JPH02230960A - Knocking control device for internal combustion engine - Google Patents

Knocking control device for internal combustion engine

Info

Publication number
JPH02230960A
JPH02230960A JP5135989A JP5135989A JPH02230960A JP H02230960 A JPH02230960 A JP H02230960A JP 5135989 A JP5135989 A JP 5135989A JP 5135989 A JP5135989 A JP 5135989A JP H02230960 A JPH02230960 A JP H02230960A
Authority
JP
Japan
Prior art keywords
knocking
level
internal combustion
combustion engine
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5135989A
Other languages
Japanese (ja)
Other versions
JP2934253B2 (en
Inventor
Takahiro Aki
安芸 隆啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP1051359A priority Critical patent/JP2934253B2/en
Publication of JPH02230960A publication Critical patent/JPH02230960A/en
Application granted granted Critical
Publication of JP2934253B2 publication Critical patent/JP2934253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To secure the spark advance stability during the stationary running and prevent the abnormal spark delay at the transient time by counting the number of times when the detected knocking is the discrimination level or above, and delaying the ignition timing by the spark delay quantity corresponding to the number of times. CONSTITUTION:A control device 1 calculates the average value of outputs from a knocking detecting means 37 in the preset interval, sets the coefficient which is made larger as the acceleration state from an acceleration state detecting means such as a throttle sensor 22 is made larger, and multiplies it by the average value to set the discrimination level. The ignition timing control means of the control device 1 discriminates the output from the knocking detecting means 37 with the discrimination level, the number of times when the output is the discrimination level or above is counted, and the ignition timing is delayed by the spark delay quantity corresponding to the number of times. The spark advance stability during the stationary running is secured, transient responsiveness is improved, the abnormal spark delay at the transient time is prevented, and the fuel consumption and drivability can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関のノッキングを制御するための装置
に関し、さらに詳しくは、加速時などの過渡状態におけ
る応答性の改善されたノッキング制御装置に関する. 従来の技術 内燃機関の点火時期制御は、たとえば内燃機関の回転速
度と吸気圧とから求められる値を、吸入空気の温度と冷
却水の温度とで補正した値を基本進角量とし、ノッキン
グ制御装置によってこの基本進角量付近を進角または遅
角制御して行われる.典型的な従来技術のノッキング制
御装置では、先ず、内燃機関に固定した加速度センサな
どのようなノッキング検出手段によってノッキング現象
を検出し、所定の検出期間内に、その検出レベルが予め
定めるノック判定レベル以上となった回数を計測して、
ノッキング強度が検出される.次に、こうして検出され
たノッキング強度に応じて、ノッキング制御の遅角量を
設定し、ノッキングの発生を抑える制御が行われる. この従来技術においては、前記ノック判定レベルは、微
少な変動や電気ノイズを吸収して進角安定性を確保する
ために、過去のノッキング検出手段からの出力が、その
出力時点からの経過時間に応じて重み付けが行われ、こ
うしてなました値の平均値に設定される.またこの判定
レベルは、ノッキング検出手段と各気簡の燃焼室との距
離に対応するために、各気筒毎に設定されている.発明
が解決しようとする課題 上述のような従来技術では、各気筒毎のなまし演算には
かなりの時間を要するため、たとえば変速機の変速段が
第1速においての加速時のように、前記所定の検出期間
内に内燃機関の回転速度が急激に変化した場合には、前
記判定レベルは低いままである.したがって、内燃機関
の回転速度の上昇に伴って増大するノッキング検出手段
の出力のノイズ成分までがこの判定レベル以上となって
しまい、ノッキングが発生していないにも拘わらず、異
常な遅角制御が行われ、燃費の低下やドライバビリテイ
の悪化を招く. 本発明の目的は、定常走行時の進角安定性を確保すると
ともに、過渡応答性を改善して過渡時の異常遅角を防止
し、燃費およびドライバビリテイを向上することができ
る内燃機関のノッキング制御装置を提供することである
. 課題を解決するための手段 本発明は、内燃機関のノッキングを検出するノッキング
検出手段と、 前記ノッキング検出手段の出力に応答して、予め定める
期間に亘るノッキング検出手段の出力の平均値を演算す
る平均値演算手段と、 内燃機関の加速状態を検出する加速状態検出手段と、 前記平均値演算手段および加速状態検出手段の出力に応
答して、加速状態が大きくなるほど大きくなる係数αを
設定し、前記平均値と係数αとの積に対応する弁別レベ
ルを設定するレベル設定手段と、 ノッキング検出手段の出力を前記弁別レベルでレベル弁
別し、検出されたノッキングが前記弁別レベル以上であ
る回数を求め、この回数に対応した遅角量だけ点火時期
を遅らせる点火時期制御手段とを含むことを特徴とする
内燃機関のノッキング制御装置である. 作  用 本発明に従えば、ノッキング検出手段の出力は平均値演
算手段において予め定める期間の平均値が演算される.
