JPH04289107A - Production of fine alloy particles - Google Patents

Production of fine alloy particles

Info

Publication number
JPH04289107A
JPH04289107A JP7581491A JP7581491A JPH04289107A JP H04289107 A JPH04289107 A JP H04289107A JP 7581491 A JP7581491 A JP 7581491A JP 7581491 A JP7581491 A JP 7581491A JP H04289107 A JPH04289107 A JP H04289107A
Authority
JP
Japan
Prior art keywords
ions
metal ion
reducing agent
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7581491A
Other languages
Japanese (ja)
Inventor
Junji Saida
才 田 淳 治
Takeshi Masumoto
増 本  健
Akihisa Inoue
井 上 明 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP7581491A priority Critical patent/JPH04289107A/en
Publication of JPH04289107A publication Critical patent/JPH04289107A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce fine alloy particles based on a metal belonging to the group IB or IIB of the Periodic Table. CONSTITUTION:A soln. contg. ions of one or more kinds of metals belonging to the groups IB and IIB of the Periodic Table or further contg. ions of one or more kinds of transition metals is mixed with a soln. of a reducing agent contg. a borohydride compd. or an amine borane deriv. and the aq. solns. are brought into a reaction to produce fine alloy particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【001】001

【産業上の利用分野】本発明は、周期律表1B族、2B
族に属する金属のイオンまたはこの金属イオンのほかに
遷移金属のイオンを含む金属イオン溶液と半金属化合物
溶液とを混合して、水溶液反応により両溶液に含まれる
金属の合金微粒子を製造する方法に関する。
[Industrial Application Field] The present invention relates to group 1B and 2B of the periodic table.
A method for producing fine alloy particles of metals contained in both solutions by mixing a metalloid compound solution with a metal ion solution containing ions of metals belonging to the group or ions of transition metals in addition to the metal ions. .

【002】002]

【従来技術】合金微粒子は、通常のバルク状合金材料に
比べて成形性、表面特性、複合化、混合化に優れており
、最近の固化技術の進歩に伴って微粒子状での応用に限
らず、固化成形体の原料として工業的な重要度が増大し
ている。
[Prior Art] Fine alloy particles have superior formability, surface properties, compositing, and mixing properties compared to ordinary bulk alloy materials, and with recent advances in solidification technology, their applications are not limited to fine particles. , is becoming increasingly important industrially as a raw material for solidified molded bodies.

【003】この合金微粒子の量産的製造は、溶融原料を
ガス圧で霧化して急冷するアトマイズド法、真空あるい
は減圧不活性ガス中で金属または合金を蒸発させる蒸発
法、水素雰囲気中でのア−クプラズマによる活性水素と
溶融金属との反応により行われていた。
[003] Mass production of these fine alloy particles can be carried out by an atomized method in which a molten raw material is atomized by gas pressure and rapidly cooled, an evaporation method in which the metal or alloy is evaporated in a vacuum or a reduced pressure inert gas, and an arborization method in a hydrogen atmosphere. It was carried out by the reaction between active hydrogen and molten metal due to plasma.

【004】しかし、これらの方法では、いずれも装置が
大型になり、また、量産性にも劣るため、製造コストが
高くなるものであった。また、ほとんどが合金を溶融さ
せて、急冷させる方法であるため、合金の融点が高くな
る程製造が難しくなるものであった。さらに、これらの
方法で製造したものは、一般に粒子にばらつきのある場
合があるため、使用にあたっては分級、精製を必要とし
ていた。
[004] However, in all of these methods, the apparatus becomes large in size and is also poor in mass productivity, resulting in high manufacturing costs. Furthermore, since most methods involve melting the alloy and rapidly cooling it, the higher the melting point of the alloy, the more difficult it is to manufacture. Furthermore, products produced by these methods generally have particles that vary, and therefore require classification and purification before use.

