 2 1
5 6 No. 7). This method uses a borohydride compound or an amine borane derivative as a reducing agent, drops an aqueous metal ion solution into this aqueous solution, reduces iron group metal and transition metal ions through an aqueous reaction, and simultaneously combines them with boron. This is a method of precipitating boron-containing amorphous alloy fine particles with a particle size of 10 μm or less, a small scattering island, and a higher boron content than the conventional method. It has the characteristic that it can be mass-produced at nearby temperatures.

(発明が解決しようとする問題点) しかし、この方法は、化学反応を利用して!!遣する方
法であるため、反応条件により組成、収率、構造に差異
が生じてしまう.このため、高品質の非晶質合金微粒子
を工業的に高収率で安価に!!!造するには、反応条件
を確立することが急務であった. 本発明は、この反応条件を確立した非晶質合金微粒子の
製造方法を提供するものである.(問題点を解決するた
めの手段) 本発明者らは、非晶質合金微粒子の組成、収率、構造な
どに影響を与える還元剤と金属イオンの濃度、還元剤水
溶液の温度およびpllについて検討した結果、還元剤
と金属イオンの濃度については、モル濃度比で水素化ホ
ウ素化合物またはアミンボラン誘導体/4r属イオン≧
1に、還元剤水溶液の温度については80℃以下に、さ
らに、還元剤水f!液のρ11については13.5以下
にすればよいことを見出だし、本発明を完成した. 本発明者らは、まず、還元剤と金属イオンの濃度が非晶
質合金微粒子の組成、収率、構造に与える影響を調査す
べく、種々の濃度の還元剤水溶液を準備して、この水溶
液中に金属イオン濃度が一定の水溶液を同量滴下混合し
、析出物の組成、収率、構造を調査した. その結果、析出物の組成については、還元剤とe属イオ
ンの濃度をモル濃度比で還元剤/金属イオン≧1にすれ
ばほぼ一定にできることを確認した. また、析出量については、モル濃度比を還元剤/金属イ
オン≦5にすると減少する傾向が認められ、モル濃度比
を2にすると、モル濃度比が10の場合の50%に減少
することが確認された.さらに、補遺については、モル
濃度比を2以下にすると、酸化物と思われる赤褐色の析
出物が認められ、モル濃度比が1での析出物をXA1回
折してみると、非晶質特有のブロードなピークに混じっ
て酸化物のピークも認められた. 以上の結果から、還元剤である水素化ホウ素化合物また
はアミンボラン誘導体と金属イオンの濃度は、モル濃度
比で前者/後者≧1にすることが必要であると認められ
た. 次に、上記結果より還元剤/金属イオンモル濃度比が1
以上で、モル濃度がともに等しい還元剤水溶液と金属イ
オン水溶液を14製して、還元剤水溶液中に金属イオン
水溶液を滴下により同!混合し、還元剤水溶液の温度が
組成、収率、構造に及ぼす影響を調査した. その結果、還元剤水t8液の温度が80℃以下であれば
、水溶液中に金属イオンが2種以上含まれていても合−
1t微粒子の組成に大きな変化が認められなかった。し
かし、80℃より高くすると、ホウ素成分量には大きな
変化が認められなかったが、金属成分の組成がS.激に
変化し、それとともに赤褐色の金属酸化物と考えられる
析出物が認められた. 析出量は、一般の化学反応と同様に、反応温度が高い程
反応が速く進行し、析出時間を短縮できるが、あまり高
くすると、水溶液中での還元剤分解や空気中で反応させ
る場合の還元剤酸化が懸念された.また、構造は、95
℃以下であれば、非晶質であった. 以上の結果より還元剤水溶液の温度は80℃以下に制御
することが必要であった.この還元剤水溶液の温度は、
還元削水溶液中に温度の異なる金属イオン水溶液を滴下
混合しても、その滴下速度が急激でなければ、還元剤水
溶液の温度はほとんど変化しないので、実質的には還元
剤と金属イオンとの反応温度である. 最後に、上記還元剤水溶液の適性温度調査の場合と同様
の還元剤水溶液および金属イオン水溶液をW!4!Lて
、還元剤水溶液のpuをアルカリ溶液添加により変化さ
せ、還元剤水溶液pllが組成、収率、構造に及ぼす影
響を調査した。
(Problem to be solved by the invention) However, this method uses a chemical reaction! ! Since this is a method that relies on the use of a chemical compound, there are differences in composition, yield, and structure depending on the reaction conditions. Therefore, high quality amorphous alloy particles can be produced industrially at high yields and at low cost! ! ! In order to produce this, it was urgently necessary to establish reaction conditions. The present invention provides a method for producing amorphous alloy particles in which these reaction conditions are established. (Means for solving the problem) The present inventors investigated the concentration of the reducing agent and metal ions, the temperature of the reducing agent aqueous solution, and the PLL, which affect the composition, yield, structure, etc. of amorphous alloy fine particles. As a result, regarding the concentration of reducing agent and metal ion, the molar concentration ratio of boron hydride compound or amine borane derivative/4r group ion ≧