平均値演算手段の出力はレベル設定手段に与えられてお
り、このレベル設定手段にはまた、内燃機関の加速状態
を検出する加速状態検出手段からの出力が与えられてい
る.レベル設定手段は、前記加速状態が大きくなるほど
大きくなる係数αを設定し、この係数αと前記平均値と
の積に対応する弁別レベルを設定する.レベル設定手段
からの出力と、前記ノッキング検出手段からの出力とは
、点火時期制御手段に与えられる.該点火時期制御手段
は、検出されたノッキングを前記弁別レベルでレベル弁
別して弁別レベル以上である回数を求め、この回数に対
応した遅角量だけ点火時期を遅らせる. したがって、内燃機関の加速状態が大きく変動する過渡
時には、その加速状態に応じた弁別レベルが設定される
ので、該過渡時に前記ノッキング検出手段の出力に混入
するノイズなどは、比較的高い弁別レベルでレベル弁別
されて除去される.また、前記ノイズ成分の発生が少な
い定常時には、比較的低い弁別レベルで、高精度で安定
したノッキング制御を行うことができる.こうして定常
時の進角安定性を確保することができるとともに、過渡
応答性を改善して過渡時の異常遅角を防止し、燃費およ
びドライバビリティを向上することができる. 実施例 第1図は、本発明の一実施例のノッキング制御が行われ
る内燃機関の制御装置lと、それに関連する構成を示す
ブロック図である.吸気口2がら導入された燃焼用空気
は、エアクリーナ3で浄化され、吸気管4から該吸気管
4に介在されるスロットル弁5でその流入量が調整され
た後、サージタンク6に流入する.サージタンク6から
流出した燃焼用空気は、吸気管7に介在される燃料噴射
弁8から噴射される燃料と混きされ、吸気弁9を介して
内燃機関10の燃焼室11に供給される.燃焼室11に
は点火ブラグ12が設けられており、この燃焼室11か
らの燃焼排ガスは、排気弁13を介して排出され、排気
管14から三元触媒15を経て大気中に放出される. 前記吸気管4には吸入空気の温度を検出する吸気温度検
出器21が設けられ、前記スロットル弁5にはスロット
ル弁開度検出器22が設けられ、サージタンク6には吸
気圧検出器23が設けられる.また前記燃焼室11け近
には、冷却水温度検出器24と、たとえば加速度センサ
なとで実現されるノッキング検出器37とが設けられて
いる.排気管14において、三元触媒15より上流側に
は酸素濃度検出器25が設けられ、三元触媒15より下
流側には排気温度検出器26が設けられる.内燃機関1
0の回転速度および加速状態は,クランク角検出器27
によって検出される.制御装置1には、前記各検出器2
1〜27.37とともに、車速検出器28と、内燃機関
10を始動させるスタータモータ33が起動されている
かどうかを検出するスタート検出器29と、冷房機の使
用などを検出する空調検出器30と、該内燃機関10が
搭載される自動車が自動変速機付きであるときには、そ
の自動変速機の変速段がニュートラル位置であるどうか
を検出するニュートラル検出331とからの検出結果が
入力される.さらにまなこの制御装置1は、バッテリ3
4によって電力付勢されており、該制御装置1は前記各
検出器21〜31.37の検出結果、および電圧検出器
20によって検出されるバッテリ34の電源電圧などに
基づいて、燃料噴射量や点火時期などを演算し、前記燃
料噴射弁8および点火プラグ12などを制御する. 前記吸気管4にはまた、スロットル弁5の上流側と下流
側とをバイパスする側路35が形成されており、この側
N35には流量タ1御弁36が設けられている.この流
量制御井36は、制御装置1からの出力に基づいて、ス
ロットル弁5がほぼ全閉であるアイドリンク時の燃焼用
空気の流量を調整制御する.制御装置1はまた、内燃機
関10が運転されているときには、燃料ボンブ32を駆
動する. 第2図は、制御装置1の具体的構成を示すブロック図で
ある.前記検出器20〜25の検出結果は、入力インタ
フエイス回路41がらアナログ/デジタル変換器42を
介して、平均値演算手段であるとともにレベル設定手段
であり、さらに点火時期制御手段である処理回路43に
与えられる.また前記検出器22.27〜31.37の
検出結果は、入力インタフエイス回路44を介して前記
処理回路43に与えられる.処理回路43内には、各種
の制御用マップや学習値などを記憶するためのメモリ4
5が設けられており、またこの処理回路43には、前記
バッテリ34からの電力が定電圧回路46を介して供給
される. 処理回I@43からの制御出力は、出力インタフエイス
回路47を介して導出され、前記燃料噴射弁8に与えら
れて燃料噴射量が制御され、またイグナイタ48を介し
て点火ブラグ12に与えられて点火時期が制御され、さ
らにまた前記流量制御弁36に与えられてアイドル時の
側路35を介する流入空気流量が制御され、また燃料ボ
ンブ32に与えられて該燃料ボング32が駆動制御され
る.前記排気温度検出器26の検出結果は、制御装置1
内の排気温度検出回路49に与えられており、その検出
結果が異常に高温であるときには、駆動回路50を介し
て警告灯51が点灯される.上述のように構成された制
御装置1において、内燃機関10がたとえば4気筒、4
サイクル内燃機関である場会には、クランク角検出器2
7からは第3図(1)で示されるように、時刻t1〜t
2間の180°クランク角( rcAJという.》毎に
上死点信号が導出される.処理回路43は、第3図《2
》において参照符W1で示されるように,前記上死点信
号簡の所定の期間を検出期間とし、第3図(3)で示さ
れるノッキング検出器37からの検出出力を、後述する
ようにして予め設定されるノック判定レベルVLVLで
レベル弁別する.前記検出期間W1内において、ノッキ
ング検出器37からの出力がノック判定レベルVLVL
以上となった回数が計測され、その回数に対応してノッ
キングの強度を検出することができる.一方、処理回路
43は、第4図に示されるように、点火時期を予め定め
る周期ΔT毎に予め定めるクランク角Δθずつ進角して
ゆき、この第4図において時刻t3,t4で示されるよ
うに、前述のようにして検出されたノッキング強度が予
め定める値以上となると、その値に対応した遅角量だけ
遅角制御を行う。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for controlling knocking in an internal combustion engine, and more particularly to a knocking control device with improved responsiveness in transient conditions such as during acceleration. Conventional technology Ignition timing control for internal combustion engines uses, for example, a value determined from the internal combustion engine's rotational speed and intake pressure, corrected by intake air temperature and cooling water temperature, as the basic advance amount, and performs knocking control. The device performs advance or retard control around this basic advance angle amount. In a typical conventional knocking control device, a knocking phenomenon is first detected by a knocking detection means such as an acceleration sensor fixed to an internal combustion engine, and within a predetermined detection period, the detection level reaches a predetermined knock judgment level. Measure the number of times that the