【005】本発明者らは、かかる問題のない合金微粒子
製造法として、水素化ホウ素化合物またはアミンボラン
誘導体を含む還元剤溶液中に、(1)Fe、Co、Ni
イオンの1種または2種以上を含む金属イオン溶液、ま
たは、(2)Fe、Co、Niイオンの1種または2種
以上と遷移金属イオンの1種または2種以上とを含む金
属イオン溶液、あるいは(3)Fe、Co、Niイオン
の1種または2種以上と遷移金属イオンの1種または2
種以上および周期律表2A族、3B族、4B族、5B族
に属する金属イオンの1種または2種以上とを含む金属
イオン溶液を混合して、反応させる方法を先に提案した
(特開昭64−65206号、特開平2−232308
号、特開平3−6309号)。これらの方法は、水素化
ホウ素化合物またはアミンボラン誘導体を還元剤に用い
、この水溶液中に金属イオン溶液を滴下混合して、水溶
液反応により滴下液の金属イオンを還元すると同時にそ
の還元金属を還元剤の分解により生成したホウ素と化合
させて合金微粒子を析出させる方法で、(Fe、Co、
Ni)−B系、(Fe、Co、Ni)−遷移金属−B系
、(Fe、Co、Ni)−遷移金属−(2A族、3B族
、4B族、5B族金属)−B系合金微粒子のように周期
律表の鉄族金属を主成分とする均一な粒径の合金微粒子
を安価に製造することができる。
The present inventors have proposed a method for producing fine alloy particles free from such problems by adding (1) Fe, Co, and Ni to a reducing agent solution containing a boron hydride compound or an amine borane derivative.
(2) a metal ion solution containing one or more types of ions, or (2) a metal ion solution containing one or more types of Fe, Co, and Ni ions and one or more types of transition metal ions; or (3) one or more Fe, Co, and Ni ions and one or two transition metal ions.
We have previously proposed a method in which metal ion solutions containing one or more metal ions belonging to Groups 2A, 3B, 4B, and 5B of the Periodic Table are mixed and reacted. No. 64-65206, JP-A-2-232308
No., Japanese Patent Publication No. 3-6309). These methods use a borohydride compound or an amine borane derivative as a reducing agent, drop a metal ion solution into this aqueous solution, reduce the metal ions in the dropped solution through an aqueous reaction, and simultaneously transfer the reduced metal to the reducing agent. This is a method of precipitating alloy fine particles by combining with boron generated by decomposition.
Ni)-B system, (Fe, Co, Ni)-transition metal-B system, (Fe, Co, Ni)-transition metal-(2A group, 3B group, 4B group, 5B group metal)-B system alloy fine particles As shown in the figure, alloy fine particles of uniform particle size mainly composed of metals from the iron group of the periodic table can be produced at low cost.

【006】006]

【発明が解決しようとする問題点】しかしながら、近年
は、合金微粒子の用途の拡大に伴い、溶融性、導電性、
化学的特性などが鉄族金属を主成分とするものより優れ
たもの、例えば、銅や亜鉛などを主成分とするものが要
求されるようになってきた。そこで、本発明は、かかる
要望を充たすため、周期律表1B族、2B族を主成分と
する合金微粒子の製造方法を提供するものである。
[Problems to be solved by the invention] However, in recent years, with the expansion of uses for alloy fine particles, meltability, conductivity,
There is a growing demand for materials that have better chemical properties than those whose main components are iron group metals, such as those whose main components are copper, zinc, etc. Therefore, in order to satisfy such a need, the present invention provides a method for producing fine alloy particles whose main components are Groups 1B and 2B of the periodic table.

【007】007]

【問題点を解決するための手段】本発明は、水素化ホウ
素化合物またはアミンボラン誘導体を含む還元剤溶液中
に、周期律表1B族、2B族に属する金属のイオンを1
種または2種以上を含む金属イオン溶液またはこの溶液
中に遷移金属のイオンの1種または2種以上を添加した
金属イオン溶液を混合して、反応させることにより合金
微粒子を製造するようにした。
[Means for Solving the Problems] The present invention provides for adding ions of metals belonging to groups 1B and 2B of the periodic table to a reducing agent solution containing a borohydride compound or an amine borane derivative.
Fine alloy particles are produced by mixing a metal ion solution containing one or more species or a metal ion solution to which one or more transition metal ions is added and reacting.