1. The temperature of the reducing agent aqueous solution should be kept below 80°C, and the reducing agent water f! They discovered that the ρ11 of the liquid should be 13.5 or less, and completed the present invention. The present inventors first prepared reducing agent aqueous solutions with various concentrations in order to investigate the effects of the reducing agent and metal ion concentrations on the composition, yield, and structure of amorphous alloy fine particles. The composition, yield, and structure of the precipitate were investigated by dropping the same amount of an aqueous solution with a constant metal ion concentration into the solution. As a result, it was confirmed that the composition of the precipitate can be kept almost constant by setting the concentration of reducing agent and group e ions to a molar concentration ratio of reducing agent/metal ion ≧1. In addition, the amount of precipitation tends to decrease when the molar concentration ratio is reduced to reducing agent/metal ion ≦5, and when the molar concentration ratio is set to 2, it decreases to 50% of the amount when the molar concentration ratio is 10. confirmed. Furthermore, regarding the appendix, when the molar concentration ratio is 2 or less, reddish brown precipitates that are thought to be oxides are observed, and when the precipitates at a molar concentration ratio of 1 are subjected to XA1 diffraction, they are found to be characteristic of amorphous. Oxide peaks were also observed mixed with the broad peaks. From the above results, it was recognized that the concentrations of the borohydride compound or amine borane derivative as a reducing agent and the metal ion must be set to a molar concentration ratio of former/latter≧1. Next, from the above results, the reducing agent/metal ion molar concentration ratio is 1.
As described above, 14 reducing agent aqueous solutions and metal ion aqueous solutions with equal molar concentrations were prepared, and the metal ion aqueous solution was dropped into the reducing agent aqueous solution to achieve the same result! The effects of the temperature of the reducing agent aqueous solution on the composition, yield, and structure were investigated. As a result, as long as the temperature of the reducing agent water T8 liquid is 80°C or lower, even if the aqueous solution contains two or more types of metal ions, the metal ions will not be combined.
No major change was observed in the composition of the 1t fine particles. However, when the temperature was raised above 80°C, no significant change was observed in the amount of boron, but the composition of the metal components increased to S. A drastic change occurred, and along with this, reddish-brown precipitates thought to be metal oxides were observed. As with general chemical reactions, the higher the reaction temperature, the faster the reaction progresses and the shorter the precipitation time, but if the amount is too high, the reducing agent may decompose in an aqueous solution or reduce when reacting in air. There was a concern about agent oxidation. Also, the structure is 95
If the temperature was below ℃, it was amorphous. From the above results, it was necessary to control the temperature of the reducing agent aqueous solution to below 80°C. The temperature of this reducing agent aqueous solution is
Even if metal ion aqueous solutions with different temperatures are mixed dropwise into the reducing water cutting solution, the temperature of the reducing agent aqueous solution will hardly change unless the dropping speed is rapid, so the reaction between the reducing agent and the metal ions will actually occur. It is temperature. Finally, add the same reducing agent aqueous solution and metal ion aqueous solution as in the case of the appropriate temperature investigation of the reducing agent aqueous solution to W! 4! Then, the pu of the reducing agent aqueous solution was changed by adding an alkaline solution, and the influence of the reducing agent aqueous solution pll on the composition, yield, and structure was investigated.