Knocking strength is detected. Next, the amount of retardation of knocking control is set according to the knocking intensity detected in this way, and control to suppress the occurrence of knocking is performed. In this conventional technology, the knock determination level is set so that the output from the past knocking detection means corresponds to the elapsed time from the output point in order to absorb minute fluctuations and electrical noise and ensure advance angle stability. Weighting is performed accordingly, and the average value of the smoothed values is set. Furthermore, this determination level is set for each cylinder in order to correspond to the distance between the knocking detection means and each combustion chamber. Problems to be Solved by the Invention In the prior art as described above, it takes a considerable amount of time to calculate the smoothing for each cylinder. If the rotational speed of the internal combustion engine changes rapidly within the predetermined detection period, the determination level remains low. Therefore, even the noise component of the output of the knocking detection means, which increases as the rotational speed of the internal combustion engine increases, exceeds this determination level, and even though no knocking has occurred, abnormal angle retard control is performed. This causes a decrease in fuel efficiency and deterioration of drivability. An object of the present invention is to provide an internal combustion engine capable of ensuring advance angle stability during steady driving, improving transient response and preventing abnormal angle retardation during transient periods, and improving fuel efficiency and drivability. The purpose is to provide a knocking control device. Means for Solving the Problems The present invention includes a knocking detection means for detecting knocking in an internal combustion engine, and calculating an average value of the output of the knocking detection means over a predetermined period in response to the output of the knocking detection means. an average value calculation means; an acceleration state detection means for detecting an acceleration state of the internal combustion engine; and a coefficient α that increases as the acceleration state increases in response to the outputs of the average value calculation means and the acceleration state detection means; level setting means for setting a discrimination level corresponding to the product of the average value and a coefficient α; level-discriminating the output of the knocking detection means using the discrimination level, and determining the number of times that detected knocking is equal to or higher than the discrimination level; , and ignition timing control means for retarding the ignition timing by an amount of retardation corresponding to the number of times. According to the present invention, the average value of the output of the knocking detection means over a predetermined period is calculated in the average value calculation means.