【008】008

【作用】本発明で使用する水素化ホウ素化合物を含む還
元剤溶液は、従来のように、一般式M(BH4)n(但
し、nは整数)において、MがLi、Na、K、Be、
Mg、Zn、Cd、Cu、Ag、Ga、Ti、Zr、H
f、Th、U、Np、Puなどの化合物を溶媒に溶解し
たものでよい。また、アミンボラン誘導体を含む還元剤
溶液もBH3−NHxRy(但し、Rはアルキル基、x
、yは整数)などのようなアミンボランアルキル誘導体
を溶媒に溶解したものでよい。溶媒は、有機溶媒でもよ
いが、生産性、製造コストなどから水が好ましい。
[Operation] The reducing agent solution containing the boron hydride compound used in the present invention has the general formula M(BH4)n (where n is an integer), where M is Li, Na, K, Be,
Mg, Zn, Cd, Cu, Ag, Ga, Ti, Zr, H
A compound such as f, Th, U, Np, Pu, etc. dissolved in a solvent may be used. In addition, a reducing agent solution containing an amine borane derivative is also BH3-NHxRy (where R is an alkyl group, x
, y is an integer), etc., dissolved in a solvent. The solvent may be an organic solvent, but water is preferable from the viewpoint of productivity, manufacturing cost, etc.

【009】周期律表1B族、2B族に属する金属のイオ
ンを1種または2種以上を含む金属イオン溶液は、1B
族、2B族に属する金属の水溶性塩、例えば、硫酸塩、
塩化物、硝酸塩などを水に溶解したものでよい。
[009] A metal ion solution containing one or more metal ions belonging to Groups 1B and 2B of the Periodic Table is 1B.
Water-soluble salts of metals belonging to Group 2B, such as sulfates,
A solution of chloride, nitrate, etc. in water may be used.

【010】還元剤溶液への金属イオン溶液の混合は、前
者の溶液を撹拌しながら後者の溶液を徐々に滴下して、
反応させる方法によればよいが、合金微粒子は、混合の
際の反応条件により組成、収率、粒径などが若干変化す
る。
[010] The metal ion solution is mixed into the reducing agent solution by gradually dropping the latter solution while stirring the former solution.
Any reaction method may be used, but the composition, yield, particle size, etc. of the alloy fine particles may vary slightly depending on the reaction conditions during mixing.

【011】例えば、還元剤水溶液の水素化ホウ素化合物
またはアミンボラン誘導体濃度と金属イオン溶液の1B
族、2B族の金属イオン濃度とは、前者の濃度を後者の
濃度よりもモル濃度で前者/後者≧1と高くすると、組
成が均一な合金微粒子を高収率で析出させることができ
る。
For example, the concentration of the borohydride compound or amine borane derivative in the reducing agent aqueous solution and 1B in the metal ion solution
When the metal ion concentration of Group 2B and Group 2B metal ions is made higher than the latter concentration in terms of molar concentration (former/latter≧1), fine alloy particles having a uniform composition can be precipitated at a high yield.

【012】また、反応温度は、高温程反応速度が大きく
なり、析出時間の短縮、粒径の微細化を図ることができ
るが、あまり高くすると、還元剤の分解、空気中で反応
させる場合の析出合金微粒子の酸化などが懸念されるの
で、80℃以下にするのが好ましい。この温度以下であ
れば、溶液中に1B族、2B族の金属イオンが2種以上
含まれていても、合金微粒子の組成には大きな変化が認
められない。反応温度の調節は、還元剤溶液の温度を調
節することにより行えばよい。
[012] Also, as for the reaction temperature, the higher the reaction rate, the higher the reaction rate, which can shorten the precipitation time and make the particle size finer. However, if the reaction temperature is too high, the reducing agent may decompose, and when the reaction is carried out in air, Since there is a concern about oxidation of the precipitated alloy fine particles, the temperature is preferably 80° C. or lower. If the temperature is below this temperature, no major change will be observed in the composition of the alloy fine particles even if the solution contains two or more metal ions of Group 1B and Group 2B. The reaction temperature may be adjusted by adjusting the temperature of the reducing agent solution.