水素化ホウ素化合物またはアミンボラン誘導体を水溶液
とした場合の1}1■は10〜11で、これらの化合物
はアルカξノ性で安定している。このため、水溶液がア
ルカリ性の場合、反応に寄与する還元削の量は減少する
と考えられるが、反応速度を制御して、良質の合金微粒
子を製造するのには適している. しかし、組成に大きな変化が認められな(1のは、水溶
[pllが13,5以下の場合で、これより大きくする
と、ホウ素成分の急激な減少が認められた.また、析出
量もpi=13から減少が認められ、pl!=13.5
になるとpH=12のときの約50%も減少してしまっ
た.構造はpHを大きくしてもすべて非晶質で、p}l
= 1 2以上では粒子がit細化する傾向があった.
これらの結果より工業的製造にはpllを13.5以下
にする必要があった.(実施例) 実施例1 種々の濃度の水素化ホウ素カリウム(K旧14)水溶液
およびノメチルアミンボラン(DHAII)水溶液を各
100mlずっと、濃度0 . 1 mol/gの硫酸
第一鉄(FeSO4)水溶液100mlを調製して、前
者の還元剤水溶液温度を10℃にして攪拌しながら、そ
の中に後者の金属イオン水溶液を全量滴下混合し、生じ
た析出物をろ過、洗浄してFe−B系合金徴粒fを製造
した.第1図、第2図に各還元剤の濃度と微粒子のM成
および構造の関係を示す.なお、m成は化学分析により
、構造はX線回折によった.いずれの還元剤とも濃度が
0 . 3 mol/g以上ではFe, Bの組成はほ
ぼ一定であったが、濃度がこれ以下になると徐々に減少
をはじめ、0 . 1 mol/C以下では急激に減少
し、しかも、この濃度では析出物中に鉄の酸化物と思わ
れる赤褐色の粉末が混合し、良質な微粒子が得られなか
った.また、還元削濃度が0 .1 moIie以上で
は非晶質単相、それ以上では非晶質に酸化物と思われる
結晶相のピークが表れた. 第3図に上記条件で得られた合金微粒子の収率を示す.
WL紬は還元剤濃度であるが、縦軸のW/W,は、本実
施例での析出量(W)と還元剤の基準濃度であるlmo
l/eの水S液を用いたときの析出量(W1)の比であ
る.還元削濃度が0 , 3 mol/JBまではほぼ
W/W,は1に近いが、それ以下では減少をはじめ、0
 . 1 mol79以下では約0.5となった。
When a borohydride compound or an amine borane derivative is used as an aqueous solution, 1}1■ is 10 to 11, and these compounds are stable due to their alkaline nature. Therefore, if the aqueous solution is alkaline, the amount of reduction cutting that contributes to the reaction is thought to decrease, but it is suitable for controlling the reaction rate and producing high-quality alloy particles. However, no significant change was observed in the composition (No. 1 is when the water solubility [pll is less than 13.5; when it is larger than this, a rapid decrease in the boron component is observed. Also, the amount of precipitation is also A decrease was observed from 13, pl!=13.5
In this case, the pH value decreased by about 50% compared to when pH = 12. The structure is entirely amorphous even when the pH is increased, and p}l
= 12 or more, the particles tended to become thinner.
From these results, it was necessary to reduce pll to 13.5 or less for industrial production. (Example) Example 1 100 ml each of potassium borohydride (K old 14) aqueous solution and nomethylamine borane (DHAII) aqueous solution of various concentrations were added to the solution at a concentration of 0. Prepare 100 ml of a 1 mol/g ferrous sulfate (FeSO4) aqueous solution, set the temperature of the former reducing agent aqueous solution to 10°C, and dropwise mix the entire amount of the latter metal ion aqueous solution into it while stirring. The precipitate was filtered and washed to produce Fe-B alloy grain f. Figures 1 and 2 show the relationship between the concentration of each reducing agent and the M composition and structure of fine particles. The composition was determined by chemical analysis, and the structure was determined by X-ray diffraction. The concentration of both reducing agents is 0. At concentrations above 3 mol/g, the compositions of Fe and B remained almost constant, but when the concentration decreased below this level, they began to gradually decrease until 0.5 mol/g. Below 1 mol/C, it decreased rapidly, and at this concentration, reddish-brown powder, which was thought to be iron oxide, was mixed into the precipitate, making it impossible to obtain fine particles of good quality. In addition, the reduction concentration is 0. At 1 moIie or more, an amorphous single phase appeared, and at more than that, a peak of a crystalline phase that appeared to be an amorphous oxide appeared. Figure 3 shows the yield of alloy fine particles obtained under the above conditions.
WL Tsumugi is the reducing agent concentration, and W/W on the vertical axis is the precipitation amount (W) in this example and lmo, which is the standard concentration of the reducing agent.
This is the ratio of precipitation amount (W1) when using l/e water S solution. W/W is close to 1 when the reduction concentration is 0.3 mol/JB, but below that it begins to decrease and decreases to 0.
.. At 1 mol79 or less, it was about 0.5.