The output of the average value calculation means is given to the level setting means, and the level setting means is also given the output from the acceleration state detection means for detecting the acceleration state of the internal combustion engine. The level setting means sets a coefficient α that increases as the acceleration state increases, and sets a discrimination level corresponding to the product of this coefficient α and the average value. The output from the level setting means and the output from the knocking detection means are given to the ignition timing control means. The ignition timing control means performs level discrimination on the detected knocking using the discrimination level, determines the number of times the knocking is equal to or higher than the discrimination level, and retards the ignition timing by a retard amount corresponding to this number of times. Therefore, during a transient period in which the acceleration state of the internal combustion engine varies greatly, a discrimination level is set according to the acceleration state, so that noises mixed into the output of the knocking detection means during the transient period are detected at a relatively high discrimination level. It is level-discriminated and removed. In addition, during steady state when the noise component is less generated, highly accurate and stable knocking control can be performed with a relatively low discrimination level. In this way, it is possible to ensure advance angle stability in steady state, improve transient response, prevent abnormal angle retardation during transient times, and improve fuel efficiency and drivability. Embodiment FIG. 1 is a block diagram showing a control device l for an internal combustion engine in which knocking control is performed according to an embodiment of the present invention, and its related configuration. Combustion air introduced through the intake port 2 is purified by an air cleaner 3, and after its inflow amount is adjusted by a throttle valve 5 interposed in the intake pipe 4, it flows into a surge tank 6. Combustion air flowing out of the surge tank 6 is mixed with fuel injected from a fuel injection valve 8 disposed in an intake pipe 7, and is supplied to a combustion chamber 11 of an internal combustion engine 10 via an intake valve 9. The combustion chamber 11 is provided with an ignition plug 12, and the combustion exhaust gas from the combustion chamber 11 is discharged through an exhaust valve 13, and is discharged into the atmosphere from an exhaust pipe 14 via a three-way catalyst 15. The intake pipe 4 is provided with an intake air temperature detector 21 for detecting the temperature of intake air, the throttle valve 5 is provided with a throttle valve opening detector 22, and the surge tank 6 is provided with an intake pressure detector 23. It will be established. Further, near the combustion chamber 11, there are provided a cooling water temperature detector 24 and a knocking detector 37 realized by, for example, an acceleration sensor. In the exhaust pipe 14, an oxygen concentration detector 25 is provided upstream of the three-way catalyst 15, and an exhaust temperature detector 26 is provided downstream of the three-way catalyst 15. internal combustion engine 1
When the rotation speed and acceleration state is 0, the crank angle detector 27
Detected by. The control device 1 includes each of the detectors 2
1 to 27.37, a vehicle speed detector 28, a start detector 29 that detects whether the starter motor 33 that starts the internal combustion engine 10 is activated, and an air conditioning detector 30 that detects the use of the air conditioner, etc. When the vehicle in which the internal combustion engine 10 is installed is equipped with an automatic transmission, a detection result from a neutral detection 331 that detects whether the gear position of the automatic transmission is in the neutral position is input. Furthermore, Manako's control device 1 includes a battery 3
4, and the control device 1 determines the fuel injection amount and the like based on the detection results of each of the detectors 21 to 31. It calculates ignition timing, etc., and controls the fuel injection valve 8, spark plug 12, etc. The intake pipe 4 is also formed with a bypass passage 35 that bypasses the upstream and downstream sides of the throttle valve 5, and a flow meter 1 control valve 36 is provided on this side N35. The flow rate control well 36 adjusts and controls the flow rate of combustion air during idling, when the throttle valve 5 is almost fully closed, based on the output from the control device 1. The control device 1 also drives the fuel bomb 32 when the internal combustion engine 10 is operating. FIG. 2 is a block diagram showing the specific configuration of the control device 1. The detection results of the detectors 20 to 25 are sent to an input interface circuit 41 via an analog/digital converter 42 to a processing circuit 43 which is an average value calculation means, a level setting means, and an ignition timing control means. is given to. Further, the detection results of the detectors 22.27 to 31.37 are provided to the processing circuit 43 via an input interface circuit 44. Inside the processing circuit 43, there is a memory 4 for storing various control maps, learning values, etc.
5 is provided, and power from the battery 34 is supplied to the processing circuit 43 via a constant voltage circuit 46. The control output from the processing circuit I@43 is derived via the output interface circuit 47, is applied to the fuel injection valve 8 to control the fuel injection amount, and is also applied to the ignition plug 12 via the igniter 48. The ignition timing is controlled by the flow control valve 36, and the flow rate of air flowing in through the side passage 35 during idling is controlled by the flow control valve 36, and the flow rate of the air flowing through the side passage 35 during idling is controlled by the flow control valve 36.The ignition timing is controlled by the flow control valve 36, and the flow rate of the air flowing through the side passage 35 is controlled by the flow control valve 36.The ignition timing is controlled by the flow control valve 36. .. The detection result of the exhaust temperature detector 26 is transmitted to the control device 1.
If the detection result is that the temperature is abnormally high, a warning light 51 is turned on via the drive circuit 50. In the control device 1 configured as described above, the internal combustion engine 10 has, for example, four cylinders, four
In the case of a cycle internal combustion engine, a crank angle detector 2 is installed.