【013】さらに、還元剤水溶液のpHは、13.5以
下であれば、この範囲でpHが変化しても、合金微粒子
組成に大きな変化がなく、析出量も多い。前記のような
還元剤化合物の水溶液は、化合物を水に溶解したままの
状態で、pH=10〜11を示すので、pHを特別に調
節する必要はない。
Furthermore, if the pH of the reducing agent aqueous solution is 13.5 or less, even if the pH changes within this range, the composition of the alloy fine particles will not change significantly and the amount of precipitation will be large. Since the aqueous solution of the reducing agent compound as described above has a pH of 10 to 11 while the compound remains dissolved in water, there is no need to particularly adjust the pH.

【014】本発明において、合金微粒子の耐食性や強度
などをさらに向上させたい場合には、金属イオン溶液中
にCr、Mo、Fe、Co、Ni、W、V、Nb、Ta
、Ti、Zrなどの遷移金属イオンを1種または2種以
上添加することにより向上させることができる。この場
合、遷移金属イオンは、硫酸塩、硝酸塩、塩化物のよう
な水溶性塩を添加すればよい。
In the present invention, when it is desired to further improve the corrosion resistance and strength of the alloy fine particles, Cr, Mo, Fe, Co, Ni, W, V, Nb, Ta, etc. are added to the metal ion solution.
It can be improved by adding one or more types of transition metal ions such as , Ti, and Zr. In this case, the transition metal ion may be added as a water-soluble salt such as sulfate, nitrate, or chloride.

【015】析出した合金微粒子は、ろ過した後水や有機
溶剤で洗浄すればよい。本発明により得られる合金微粒
子は、粒径が0.02〜0.20μmと極めて小さく、
また、粒度分布の幅も小さい。
[015] The precipitated alloy fine particles may be filtered and then washed with water or an organic solvent. The alloy fine particles obtained by the present invention have an extremely small particle size of 0.02 to 0.20 μm,
Furthermore, the width of the particle size distribution is also small.

【016】016]

【実施例】実施例1 濃度がそれぞれ1〜2mol/lである水素化ホウ素カ
リウム(KBH4)、水素化ホウ素ナトリウム(NaB
H4)、ジメチルアミンボラン(DMAB)の各還元剤
水溶液を撹拌しながら、その中に濃度が0.1〜0.2
mol/lである周期律表1B族、2B族の金属イオン
を1種または2種以上含む金属イオン水溶液を滴下混合
して反応させ、析出した黒色沈澱物をろ過、洗浄した。 第1表に得られた合金微粒子の組成、結晶構造、粒径を
示す。なお、還元剤水溶液の調製は、還元剤を蒸留水に
溶解したままのもの(pH=10〜11)を用い、還元
剤水溶液の還元剤濃度と金属イオン水溶液の金属イオン
濃度とのモル濃度比は、いずれも前者/後者=10にし
、反応温度20℃で行った。また、合金微粒子の組成お
よび結晶構造の決定は、それぞれ化学分析およびX線回
折で行い、粒径は透過電子顕微鏡で測定した。
[Example] Example 1 Potassium borohydride (KBH4) and sodium borohydride (NaB) each have a concentration of 1 to 2 mol/l.
H4) and dimethylamine borane (DMAB) with a concentration of 0.1 to 0.2 while stirring.
A metal ion aqueous solution containing one or more metal ions of Groups 1B and 2B of the periodic table in mol/l was mixed dropwise and reacted, and the precipitated black precipitate was filtered and washed. Table 1 shows the composition, crystal structure, and particle size of the obtained alloy fine particles. The reducing agent aqueous solution is prepared by using the reducing agent dissolved in distilled water (pH = 10 to 11), and determining the molar concentration ratio of the reducing agent concentration in the reducing agent aqueous solution and the metal ion concentration in the metal ion aqueous solution. In both cases, the former/latter ratio was set to 10, and the reaction temperature was 20°C. Further, the composition and crystal structure of the alloy fine particles were determined by chemical analysis and X-ray diffraction, respectively, and the particle size was measured by a transmission electron microscope.