実施例2 濃度1曽of/eの水素化ホウ素ナトリウム(Na13
11.)水溶液100mlと、硫N!第一鉄(FeSO
i)と塩化コハルト(CoCI2)をFe2+/Co”
 = 7 / 3になるように混合し、その合計イオン
濃度を0 . 1 mol/eとした金属イオン水溶9
100mlを調製して、前者の還元剤水溶液の温度を2
℃から95℃に変化させながら、その水溶液中に後者の
金属イオン水溶液を全量滴下混合し、Fe−Co−B系
合4r微粒子を製造した.混合は実施例1と同様に攪拌
下に行い、析出物もろ過、洗浄した。f:tSJ図に還
元剤濃度と微粒子組成の関係を示す. Fe, Coの金属組成は、40゛C以下ではほぼ一定
であったが、それ以上では徐々に減少をはじめ、85“
Cでは急激に減少をはじめた.Bは、80゜C付近まで
ほぼ一定であったが、80℃以上で析出させた微粒子に
は金属の酸化物と思われる赤褐色の粉末が若モ混合して
いた. 95゜C以下の温度で析出させた微粒子にはX@回折で
結晶相を示すピークは認められなかった.実施例3 濃度1 mol/eの水素化ホウ素カリウム(KOJI
4)水溶[100mlと、硫酸第一鉄(FeSO<)と
塩化ニッケル(旧C12)をFe2+/Ni” = 7
 / 3になるように混合し、その合計イオン濃度を0
 . 1 not/9とした金属イオン水溶液100m
lを調製して、この水溶液をI】11を種々変化させた
還元剤水溶液に全量滴下混合し、Fe一旧一B系合金微
粒子を製造した。なお、金属イオン水溶液の調製時のp
Hは10.5であったので、水酸化ナトリウム(Na.
011)を添加して・)Hを変化させた.第5図に還元
剤水溶液のpHと微粒子組成の関係を示す. 還元剤水溶液のpHが13以下ではFeSNi, Bの
M成に大きな変化は見られなかったが、pHが13を越
えると、FC, Niの成分が減少した.第6図は、還
元剤水溶液の!】11と析出量との関係を示すもので、
縦軸のW/W.は、本実施例での析出量(W)とfli
t!J!Lたままの還元剤水溶液を用いたと一の析出量
(W,)との比である.析出量は、pHが13を越えた
あたりから急激に減少し、p11=13.5ではW/W
.は約0.3に減少した.一方、p+1が13以下では
W/W.=0.7〜1.0となり、析出量が多かった, 実施例4 硫酸ニッケル(NiSO4)と硫酸銅(CuSO4)を
Ni” /Cu” = 7 / 3になるように混合し
、その合計イオン濃度を0 , 1 mol/g Lた
金属イオン水溶液100mlを調製しで、この水溶液を
種々の濃度のツメチルアミンボラン(DH八B)水溶液
100mlに全量滴下混合し、実施例1と同要領でNi
−Cu−B系合金微粒子を製造した.第7図にDM八〇
濃度と微粒子組成の関係を示した. Ni, Cu成分は、DNAB濃度0.1 − 0.2
mol/g付近で減少をはじめ、0 . 1 mol/
gで急激に減少した.B成分は、旧、Cu戊分に比べ減
少がやや少なかった. 折出mcw>には実施例1とほぼ同じ傾向が認められ、
DMABの基準濃度1mol/eの水溶液を用いたとき
の析出11<W,)との比は、0 , 5 mol/g
 ?W/W,=0.70、0 . 3 mol/e−c
”w/w ,= 0 , G O、0 . 1 mol
/e″cW/W,= 0 .4 0であった。
Example 2 Sodium borohydride (Na13
11. ) 100 ml of aqueous solution and sulfur N! First iron (FeSO
i) and cohalt chloride (CoCI2) as Fe2+/Co”
= 7/3, and the total ion concentration was 0. 1 mol/e metal ion water solution 9
Prepare 100ml and adjust the temperature of the former reducing agent aqueous solution to 2.
While changing the temperature from .degree. C. to 95.degree. C., the entire amount of the latter metal ion aqueous solution was added dropwise to the aqueous solution to produce Fe-Co-B composite 4r fine particles. Mixing was performed under stirring in the same manner as in Example 1, and the precipitate was also filtered and washed. The f:tSJ diagram shows the relationship between reducing agent concentration and fine particle composition. The metal composition of Fe and Co was almost constant below 40°C, but began to gradually decrease above 85°C.
In C, it began to decrease rapidly. B was almost constant up to around 80°C, but the fine particles precipitated at temperatures above 80°C contained a small amount of reddish-brown powder, which was thought to be a metal oxide. No peak indicating a crystalline phase was observed in X@ diffraction in the fine particles precipitated at temperatures below 95°C. Example 3 Potassium borohydride (KOJI) at a concentration of 1 mol/e
4) Water solution [100 ml, ferrous sulfate (FeSO<) and nickel chloride (formerly C12)] Fe2+/Ni” = 7
/ 3, and the total ion concentration is 0.
.. 1 not/9 metal ion aqueous solution 100m
The entire amount of this aqueous solution was added dropwise to a reducing agent aqueous solution containing various modifications of I]11 to produce Fe-old-B alloy fine particles. In addition, when preparing the metal ion aqueous solution, p
H was 10.5, so sodium hydroxide (Na.
011) was added to change .)H. Figure 5 shows the relationship between the pH of the reducing agent aqueous solution and the fine particle composition. When the pH of the reducing agent aqueous solution was below 13, no significant change was observed in the M composition of FeSNi and B, but when the pH exceeded 13, the FC and Ni components decreased. Figure 6 shows the reducing agent aqueous solution! ] This shows the relationship between 11 and the amount of precipitation,
W/W on the vertical axis. is the precipitation amount (W) and fli in this example
T! J! This is the ratio of the amount of precipitation (W,) when using the reducing agent aqueous solution as it is. The amount of precipitation decreases rapidly when the pH exceeds 13, and at p11 = 13.5, W/W
.. decreased to about 0.3. On the other hand, if p+1 is 13 or less, W/W. = 0.7 to 1.0, and the amount of precipitation was large. Example 4 Nickel sulfate (NiSO4) and copper sulfate (CuSO4) were mixed so that Ni"/Cu" = 7/3, and the total ion Prepare 100 ml of a metal ion aqueous solution with a concentration of 0 and 1 mol/g L, dropwise mix the entire amount of this aqueous solution with 100 ml of trimethylamine borane (DH8B) aqueous solutions of various concentrations, and add Ni in the same manner as in Example 1.
-Cu-B alloy fine particles were manufactured. Figure 7 shows the relationship between DM80 concentration and fine particle composition. Ni and Cu components have a DNAB concentration of 0.1-0.2
It started to decrease around mol/g and started to decrease around 0. 1 mol/
It decreased rapidly at g. The decrease in the B component was slightly smaller than that of the old Cu component. Almost the same tendency as in Example 1 was observed for the deposited mcw>,
When using an aqueous solution with a standard concentration of DMAB of 1 mol/e, the ratio of precipitation 11<W,) is 0.5 mol/g
? W/W,=0.70, 0. 3 mol/e-c
”w/w,=0,G O,0.1 mol
/e″cW/W, = 0.40.