7, as shown in FIG. 3 (1), the time t1 to t
A top dead center signal is derived every 180° crank angle between 2 (referred to as rcAJ).
As indicated by the reference mark W1 in ), a predetermined period of the top dead center signal signal is set as a detection period, and the detection output from the knocking detector 37 shown in FIG. 3 (3) is determined as described below. The level is discriminated based on the knock judgment level VLVL set in advance. Within the detection period W1, the output from the knocking detector 37 is at the knock judgment level VLVL.
The number of times this occurs is measured, and the knocking intensity can be detected based on the number of times. On the other hand, as shown in FIG. 4, the processing circuit 43 advances the ignition timing by a predetermined crank angle Δθ at every predetermined cycle ΔT, and as shown at times t3 and t4 in FIG. In addition, when the knocking intensity detected as described above exceeds a predetermined value, the retard angle control is performed by the retard amount corresponding to that value.

また、前記ノック判定レベルVLVLは以下のようにし
て決定される.すなわち先ず、ノッキング検出器37の
出力をVADとし、その出力を加えた今回の平均値VM
ADIは、前回の平均値をV M A D L+ − 
+ + とするとき、から求め、この平均値VMADI
 と、前回のバックグランドレベルV M E A N
 t + − + + とから今回のバックグランドレ
ベルVMEAN.を求める.次に、こうして求められた
バックグランドレベルVMEANを、第5図で示される
ように、クランク角検出器27によって検出される内燃
機関10の回転速度NEに対応して決定される補正係数
Kと、第6図で示されるように、前記回転速度NEの単
位時間当たりの変化率ΔNE、すなわち加速状態に基づ
いて求められる過渡補正係数αとによって補正し、さら
にノイズ補正値OFFSETを加算することによって前
記ノック判定レベル■LVLが求められる. VLVL=VMEAN*K*α+OFFSF.T   
  ・= (3)なお、前記第5図で示される回転速度
NEと補正係数Kとのグラフ、および第6図で示される
時間変化率ΔNEと過渡補正係数αとのグラフは、メモ
リ45内にマップとして予めストアされている. したがって、上述のようにして求められたノック判定レ
ベルVLVLは、内燃機関10の回転速度NEの時間変
化率ΔNE、すなわち加速状態が大きくなるにつれて大
きく選ばれる過渡補正係数αで補正される.これによっ
て良好な応答性で、急加速時のような過渡時にはこのノ
ック判定レベルVLVLは比較的高めに設定され、した
がってノッキング検出器37からのノイズ成分の出力を
除去して、ノッキング現象のみを確実に検出することが
できる.こうして、前記ノイズ成分までもノッキングに
誤検出してしまうような不具会が解消され、加速時にお
ける異常遅角制御などの不所望な制御を防止して、燃費
およびドライバビリテイを向上することができる. また、内燃機関10の定常時には、前記ノック判定レベ
ルVLVLは、ノッキング検出器37の今回の出力VA
Dを、前回以前の出力の平均値でなました値が用いられ
ており、安定したノッキング制御を行うことができる. 第7図は、処理回路45における前記ノック判定レベル
VLVLの算出動作を説明するためのフローチャートで
ある。ステップn1で、前記上死点信号が入力され、前
記時刻tl,t2で示されるタイミングとなると、ステ
ップn2で、この入力時刻がタイマT1からアキュムレ
ータACCにストアされる.ステップn3では前記タイ
マT1がリセットされ、該タイマT1は再び計時動作を
開始する.ステップn 4では、前記アキュムレータA
CCのストア内容が今回の上死点信号の周期としてレジ
スタTIにストアされる. ステップn5では、前回の上死点信号の周期T.−1l
と今回の上死点信号の周期T,との差が0以上であるか
どうか、すなわち内燃機関10が加速中であるかどうか
が判断され、そうであるときにはステップn6に移る.
ステップn 6では、前回の周期T +t−++と今回
の周期T.との差が予め定める加速検知レベルb以上で
あるかどうかが判断され、そうであるとき、すなわち急
激な加速が行われているときにはステップn7に移る。
Further, the knock determination level VLVL is determined as follows. That is, first, the output of the knocking detector 37 is set as VAD, and the current average value VM is obtained by adding the output.