【017】実施例2 実施例1と同一製造条件で水素化ホウ素カリウム還元剤
水溶液に周期律表1B族、2B族の金属イオンと遷移金
属イオンとを含む金属イオン水溶液を滴下混合して、合
金微粒子を製造した。第2表に得られた合金微粒子を示
す。
Example 2 A metal ion aqueous solution containing metal ions of groups 1B and 2B of the periodic table and transition metal ions was added dropwise to an aqueous solution of a potassium borohydride reducing agent under the same manufacturing conditions as in Example 1 to form an alloy. Microparticles were produced. Table 2 shows the alloy fine particles obtained.

【018】018]

【第1表】[Table 1]

【019】019]

【第2表】[Table 2]

【020】実施例3 濃度が0.1mol/lのCuイオン水溶液を種々の濃
度の水素化ホウ素カリウム水溶液中に滴下混合して、C
u−B系合金微粒子を製造した。反応温度はいずれも2
0℃にし、還元剤水溶液は、水素化ホウ素カリウムを蒸
留水に溶解したままのものを用い、pHは調整しなかっ
た。 図1にKBH4/Cuイオンのモル濃度比と合金微粒子
組成(原子%)との関係を、図2に析出量との関係を示
す。なお、図2の縦軸におけるW/W10は、KBH4
濃度が金属イオン濃度の10倍である場合の析出量を基
準析出量W10とし、この析出量に対して本実施例での
析出量Wが何%析出したかを示すように規格化したもの
である。図4の析出量W/W10も同じである。
Example 3 An aqueous solution of Cu ions with a concentration of 0.1 mol/l was mixed dropwise into an aqueous solution of potassium borohydride with various concentrations.
u-B alloy fine particles were manufactured. The reaction temperature is 2 in both cases.
The temperature was 0° C., the reducing agent aqueous solution used was potassium borohydride dissolved in distilled water, and the pH was not adjusted. FIG. 1 shows the relationship between the molar concentration ratio of KBH4/Cu ions and the alloy fine particle composition (atomic %), and FIG. 2 shows the relationship with the amount of precipitation. In addition, W/W10 on the vertical axis of FIG. 2 is KBH4
The precipitation amount when the concentration is 10 times the metal ion concentration is defined as the standard precipitation amount W10, and the precipitation amount W in this example is standardized to indicate what percentage of this precipitation amount. be. The precipitation amount W/W10 in FIG. 4 is also the same.

【021】実施例4 実施例3においてCuイオン水溶液の代わりに金属イオ
ンの量比がCu2+:Fe2+:Zn2+=7:2:1
で、合計イオン濃度が0.1mol/lの複合金属イオ
ン水溶液を用いて、Cu−Fe−Zn−B系合金微粒子
を製造した。図3にKBH4/金属イオンのモル濃度比
と合金微粒子組成(原子%)との関係を、図4に析出量
との関係を示す。
Example 4 In Example 3, the amount ratio of metal ions was Cu2+:Fe2+:Zn2+=7:2:1 instead of the Cu ion aqueous solution.
Cu-Fe-Zn-B alloy fine particles were manufactured using a composite metal ion aqueous solution having a total ion concentration of 0.1 mol/l. FIG. 3 shows the relationship between the KBH4/metal ion molar concentration ratio and the alloy fine particle composition (atomic %), and FIG. 4 shows the relationship with the precipitation amount.

【022】実施例5 濃度が1mol/lのジメチルアミンボラン(DMAB
)水溶液に金属イオンの量比がCu2+:Ni2+=7
:3で、合計イオン濃度が0.1mol/lの複合金属
イオン水溶液を滴下して、反応温度を2〜95℃の範囲
で変化させながらCu−Ni−B系合金微粒子を製造し
た。図5に反応温度と合金微粒子組成(原子%)との関
係を示す。
Example 5 Dimethylamine borane (DMAB) with a concentration of 1 mol/l
) The amount ratio of metal ions in the aqueous solution is Cu2+:Ni2+ = 7
:3, a composite metal ion aqueous solution having a total ion concentration of 0.1 mol/l was added dropwise to produce Cu-Ni-B alloy fine particles while changing the reaction temperature in the range of 2 to 95°C. FIG. 5 shows the relationship between reaction temperature and alloy fine particle composition (atomic %).