実施例5 実施例2において、金属イオン水溶液として、塩化コバ
ルトの代わりに塩化クロム(CrCh)を同モル溶解さ
せたFe. Crイオン水溶液を用いてFe−Cr −
 B系合金微粒子を製造した.第8図に還元M濃度と微
粒子組成変化の関係を示す. Fe, Crは80℃以
下ではほぼ一定であったが、それ以上では急激に減少し
た.Bは90℃までほぼ一定で、それ以上では減少した
.実施例6 実充例3において、金属イオン水溶液として、塩化ニッ
ケルの代わりに塩化マンがン(MnCl2)ヲ同モル溶
解させたFe, Nnイオン水溶液を用いて、Fe−)
4n−B系合計微粒子を製造した.水酸化ナトリウム未
添加のrill!lたままの還元剤水溶QpHは10.
5で、実施例3の場合と同じであった.第9図に還元剤
水溶液puと微粒子組成の関係を示す.pHが13.0
以下ではFe, Hns Bの組成には大きな差異はな
かったが、13.0を越えるとFe、Mnの組成は急激
に減少し、B成分も若モ減少した。
Example 5 In Example 2, Fe. Fe-Cr − using Cr ion aqueous solution
B-based alloy fine particles were manufactured. Figure 8 shows the relationship between reduced M concentration and changes in fine particle composition. Fe and Cr were almost constant below 80°C, but decreased rapidly above that. B remained almost constant up to 90°C and decreased above that point. Example 6 In Practical Example 3, instead of nickel chloride, an Fe and Nn ion aqueous solution in which the same mole of manganese chloride (MnCl2) was dissolved was used as the metal ion aqueous solution.
4n-B type total fine particles were produced. Rill without sodium hydroxide added! The aqueous reducing agent solution QpH is 10.
5, which was the same as in Example 3. Figure 9 shows the relationship between reducing agent aqueous solution PU and fine particle composition. pH is 13.0
Below, there was no big difference in the composition of Fe and Hns B, but when it exceeded 13.0, the composition of Fe and Mn rapidly decreased, and the B component also decreased slightly.