ADI is the previous average value V M A D L+ -
+ +, find this average value VMADI from
And the previous background level V M E A N
From t + − + + to the current background level VMEAN. Find. Next, the background level VMEAN obtained in this way is determined by a correction coefficient K determined corresponding to the rotational speed NE of the internal combustion engine 10 detected by the crank angle detector 27, as shown in FIG. As shown in FIG. 6, the rotational speed NE is corrected by the rate of change ΔNE per unit time, that is, the transient correction coefficient α determined based on the acceleration state, and the noise correction value OFFSET is added. Knock judgment level■LVL is required. VLVL=VMEAN*K*α+OFFSF. T
・= (3) Note that the graph of the rotational speed NE and the correction coefficient K shown in FIG. 5 and the graph of the time rate of change ΔNE and the transient correction coefficient α shown in FIG. It is stored in advance as a map. Therefore, the knock determination level VLVL obtained as described above is corrected by the temporal change rate ΔNE of the rotational speed NE of the internal combustion engine 10, that is, by the transient correction coefficient α which is selected to be larger as the acceleration state becomes larger. As a result, the knock judgment level VLVL is set relatively high during transient situations such as sudden acceleration with good responsiveness, and therefore the output of noise components from the knocking detector 37 is removed to ensure that only the knocking phenomenon is detected. can be detected. In this way, the problem of erroneously detecting the noise component as knocking is eliminated, and undesirable control such as abnormal retardation control during acceleration is prevented, thereby improving fuel efficiency and drivability. can. Further, when the internal combustion engine 10 is steady, the knock judgment level VLVL is determined by the current output VA of the knocking detector 37.
D is annealed by the average value of previous outputs, and stable knocking control can be performed. FIG. 7 is a flowchart for explaining the calculation operation of the knock determination level VLVL in the processing circuit 45. In step n1, the top dead center signal is input, and when the timings indicated by the times tl and t2 come, in step n2, this input time is stored from the timer T1 to the accumulator ACC. In step n3, the timer T1 is reset, and the timer T1 starts timing operation again. In step n4, the accumulator A
The stored contents of CC are stored in register TI as the cycle of the current top dead center signal. In step n5, the cycle of the previous top dead center signal T. -1l
It is determined whether the difference between the period T and the current top dead center signal is 0 or more, that is, whether the internal combustion engine 10 is accelerating. If so, the process moves to step n6.
In step n6, the previous period T +t-++ and the current period T. It is determined whether or not the difference between the two is equal to or greater than a predetermined acceleration detection level b, and if so, that is, if rapid acceleration is occurring, the process moves to step n7.

ステップn7では、今回の周期T,から回転速度NEの
時間変化率ΔNEが求められ、この時間変化率ΔNEか
ら前記第6図で示されるグラフのマップテーブルを用い
て、過渡補正係数αが補間演算して求められ、アキュム
レータACCにストアされ、ステップn8に移る.また
、前記ステップn5において前回の周期T ++−++
 と今回の周期T.どの差が負であるとき、およびステ
ップn6において前記差が加速検知レベルb未満である
ときにはステップn9に移り、アキュムレータACCに
1がストアされた後、ステップn8に移る.Cステップ
n8では、アキュムレータACCのストア内容が過渡補
正係数αとしてレジスタA1にストアされる. ステップnloでは、今回の上死点信号の周期T.がア
キュムレータACCにストアされる.ステップnilで
は、その周期T.から回転速度NEが求められ、この回
転速度NEから前記第5図に基づいて補正係数Kが補間
演算して求められ、アキュムレータACCにストアされ
る.ステップr112では、前記レジスタA1にストア
されている過渡補正係数αとアキュムレータACCにス
トアされている補正係数Kとが演算されてアキュムレー
タACCにストアされる.さらにステップnl3では、
前記アキュムレータACCのストア内容がバックグラン
ドレベルVMEANと演算されてアキュムレータACC
のストア内容が更新される.ステップnl4では、前記
アキュムレータACCのストア内容がさらに補正係数O
FFSETで補正されて更新される.こうしてステップ
rs 1 2〜nl4における演算動作によって前記第
3式に対応する演算が行われ、ステップn15でアキュ
ムレータACCのストア内容がノック判定レベルVLV
LとしてレジスタA2にストアされ、動作を終了する. このようにして内燃機関10の加速状態に対応した最適
なノック判定レベルVLVLを設定することができ、該
ノック判定レベルVLVLを用いることによって、定常
時には進角安定性を確保することかでき、また過渡時に
は応答性を向上することができ、こうして内燃機関10
を常に最適なノックキング制御を行うことができ、燃費
およびドライバビリテイを向上することができる.発明
の効果 以上のように本発明によれば、ノッキング検出手段の検
出結果を予め定める期間に亘って平均し、この平均値を
内燃機関の加速状態が大きくなるほど大きくなる係数α
で補正して弁別レベルを設定し、検出されたノッキング
を該弁別レベルでレベル弁別して弁別レベル以上である
回数を求め、この回数に対応した遅角量だけ点火時期を
遅らせるようにしたので、内燃機関の加速状態が大きく
変動する過渡時には、その加速状態に応じた弁別レベル
が設定される. したがって、該過渡時に前記ノッキング検出手段の出力
に混入するノイズなどは比較的高い弁別レベルで弁別さ
れて除去され、また前記ノイズ成分の発生が少ない定常
時には比較的低い弁別レベルで高精度で安定したノッキ
ング制御を行うことができる.こうして定常時の進角安
定性を確保することができるとともに、過渡応答性を改
善して過渡時の異常遅角を防止し、燃費およびドライバ
ビリテイを向上することができる.