【023】実施例6 実施例5において、Cu、Ni複合金属イオン水溶液の
代わりに金属イオンの量比がCu2+:Zn2+:Au
3+:Fe2+=7:2:0.5:0.5で、合計イオ
ン濃度が0.1mol/lの複合金属イオン水溶液を用
いて、Cu−Zn−Au−Fe−B系合金微粒子を製造
した。図6に反応温度と合金微粒子組成(原子%)との
関係を示す。
Example 6 In Example 5, the metal ion amount ratio was Cu2+:Zn2+:Au instead of the Cu, Ni composite metal ion aqueous solution.
Cu-Zn-Au-Fe-B based alloy fine particles were produced using a composite metal ion aqueous solution with 3+:Fe2+=7:2:0.5:0.5 and a total ion concentration of 0.1 mol/l. . FIG. 6 shows the relationship between reaction temperature and alloy fine particle composition (atomic %).

【024】実施例7 濃度が1mol/lの水素化ホウ素カリウム水溶液中に
水酸化ナトリウムを添加して、種々のpHの還元剤水溶
液を調製し、これにCuイオン水溶液を滴下混合して、
Cu−B系合金微粒子を製造した。なお、反応温度はい
ずれも20℃とした。図7にpHと、合金微粒子組成(
原子%)との関係を示す。
Example 7 Sodium hydroxide was added to a potassium borohydride aqueous solution with a concentration of 1 mol/l to prepare reducing agent aqueous solutions with various pHs, and a Cu ion aqueous solution was added dropwise and mixed therein.
Cu-B alloy fine particles were manufactured. Note that the reaction temperature was 20°C in all cases. Figure 7 shows the pH and alloy fine particle composition (
(atomic%).

【025】実施例8 実施例7において、Cuイオン水溶液の代わりに金属イ
オンの量比がCu2+:Zn2+:Fe2+=7:1.
5:1.5で、合計イオン濃度が0.1mol/lの複
合金属イオン水溶液を用いて、Cu−Zn−Fe−B系
合金微粒子を製造した。 図8にpHと合金微粒子組成(原子%)との関係を示す
Example 8 In Example 7, instead of the Cu ion aqueous solution, the amount ratio of metal ions was Cu2+:Zn2+:Fe2+=7:1.
Cu-Zn-Fe-B based alloy fine particles were manufactured using a composite metal ion aqueous solution with a ratio of 5:1.5 and a total ion concentration of 0.1 mol/l. FIG. 8 shows the relationship between pH and alloy fine particle composition (atomic %).

【026】026]

【発明の効果】以上のように、本発明によれば、周期律
表1B族、2B族に属する金属を主成分とする合金微粒
子を製造できる。従って、導電用ペ−スト材料、導電ろ
う接用材料、電極のように溶融性や導電性を特に必要と
する電気部品、化学反応触媒のような化学特性を必要と
する材料、そらには、セラミックス、塗料、異種金属、
プラスチックなどとの混合分散剤などに利用できる。
As described above, according to the present invention, fine alloy particles containing metals belonging to Groups 1B and 2B of the Periodic Table as a main component can be produced. Therefore, conductive paste materials, conductive soldering materials, electrical parts that require meltability and conductivity such as electrodes, materials that require chemical properties such as chemical reaction catalysts, etc. ceramics, paints, dissimilar metals,
It can be used as a mixing dispersant with plastics, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例3でCu−B系合金微粒子を製造した場
合のKBH4/Cuイオンのモル濃度比と合金微粒子組
成(原子%)との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the molar concentration ratio of KBH4/Cu ions and the alloy fine particle composition (atomic %) when Cu-B alloy fine particles were produced in Example 3.

【図2】実施例3でCu−B系合金微粒子を製造した場
合のKBH4/Cuイオンのモル濃度比と析出量との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the molar concentration ratio of KBH4/Cu ions and the precipitation amount when Cu-B alloy fine particles were produced in Example 3.