析出速度もp++が13.0を越えると若干遅くなる傾
向があった。
The precipitation rate also tended to become slightly slower when p++ exceeded 13.0.

(発明の効果) 以上のように、本発明によれば、水素化ホウ素化合物ま
たはアミンボラン誘導体の水溶液中に金属イオン水?l
g液を滴下混合して非晶質合金微粒子を工業的に製造す
る際の反応条件が確立できた。
(Effects of the Invention) As described above, according to the present invention, metal ion water is present in an aqueous solution of a borohydride compound or an amine borane derivative. l
The reaction conditions for industrial production of amorphous alloy fine particles by dropwise mixing of liquid g were established.

従って、安価な非晶質合2t微粒子の供給が待ち望まれ
ている用途、例えば、磁性流体、磁気シールド材、小型
トランス鉄芯、センサー材、モーターコアなどの磁性材
料、あるいは化学反応触媒、7K極なとの化学装置部品
や機器部品のごとき化学的特性、耐食性を必要とする材
料、さらにはセラミックス、塗料、異種金属、プラスチ
ックなどとの混合もしくは分散剤に供給できる.
Therefore, the supply of inexpensive amorphous 2t fine particles is expected for applications such as magnetic fluids, magnetic shielding materials, small transformer iron cores, sensor materials, motor cores, and other magnetic materials, chemical reaction catalysts, and 7K poles. It can be used as a mixing or dispersing agent for materials that require chemical properties and corrosion resistance, such as chemical equipment parts and equipment parts, as well as ceramics, paints, dissimilar metals, plastics, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、実施例1でFe−B系合金を製造した場
合の反応条件非晶質と合金微粒子特性の関係を示すもの
で、第1図、vI12図は、還元剤水溶液濃度と合金微
粒子組成および構造の関係をグラフ、第3図は、還元剤
濃度と析出量比の関係を示すグラフである。第4図は、
実施例2でFe−Co−B系非晶質合金微粒子を製造し
た場合の還元削水f#液温度と合金微粒子組成の関係を
示すグラフである。第5図、第6図は、実施例3でFe
−Ni−B系非晶質合金微粒子を製造した場合の反応条
件と合金微粒子特性の関係を示すもので、第5図は還元
剤水溶液pl1と合金微粒子組成の関係を示すグラフ、
第6図は還元剤水溶1pHと析出量比の関係を示すグラ
フである.第7図は、実施例4でNi  Cu−BX%
非晶質合金微粒子を製造した場合の還元剤水溶液濃度と
合金微粒子組成の関係を示水溶液グラフである。第8図
は、実施例5でFe−CrB系非晶質合金微粒子を製造
した場合の還元剤水溶液温度と合金微粒子MLtとの関
係を示すグラフである。第9図は、実施例6でFe−N
o−B系非晶質合金微粒子を製造した場合の還元剤水溶
ipHと合金微粒子組成の関係を示すグラフである。 特許出願人  口新製鋼株式会社 増  本   健 代  理  人   進  藤   満第1図 第2図 第9図 第3図 第4図 KBH4水溶液p}4 組成(涼子%) 系且万交(漂子%) 手続補正書 平成1年3月298 平成1年特許願第5 1 360号 2.発明の名称 非晶質合金微粒子の製造方法 3.補正をする者 事件との関係  特許出願人 住 所 東京都千代田区丸の内三丁目4番1号名 称 
(458)  日新91鋼株式会社(外1名)代表取締
役 甲 斐  幹 4.代 理 人  (〒103) 住 所 東京都中央区日本橋堀留町2丁目3番3グラン
ドメゾン日本橋堀留704号室 電話 03(661)6080 自   発 6.補正の対象 娶任状および明繍芽の発明の詳細な説明の欄7,補正の
内容 絹成C原子%) 析出量比( W/ Wo) ■、明細書の発明の詳細な説明を下記のように訂正する
. (1)明細書2真上から5行目の「する際、」の次に[
不純物が少なく、非晶質性に優れた」を加入する.(2
)同IF6真上から9行目の「必要であると認められた
.」の次に「またモル濃度比で前者/後者≧20として
も収率、構造、組成等に大きな変化はなく、従って、最
適濃度比は、モル濃度比で1≦前者/後者≦20とした
時であることが判明した.」を加入する.(3)同書7
真上から9行目の「品質であった。」の次に「従って、
反応温度を0℃以上、80℃以下とすることが最適な条
件である.」を加入する.(5)同書8真下から4行目
の「pHを」の次に「全<p整しないpllIO以上が
ら」を加入する.以  上
Figures 1 to 3 show the relationship between the amorphous reaction conditions and the characteristics of the alloy fine particles when Fe-B alloy was produced in Example 1. Figures 1 and 12 show the relationship between the concentration of the reducing agent aqueous solution and FIG. 3 is a graph showing the relationship between alloy fine particle composition and structure, and FIG. 3 is a graph showing the relationship between reducing agent concentration and precipitation amount ratio. Figure 4 shows
3 is a graph showing the relationship between the reduced water cutting f# liquid temperature and the alloy fine particle composition when Fe-Co-B-based amorphous alloy fine particles were manufactured in Example 2. 5 and 6 show Fe in Example 3.
- This shows the relationship between the reaction conditions and the properties of the alloy fine particles when Ni-B based amorphous alloy fine particles are produced, and FIG. 5 is a graph showing the relationship between the reducing agent aqueous solution pl1 and the alloy fine particle composition.
Figure 6 is a graph showing the relationship between the pH of the reducing agent aqueous solution and the precipitation amount ratio. FIG. 7 shows Ni Cu-BX% in Example 4.
It is an aqueous solution graph showing the relationship between reducing agent aqueous solution concentration and alloy fine particle composition when amorphous alloy fine particles are manufactured. FIG. 8 is a graph showing the relationship between the temperature of the reducing agent aqueous solution and the alloy fine particles MLt when Fe-CrB-based amorphous alloy fine particles were produced in Example 5. FIG. 9 shows Fe-N in Example 6.
It is a graph showing the relationship between the reducing agent aqueous solution ipH and the composition of alloy fine particles when o-B type amorphous alloy fine particles are manufactured. Patent Applicant Masu Kushin Steel Co., Ltd. Kenyo Moto Susumu Fuji Mitsuru ) Procedural Amendment March 1999 298 1999 Patent Application No. 5 1 360 2. Name of the invention Method for producing amorphous alloy fine particles 3. Relationship with the case of the person making the amendment Patent applicant address 3-4-1 Marunouchi, Chiyoda-ku, Tokyo Name
(458) Nisshin 91 Steel Co., Ltd. (1 other person) Representative Director Miki Kai 4. Agent (103) Address: Room 704, Grand Maison Nihonbashi Horidome, 2-3-3 Nihonbashi Horidome-cho, Chuo-ku, Tokyo Telephone: 03 (661) 6080 Self-initiated 6. Subject of amendment Column 7: Detailed explanation of the invention of the letter of intent and light bud Correct it as follows. (1) On the 5th line from the top of the specification 2, after “when doing so,” [
Added ``low impurities and excellent amorphousness''. (2
) In the 9th line from the top of IF6, next to ``Recognized as necessary.'', ``Also, even if the molar concentration ratio of the former/latter is ≥20, there will be no major change in yield, structure, composition, etc. , it was found that the optimum concentration ratio is when the molar concentration ratio is 1≦former/latter≦20.'' is added. (3) Ibid. 7
In the 9th line from the top, after “It was quality.”, “Therefore,
The optimal condition is to keep the reaction temperature between 0°C and 80°C. ”. (5) In the fourth line from the bottom of 8 of the same book, after "pH", add "all < pllIO or more". that's all

Claims (3)