In step n7, the time rate of change ΔNE of the rotational speed NE is determined from the current cycle T, and the transient correction coefficient α is calculated by interpolation from this time rate of change ΔNE using the map table of the graph shown in FIG. is calculated and stored in the accumulator ACC, and the process moves to step n8. Also, in step n5, the previous cycle T ++−++
And this cycle T. When which difference is negative, and when the difference is less than the acceleration detection level b in step n6, the process moves to step n9, and after 1 is stored in the accumulator ACC, the process moves to step n8. At C step n8, the contents stored in the accumulator ACC are stored in the register A1 as the transient correction coefficient α. In step nlo, the period of the current top dead center signal is T. is stored in accumulator ACC. In step nil, the period T. The rotational speed NE is determined from the rotational speed NE, and the correction coefficient K is determined by interpolation based on the rotational speed NE and stored in the accumulator ACC. In step r112, the transient correction coefficient α stored in the register A1 and the correction coefficient K stored in the accumulator ACC are calculated and stored in the accumulator ACC. Furthermore, in step nl3,
The stored contents of the accumulator ACC are calculated with the background level VMEAN and stored in the accumulator ACC.
The store contents of will be updated. In step nl4, the contents stored in the accumulator ACC are further adjusted by a correction coefficient O
Corrected and updated by FFSET. In this way, the calculation corresponding to the third equation is performed by the calculation operations in steps rs12 to nl4, and in step n15, the stored contents of the accumulator ACC are set to the knock judgment level VLV.
It is stored as L in register A2, and the operation ends. In this way, it is possible to set the optimum knock judgment level VLVL corresponding to the acceleration state of the internal combustion engine 10, and by using the knock judgment level VLVL, advance angle stability can be ensured in steady state, and Responsiveness can be improved during transients, and thus the internal combustion engine 10
It is possible to perform optimal knocking control at all times, improving fuel efficiency and drivability. Effects of the Invention As described above, according to the present invention, the detection results of the knocking detection means are averaged over a predetermined period, and this average value is determined by a coefficient α that increases as the acceleration state of the internal combustion engine increases.
, the detected knocking is level-discriminated using the discrimination level, the number of times the knocking is equal to or higher than the discrimination level is determined, and the ignition timing is delayed by the amount of retardation corresponding to this number of times. During transient periods when the acceleration state of the engine changes significantly, a discrimination level is set according to the acceleration state. Therefore, noise that mixes into the output of the knocking detection means during the transient period is discriminated and removed at a relatively high discrimination level, and during steady state when the noise component is generated less, the noise and the like mixed into the output of the knocking detection means are stabilized with high precision at a relatively low discrimination level. Knocking control can be performed. In this way, it is possible to ensure advance angle stability during steady state conditions, improve transient response, prevent abnormal angle retardation during transient times, and improve fuel efficiency and drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の内燃機関の制御装置1とそ
れに関連する構成を示すブロック図、第2[2lは制御
装置1の具体的構成を示すブロック図、第3図はノッキ
ング検出動作を説明するための波形図、第4図は進角お
よび遅角制御動作を説明するための波形図、第5図は内
燃機関10の回転速度NEと補正係数Kとの関係を示す
グラフ、第6図は前記回転速度NEの時間変化率ΔNE
と過渡補正係数αとの関係を示すグラフ、第7図1よノ
ツク判定レベルVLVLの算出動作を説明するためのフ
ローチャートである. 1・・・制御装置、10・・・内燃機関、20〜31,
37・・・検出器、43・・・処理回路、45・・・メ
モリ代理人  弁理士 西教 圭一郎 筆 図 氾 図 時 1 第 図 第 図
FIG. 1 is a block diagram showing a control device 1 for an internal combustion engine according to an embodiment of the present invention and its related configuration, FIG. 2 is a block diagram showing a specific configuration of the control device 1, and FIG. 3 is a knocking detection FIG. 4 is a waveform diagram for explaining the operation, FIG. 4 is a waveform diagram for explaining the advance and retard control operations, and FIG. 5 is a graph showing the relationship between the rotational speed NE of the internal combustion engine 10 and the correction coefficient K. Figure 6 shows the time rate of change ΔNE of the rotational speed NE.