【図3】実施例4でCu−Fe−Zn−B系合金微粒子
を製造した場合のKBH4/金属イオンのモル濃度比と
合金微粒子組成(原子%)との関係を示すグラフである
FIG. 3 is a graph showing the relationship between the KBH4/metal ion molar concentration ratio and the alloy fine particle composition (atomic %) when Cu-Fe-Zn-B alloy fine particles were produced in Example 4.

【図4】実施例4でCu−Fe−Zn−B系合金微粒子
を製造した場合のKBH4/金属イオンのモル濃度比と
析出量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the molar concentration ratio of KBH4/metal ion and the precipitation amount when Cu-Fe-Zn-B alloy fine particles were produced in Example 4.

【図5】実施例5でCu−Ni−B系合金微粒子を製造
した場合の反応温度と合金微粒子組成(原子%)との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between reaction temperature and alloy fine particle composition (atomic %) when Cu-Ni-B alloy fine particles were produced in Example 5.

【図6】実施例6でCu−Zn−Au−Fe−B系合金
微粒子を製造した場合の反応温度と合金微粒子組成(原
子%)との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between reaction temperature and alloy fine particle composition (atomic %) when Cu-Zn-Au-Fe-B alloy fine particles were produced in Example 6.

【図7】実施例7でCu−B系合金微粒子を製造した場
合のpHと合金微粒子組成(原子%)との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between pH and alloy fine particle composition (atomic %) when Cu-B alloy fine particles were produced in Example 7.

【図8】実施例8でCu−Zn−Fe−B系合金微粒子
を製造した場合のpHと合金微粒子組成(原子%)との
関係を示すグラフである。
FIG. 8 is a graph showing the relationship between pH and alloy fine particle composition (atomic %) when Cu-Zn-Fe-B alloy fine particles were produced in Example 8.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素化ホウ素化合物またはアミンボラン
誘導体を含む還元剤溶液中に、周期律表1B族、2B族
に属する金属のイオンを1種または2種以上を含む金属
イオン溶液を混合して、反応させることを特徴とする合
金微粒子の製造方法。
1. A metal ion solution containing one or more metal ions belonging to Groups 1B and 2B of the Periodic Table is mixed in a reducing agent solution containing a borohydride compound or an amine borane derivative, A method for producing alloy fine particles characterized by a reaction.
【請求項2】  水素化ホウ素化合物またはアミンボラ
ン誘導体を含む還元剤溶液中に、周期律表1B族、2B
族に属する金属のイオンを1種または2種以上と遷移金
属のイオンの1種または2種以上とを含む金属イオン溶
液を混合して、反応させることを特徴とする合金微粒子
の製造方法。
2. In a reducing agent solution containing a borohydride compound or an amine borane derivative,
A method for producing fine alloy particles, which comprises mixing and reacting a metal ion solution containing one or more metal ions belonging to the group A and one or more transition metal ions.
【請求項3】  金属イオン溶液の周期律表1B族に属
する金属のイオンが銅イオンであることを特徴とする請
求項1または2に記載の合金微粒子の製造方法。
3. The method for producing fine alloy particles according to claim 1, wherein the ions of a metal belonging to group 1B of the periodic table in the metal ion solution are copper ions.
【請求項4】  金属イオン溶液の周期律表2B族に属
する金属のイオンが亜鉛イオンであることを特徴とする
請求項1または2に記載の合金微粒子の製造方法。
4. The method for producing fine alloy particles according to claim 1 or 2, wherein the ions of a metal belonging to group 2B of the periodic table in the metal ion solution are zinc ions.
【請求項5】  還元剤溶液の水素化ホウ素化合物また
はアミンボラン誘導体濃度と金属イオン溶液の金属イオ
ン濃度をモル濃度比で前者/後者≧1とすることを特徴
とする請求項1〜4に記載のいずれかの合金微粒子の製
造方法。
5. The method according to claim 1, wherein the concentration of the borohydride compound or the amine borane derivative in the reducing agent solution and the metal ion concentration in the metal ion solution are such that the molar concentration ratio is former/latter≧1. A method for producing any alloy fine particles.
【請求項6】  反応温度を80℃以下にすることを特
徴とする請求項1〜5に記載のいずれかの合金微粒子の
製造方法。
6. The method for producing fine alloy particles according to claim 1, wherein the reaction temperature is 80° C. or lower.
【請求項7】  還元剤溶液のpHを13.5以下にす
ることを特徴とする請求項1〜6に記載のいずれかの合
金微粒子の製造方法。
7. The method for producing fine alloy particles according to claim 1, wherein the pH of the reducing agent solution is set to 13.5 or less.
JP7581491A 1991-03-15 1991-03-15 Production of fine alloy particles Withdrawn JPH04289107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7581491A JPH04289107A (en) 1991-03-15 1991-03-15 Production of fine alloy particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7581491A JPH04289107A (en) 1991-03-15 1991-03-15 Production of fine alloy particles

Publications (1)

Publication Number Publication Date
JPH04289107A true JPH04289107A (en) 1992-10-14

Family

ID=13587025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7581491A Withdrawn JPH04289107A (en) 1991-03-15 1991-03-15 Production of fine alloy particles

Country Status (1)

Country Link
JP (1) JPH04289107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
JP2007063657A (en) * 2005-09-02 2007-03-15 Chiba Inst Of Technology Permanent magnet material
JP2007533862A (en) * 2004-04-22 2007-11-22 本田技研工業株式会社 Metal and alloy nanoparticles and methods for their synthesis
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
WO2021148973A1 (en) * 2020-01-21 2021-07-29 Universita' Degli Studi Di Padova Multifunctional nanoparticles based on metallic nanoalloys for diagnostic and therapeutic use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
JP2007533862A (en) * 2004-04-22 2007-11-22 本田技研工業株式会社 Metal and alloy nanoparticles and methods for their synthesis
JP2007063657A (en) * 2005-09-02 2007-03-15 Chiba Inst Of Technology Permanent magnet material
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
WO2021148973A1 (en) * 2020-01-21 2021-07-29 Universita' Degli Studi Di Padova Multifunctional nanoparticles based on metallic nanoalloys for diagnostic and therapeutic use

Similar Documents

Publication Publication Date Title
EP0154534B1 (en) Amorphous metal alloy powders and synthesis of same by solid state chemical reduction reactions
CN101100002B (en) Method for producing metal nano granule
JP3635451B2 (en) Metal powder, method for producing the same, and conductive paste
US6929675B1 (en) Synthesis metal nanoparticle
JPS6210230A (en) Amorphous metal alloy composition and its synthesis by solidphase unit/reduction reaction
JP2015074829A (en) Reagent complex and method of synthesizing reagent complex
AU2020435277A1 (en) Preparation method for powder material and use thereof
Qiao et al. Facile synthesis of porous PdCu nanoboxes for efficient chromium (VI) reduction
Huang et al. Fabrication of fully covered Cu–Ag core–shell nanoparticles by compound method and anti-oxidation performance
Huang et al. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape
Zhang et al. Polycrystalline Cu7Te4 dendritic microstructures constructed by spherical nanoparticles: Fast electrodeposition, influencing factors, and the shape evolution
KR101061600B1 (en) Manufacturing method of cobalt powder
CN1060703C (en) Method for preparing nanometre metal powder
CN104884193B (en) Not solvent-laden silver synthesis and the silver-colored product thus prepared
JPH04289107A (en) Production of fine alloy particles
JP2010512462A (en) Preparation of nanoparticles containing iron and titanium
CN110732678B (en) Nano-micron tin-bismuth alloy spherical powder and wet chemical preparation method thereof
CN109822090A (en) A kind of preparation method of the copper nanoparticle of in-stiu coating organic matter
CN113307246B (en) Carbon-loaded transition metal/transition metal nitride composite material and preparation method thereof
CN103028736B (en) Silver-coated cobalt powder and preparation method thereof
CN101362212A (en) Method for preparing minute globular powdered nickel
Zhou et al. The preparation of nano-scale plate silver powders by visible light induction method
KR100683963B1 (en) Production method of silver powder by electro-chemical reduction
CN1268013C (en) Method for preparing transition metal distibide
Wu et al. Research progress in preparation of metal powders by pressurized hydrogen reduction

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514