【特許請求の範囲】[Claims] (1)水素化ホウ素化合物またはアミンボラン誘導体を
溶解した還元剤水溶液中にFe、Co、Niイオンの1
種または2種以上を含む金属イオン水溶液、またはこの
金属イオンに遷移金属イオンの1種または2種以上を添
加した金属イオン水溶液を滴下混合して非晶質合金微粒
子を製造する際、還元剤水溶液の水素化ホウ素化合物ま
たはアミンボラン誘導体濃度と金属イオン水溶液の金属
イオン濃度をモル濃度比で前者/後者≧1にすることを
特徴とする非晶質合金微粒子の製造方法。
(1) Fe, Co, and Ni ions are added to an aqueous solution of a reducing agent in which a borohydride compound or an amine borane derivative is dissolved.
When producing amorphous alloy fine particles by dropwise mixing a metal ion aqueous solution containing one or more types of metal ions, or a metal ion aqueous solution containing one or more transition metal ions added to the metal ions, the reducing agent aqueous solution A method for producing amorphous alloy fine particles, characterized in that the concentration of the boron hydride compound or amine borane derivative in the above and the metal ion concentration of the metal ion aqueous solution are set to a molar concentration ratio of former/latter≧1.
(2)還元剤水溶液の温度を80℃以下にすることを特
徴とする特許請求の範囲第1項に記載の非晶質合金微粒
子の製造方法。
(2) The method for producing amorphous alloy fine particles according to claim 1, characterized in that the temperature of the reducing agent aqueous solution is set to 80° C. or lower.
(3)還元剤水溶液のpHを13.5以下にすることを
特徴とする特許請求の範囲第1項に記載の非晶質合金微
粒子の製造方法。
(3) The method for producing amorphous alloy fine particles according to claim 1, characterized in that the pH of the reducing agent aqueous solution is set to 13.5 or less.
JP5136089A 1989-03-03 1989-03-03 Manufacture of amorphous alloy fine particles Pending JPH02232308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136089A JPH02232308A (en) 1989-03-03 1989-03-03 Manufacture of amorphous alloy fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136089A JPH02232308A (en) 1989-03-03 1989-03-03 Manufacture of amorphous alloy fine particles

Publications (1)

Publication Number Publication Date
JPH02232308A true JPH02232308A (en) 1990-09-14

Family

ID=12884772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136089A Pending JPH02232308A (en) 1989-03-03 1989-03-03 Manufacture of amorphous alloy fine particles

Country Status (1)

Country Link
JP (1) JPH02232308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533862A (en) * 2004-04-22 2007-11-22 本田技研工業株式会社 Metal and alloy nanoparticles and methods for their synthesis
JP2013033980A (en) * 2012-09-20 2013-02-14 Seiko Epson Corp Metal powder for magnetic fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533862A (en) * 2004-04-22 2007-11-22 本田技研工業株式会社 Metal and alloy nanoparticles and methods for their synthesis
JP2013033980A (en) * 2012-09-20 2013-02-14 Seiko Epson Corp Metal powder for magnetic fluid

Similar Documents

Publication Publication Date Title
CN104411429B (en) The manufacture method of metal particle
JP5774756B2 (en) Solid solution type alloy fine particles
JP3635451B2 (en) Metal powder, method for producing the same, and conductive paste
JP5070138B2 (en) Method for producing metal nanoparticles
JP2007031799A (en) Method for producing metal nanoparticle
US7935170B2 (en) Method for manufacturing copper-based nanoparticles
JP2023153875A (en) Production method of aluminum-containing alloy powder and use of the same, and alloy ribbon
Huang et al. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape
CN104884193B (en) Not solvent-laden silver synthesis and the silver-colored product thus prepared
CN102942471A (en) Preparation method of oxalate
KR101061600B1 (en) Manufacturing method of cobalt powder
JP7292577B2 (en) Nickel-connected particles and method for producing the same
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
KR101581331B1 (en) Method for manufacturing metal or metal oxide having micro-nano sizes using ultra-wave and metal or metal oxide thereby
JPH02232308A (en) Manufacture of amorphous alloy fine particles
JP2010512462A (en) Preparation of nanoparticles containing iron and titanium
JPH0372683B2 (en)
WO2022080487A1 (en) METHOD FOR MANUFACTURING IRON (Fe)-NICKEL (Ni) ALLOY POWDER
JPH04289107A (en) Production of fine alloy particles
CN101362212A (en) Method for preparing minute globular powdered nickel
JP2016160531A5 (en)
Pan et al. Synthesis of Sn-3.5 Ag alloy nanosolder by chemical reduction method
JP2018104724A (en) Production method of silver-coated copper powder
Qi et al. Light activated methylene blue degradation by magnetic Fe80PxC20-x (x= 0, 4, 7 and 13) glassy ribbons
JPH036309A (en) Manufacture of amorphous alloy fine particles