FIG. 7 is a flowchart for explaining the calculation operation of the knock judgment level VLVL compared to FIG. 1. 1... Control device, 10... Internal combustion engine, 20-31,
37...Detector, 43...Processing circuit, 45...Memory agent Patent attorney Keiichiro Saikyo's handwritten illustrations 1 Figure Figure

Claims (1)

【特許請求の範囲】 内燃機関のノッキングを検出するノッキング検出手段と
、 前記ノッキング検出手段の出力に応答して、予め定める
期間に亘るノッキング検出手段の出力の平均値を演算す
る平均値演算手段と、 内燃機関の加速状態を検出する加速状態検出手段と、 前記平均値演算手段および加速状態検出手段の出力に応
答して、加速状態が大きくなるほど大きくなる係数αを
設定し、前記平均値と係数αとの積に対応する弁別レベ
ルを設定するレベル設定手段と、 ノッキング検出手段の出力を前記弁別レベルでレベル弁
別し、検出されたノッキングが前記弁別レベル以上であ
る回数を求め、この回数に対応した遅角量だけ点火時期
を遅らせる点火時期制御手段とを含むことを特徴とする
内燃機関のノッキング制御装置。
[Scope of Claims] Knocking detection means for detecting knocking in an internal combustion engine; and average value calculation means for calculating an average value of the output of the knocking detection means over a predetermined period in response to the output of the knocking detection means. , an acceleration state detection means for detecting an acceleration state of the internal combustion engine, and a coefficient α that increases as the acceleration state increases in response to the outputs of the average value calculation means and the acceleration state detection means, and a coefficient α that increases as the acceleration state increases, and the average value and the coefficient a level setting means for setting a discrimination level corresponding to the product of α; and a level discrimination means for level-discriminating the output of the knocking detection means using the discrimination level, determining the number of times the detected knocking is equal to or higher than the discrimination level, and corresponding to the number of times the detected knocking is equal to or higher than the discrimination level. and ignition timing control means for retarding ignition timing by an amount of retardation.
JP1051359A 1989-03-02 1989-03-02 Knocking control device for internal combustion engine Expired - Fee Related JP2934253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051359A JP2934253B2 (en) 1989-03-02 1989-03-02 Knocking control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051359A JP2934253B2 (en) 1989-03-02 1989-03-02 Knocking control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH02230960A true JPH02230960A (en) 1990-09-13
JP2934253B2 JP2934253B2 (en) 1999-08-16

Family

ID=12884741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051359A Expired - Fee Related JP2934253B2 (en) 1989-03-02 1989-03-02 Knocking control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2934253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215058A (en) * 1991-09-04 1993-06-01 Nippondenso Co., Ltd. Knock control apparatus for internal combustion engines
JP2013189919A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Internal combustion engine knock controlling apparatus
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284962A (en) * 1986-06-02 1987-12-10 Nippon Denso Co Ltd Ignition timing controller for internal combustion engine
JPS63295864A (en) * 1987-05-25 1988-12-02 Nippon Denso Co Ltd Knocking detecting device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284962A (en) * 1986-06-02 1987-12-10 Nippon Denso Co Ltd Ignition timing controller for internal combustion engine
JPS63295864A (en) * 1987-05-25 1988-12-02 Nippon Denso Co Ltd Knocking detecting device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215058A (en) * 1991-09-04 1993-06-01 Nippondenso Co., Ltd. Knock control apparatus for internal combustion engines
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
JP2013189919A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Internal combustion engine knock controlling apparatus

Also Published As

Publication number Publication date
JP2934253B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
JPH0251056B2 (en)
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPS6267258A (en) Driving control method for internal combustion engine
JPH04224245A (en) Control device of internal combustion engine
JP2737426B2 (en) Fuel injection control device for internal combustion engine
JPH02230960A (en) Knocking control device for internal combustion engine
JP2002081337A (en) Fuel injection control device
JP3591001B2 (en) Control device for internal combustion engine
JPS58176470A (en) Control of revolution number of engine upon idling
JPH0316498B2 (en)
JPH0243910B2 (en)
JPH0641151Y2 (en) Knocking detection device
JPS61155638A (en) Method for controling idle rotating number
JPH02277966A (en) Knocking control device of internal combustion engine
JPH059620B2 (en)
JPH07269401A (en) Air-fuel ratio control device for engine
JPS6375355A (en) Knocking control device for internal combustion engine
JPH10122057A (en) Egr controller for engine
JPS62153536A (en) Fuel injection controller for internal combustion engine
JPS59168271A (en) Ignition timing control of engine
JPH02191853A (en) Intake air condition quantity detecting device for internal combustion engine
JPH02294561A (en) Ignition timing control method for internal combustion engine
JP2582617B2 (en) Internal combustion engine deceleration control device
JPS63186941A (en) Fuel supply stop control device for internal combustion engine
JP3334453B2 (en) Catalyst deterioration detection device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees