JPH0222831A - Thermal-expansion adjusting material for high-temperature use - Google Patents

Thermal-expansion adjusting material for high-temperature use

Info

Publication number
JPH0222831A
JPH0222831A JP63172286A JP17228688A JPH0222831A JP H0222831 A JPH0222831 A JP H0222831A JP 63172286 A JP63172286 A JP 63172286A JP 17228688 A JP17228688 A JP 17228688A JP H0222831 A JPH0222831 A JP H0222831A
Authority
JP
Japan
Prior art keywords
copper
alloy
kovar
thermal expansion
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172286A
Other languages
Japanese (ja)
Inventor
Kenji Yamaguchi
健司 山口
Yasuhiko Miyake
三宅 保彦
Zenichi Yoshida
善一 吉田
Tomio Iizuka
飯塚 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63172286A priority Critical patent/JPH0222831A/en
Publication of JPH0222831A publication Critical patent/JPH0222831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PURPOSE:To enhance a brazing property while a thermal-expansion matching property is maintained by a method wherein copper or a copper alloy is clad on both faces of a Kovar and copper is set within a specific range. CONSTITUTION:Copper or copper alloys 1b, 1b are clad on both faces of a Kovar (an alloy composed of 28 to 31% Ni, 12 to 14% Co and a remaining part constituted of 0.02% or lower of Fe and C, 0.2% or lower of Si and 0.8% or lower of Mn) 1a; a clad material 1 capable of adjusting thermal expansion is formed. Both faces are clad in order to prevent a warp during a heating operation and to secure thermal stability; a constitutive ratio of sheet thicknesses of the copper-Kovar-copper clad material is set at 2:1:2 to 1:200:1. Thereby, it is possible to adjust the thermal expansion at a high temperature of 700 to 900 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パッケージ型半導体デバイスなどにおけるセ
ラミックス基板と封止部品との銀ろう付は接合などにお
いて、熱膨張差を具合よく整合させ得る熱膨張調整材に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for silver soldering between a ceramic substrate and a sealing component in a packaged semiconductor device, etc., using a thermal method that can suitably match the difference in thermal expansion. This invention relates to an expansion adjusting material.

[従来の技術] 例えばパッケージ型の半導体デバイスにおいては、第3
図に示すように、AJ 203セラミツクス基板3を銀
ろう2により筐体1゛に接合し、前記セラミックス基板
3にパワー用ダイオードの如きSiチップ5を半田4に
より接合することが行なわれている。
[Prior art] For example, in a packaged semiconductor device, the third
As shown in the figure, an AJ 203 ceramic substrate 3 is bonded to a housing 1'' by silver solder 2, and a Si chip 5 such as a power diode is bonded to the ceramic substrate 3 by solder 4.

この場合、筐体とセラミックス基板との銀ろう付けにお
いては、約400〜900℃の高温に加熱されるため、
Al2O3セラミックスと筐体との熱膨張の整合を得る
必要があり、筐体側の材料には一般にその熱膨張係数が
セラミックスに近いコバールのような低膨張性合金が使
用されている。
In this case, silver brazing between the casing and the ceramic substrate is heated to a high temperature of about 400 to 900 degrees Celsius, so
It is necessary to match the thermal expansion between the Al2O3 ceramic and the casing, and a low expansion alloy such as Kovar, whose coefficient of thermal expansion is close to that of ceramics, is generally used as the material for the casing.

[発明が解決しようとする課題] 筐体であるコバールに上記AjzOaセラミックスを銀
ろう付けする場合、コバール表面における銀ろう(A<
1−28%CU合金など)との濡れ性が悪く、ろう付は
後の剥離などその信頼性にとかくの問題を残していた。
[Problems to be Solved by the Invention] When silver-brazing the above AjzOa ceramics to Kovar, which is a housing, the silver solder (A<
1-28% CU alloy, etc.), and brazing left problems with reliability such as subsequent peeling.

本発明の目的は、上記した銀ろう付は上での懸念を解消
し、コバールの有するセラミックスとのずぐれな熱膨張
整合性をそのまま維持しつつろう付は性を大巾に改善し
た高温用熱膨張調整材を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned concerns about silver brazing, and to achieve high-temperature brazing that greatly improves brazing properties while maintaining Kovar's excellent thermal expansion consistency with ceramics. The purpose is to provide a thermal expansion adjusting material.

[課題を解決するための手段] 本発明は、コバールの両面に銅又は銅合金をクラッドし
、銅・コバール・銅の厚さ比が2:1:2から好ましく
はt 二200 : tとくに必要あらば1:500:
1の範囲となるように構成したものである。
[Means for Solving the Problem] The present invention clads both sides of Kovar with copper or copper alloy, and the thickness ratio of copper, Kovar, and copper is preferably from 2:1:2 to 2200:t. Araba 1:500:
It is configured so that the range is 1.

[作用] 上記の構成比であれば、コバールの有するセラミックス
との熱膨張整合性を害することなく表面に銅層を有する
ことによるろう付は性の大巾な改善と安定化を達成する
ことができ、半導体デバイスとしての信頼性の向上に寄
与することができる。
[Effect] With the above composition ratio, brazing properties can be greatly improved and stabilized by having a copper layer on the surface without impairing the thermal expansion compatibility with ceramics that Kovar has. This can contribute to improving the reliability of semiconductor devices.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] The present invention will be described below with reference to Examples.

本発明においては、第1図に示すようにコバール(28
〜31%Ni、12〜14%Co、残部FeならびにC
を0.02%以下、Siを0.2%以下、Mnを0.8
%以下としてなる合金)1aの両面に銅又は銅合金1b
、lbをクラッドし、熱膨張調整可能なりラッド材1に
構成する。
In the present invention, Kovar (28
~31% Ni, 12-14% Co, balance Fe and C
0.02% or less, Si 0.2% or less, Mn 0.8%
% or less) Copper or copper alloy 1b on both sides of 1a
, lb is clad and configured as a rad material 1 with adjustable thermal expansion.

両面にクラッドするのは、加熱の際の反りを防止し熱的
安定性を確保するためである。
The purpose of cladding on both sides is to prevent warping during heating and ensure thermal stability.

銅又は銅合金をクラッドするのは、Al2O3セラミッ
クス3と接合させる際に、銅が銀ろうとの濡れ性ならび
に接合性においてとくにすぐれているためである。すな
わち、第2図に示すように本発明に係るクラツド材1を
用いることにより銀ろう2が接するのはコバール1aで
はなく銅層1bとなり、銅そのものとの銀ろう付けと変
るところがなく、安定かつすぐれた接合を得ることがで
きる。
The reason why copper or a copper alloy is used for cladding is that copper has particularly excellent wettability and bondability with silver solder when bonded to Al2O3 ceramics 3. That is, as shown in FIG. 2, by using the clad material 1 according to the present invention, the silver solder 2 comes into contact with the copper layer 1b instead of the Kovar 1a, which is no different from silver brazing with copper itself, and is stable and Excellent bonding can be obtained.

第4図は、上記のようにして得た本発明に係るクラツド
材とAl2O3セラミックスとの熱膨張量の温度による
変化を示す線図である。
FIG. 4 is a diagram showing the change in the amount of thermal expansion of the cladding material according to the present invention obtained as described above and Al2O3 ceramics depending on the temperature.

第4図かられかるように、熱膨張の観点からみると、ク
ラツド材における銅の板厚比が小さいほどその熱膨張量
がセラミックスに近接してくることになる。しかし、銅
・コバール・銅の板厚比が1:200:1(Cu被覆体
積率約1%)よりも小さくなると、銅の厚さが不足気味
となり、前記したろう付は性の改善がやや不十分となる
上、銅のずぐれた熱伝導性に基く熱放散能力も低下し好
ましくない、しかしながら、とくに必要性のある場合1
:500:1(Cu被覆体積率約0.4%)まで小さく
することは可能である。
As can be seen from FIG. 4, from the viewpoint of thermal expansion, the smaller the plate thickness ratio of copper in the cladding material, the closer the amount of thermal expansion will be to that of ceramics. However, when the plate thickness ratio of copper, Kovar, and copper becomes smaller than 1:200:1 (Cu coating volume ratio approximately 1%), the thickness of the copper tends to be insufficient, and the above-mentioned brazing has little improvement in properties. Not only is it insufficient, but the heat dissipation ability based on the excellent thermal conductivity of copper is also reduced, which is undesirable.However, especially when there is a need 1
:500:1 (Cu coating volume ratio about 0.4%) is possible.

上記の熱放散の意味からすれば、銅の板厚比は大きい方
が好ましいことになるが、第4図からもわかるように銅
の板厚比が大きくなると熱膨張量が次第に増大しセラミ
ックスとの整合性が悪くなる。
From the above-mentioned meaning of heat dissipation, it is preferable that the copper plate thickness ratio is larger, but as can be seen from Figure 4, as the copper plate thickness ratio increases, the amount of thermal expansion gradually increases, and it is different from ceramics. consistency becomes worse.

従って、銅・コバール・銅の板厚比の上限としては2:
l:2までが限度となるのである。
Therefore, the upper limit of the thickness ratio of copper, Kovar, and copper is 2:
The limit is up to l:2.

なお、銅層については純銀であっても差支えはないが、
合金成分を2重量%以下添架したCu −Sn合金、C
u−Ag合金、cu−Zr合金、Cu−P合金、cu−
zn合金あるいはCu −A、I!203複合材などを
用いれば、ろう付は性の改善と同時に耐熱性の改善をも
実現することができ、非常に好ましいということができ
る。
As for the copper layer, there is no problem even if it is made of pure silver, but
Cu-Sn alloy with alloy components added in an amount of 2% by weight or less, C
u-Ag alloy, cu-Zr alloy, Cu-P alloy, cu-
zn alloy or Cu-A, I! If 203 composite material or the like is used, brazing can improve not only the properties but also the heat resistance, which is very preferable.

実施例1゜ 冷間圧延圧接により銅層・コバール層・銅層の各板厚が
9.9am: 1.98mm: 9.9)tmとなるよ
うにして銅・コバール・銅クラツド材(全板厚2.0+
m)を製作した。このクラツド材をメタルキャップに加
工し、これとAl2O3セラミックスとをAQろう(A
g−28%Cu合金)で接合してセラミックパッケージ
を組立てたところ、ろう付は性も良好でしかも室温に冷
却した後もAj203セラミックスとの熱膨張差による
剥離もなく、良好なパッケージを得ることができた。
Example 1 Copper/Kovar/Copper clad material (all plates) was made by cold rolling and welding so that the copper layer, Kovar layer, and copper layer each had a thickness of 9.9 am: 1.98 mm: 9.9) tm. Thickness 2.0+
m) was produced. This clad material is processed into a metal cap, and this and Al2O3 ceramics are bonded together using AQ brazing (AQ).
When a ceramic package was assembled by bonding with Aj203 ceramics (G-28% Cu alloy), the brazing properties were good, and even after cooling to room temperature, there was no peeling due to the difference in thermal expansion with Aj203 ceramics, and a good package was obtained. was completed.

実施例26 耐熱性の複合材であるCu−0,1%AjzOa複合材
(軟化温度600℃)とコバールとを組合せ、第1図の
断面形状になるよう3層#を造のクラツド材に冷間圧延
圧接した。さらに、800℃で金属接合を十分にするた
めの拡散前、熱処理後、仕上圧延を行ない、全板厚が1
.0w、 cu−Ajz O3・コバール・Cu−A第203の板
厚比を0.02:0.96:0.02としてなる本発明
に係るクラツド材を製作した。
Example 26 A Cu-0.1% AjzOa composite material (softening temperature 600°C), which is a heat-resistant composite material, was combined with Kovar, and three layers # were cooled into a constructed clad material so as to have the cross-sectional shape shown in Fig. 1. It was rolled and welded. Furthermore, finish rolling was performed at 800℃ to ensure sufficient metal bonding before diffusion and after heat treatment, and the total plate thickness was reduced to 1.
.. A cladding material according to the present invention was manufactured in which the plate thickness ratio of 0w, cu-Ajz O3/Kovar/Cu-A No. 203 was 0.02:0.96:0.02.

このクラツド材をメタルキャ・yプに加工し、AjzO
3セラミックスとAgろう(A(J −28%Cu合金
)を用い温度900℃で接合し、マルチレイヤー型のセ
ラミックパッケージに組立てた。
This clad material is processed into a metal cap, and AjzO
3 ceramics and Ag solder (A (J-28% Cu alloy)) were bonded at a temperature of 900°C, and a multilayer ceramic package was assembled.

Agろうによるろう付は性はきわめて良好で、しかも室
温に冷却してもANzC)3セラミツクスの熱膨張によ
る割れもなく、良好なパッケージを得ることができた。
Brazing with Ag brazing properties was extremely good, and even after cooling to room temperature, there was no cracking due to thermal expansion of the ANzC)3 ceramic, and a good package could be obtained.

実施例3゜ 2、Ofl厚さのcu−o、t%Zr合金素条と1.0
m+厚さのコバール合金素条と2.0fl厚さのcu−
o、t%Z「合金素条とを重ね合せ、冷間圧延圧接およ
び仕上圧延して、板厚2.0市の3層構造のクラツド材
を製作した。このクラツド材を金属基板としてこれに厚
さ1.0amのAJ 20aセラミツクスをA(Jろう
(AQ −22%Cu−18%Zn−5%Sn合金)を
用いて接合し、さらにAl2O3セラミツクス上にパワ
ー用のSiダイードを半田付けして、第2図に示すよう
な構成よりなるデバイスを作製した。この場合、AQろ
う付は温度700℃から室温に冷却したが、A1zO3
セラミックスの割れもなく良好な表面実装メタルを得る
ことができた。
Example 3゜2, Ofl thickness cu-o, t% Zr alloy strip and 1.0
Kovar alloy strip of m+ thickness and cu- of 2.0fl thickness
o, t%Z "A clad material with a three-layer structure with a plate thickness of 2.0 mm was produced by overlapping the alloy material, cold rolling, welding, and finish rolling. This clad material was used as a metal substrate. AJ 20a ceramics with a thickness of 1.0 am were bonded using A (J solder (AQ -22%Cu-18%Zn-5%Sn alloy), and a power Si diode was further soldered onto the Al2O3 ceramics. A device with the configuration shown in Figure 2 was fabricated using the following methods.In this case, AQ brazing was performed by cooling from 700°C to room temperature;
It was possible to obtain a good surface mount metal without cracking the ceramic.

応用例1゜ 上記実施例においては冷間圧延圧接により3層構造の銅
・コバール・銅クラツド材を製作したが、さらに板厚比
を1:500:1と小さくし板厚を2、Or*waとす
るような場合には、コバール合金に約4μm厚の銅を蒸
着法を含む気相法あるいは電気めっき法を用いて被着さ
せ製造することが可能である。
Application example 1゜In the above example, a three-layer structure of copper/kovar/copper clad material was produced by cold rolling and welding, but the plate thickness ratio was further reduced to 1:500:1 and the plate thickness was 2.Or* In the case of a wa, it is possible to manufacture a Kovar alloy by depositing copper with a thickness of about 4 μm using a vapor phase method including a vapor deposition method or an electroplating method.

応用例2゜ 上記実施例においてはコバール合金として28〜31%
Ni −L2〜14%Co−、0.02%以下のC−0
,2%以下の5i−0,8%以下のMn−残部Feより
なる合金組成のものを用いたか、低膨張コバール合金(
29,0〜29.5%Ni −13,O〜13.5%C
o−0,02%以下のC−0,2%以下の5i−0,8
%以下のMn−残部Fcからなる合金組成のもの)で線
膨張係数が30℃〜450℃において4.0〜4.2X
104/’C(通常のコバール合金は4.5〜4.lX
l0逼/℃である)の素材を利用することもできる。
Application example 2゜In the above example, 28 to 31% as Kovar alloy
Ni-L2~14%Co-, 0.02% or less C-0
, 2% or less of 5i - 0.8% or less of Mn - balance Fe, or a low expansion Kovar alloy (
29,0~29.5%Ni -13,O~13.5%C
o-0,02% or less C-0,2% or less 5i-0,8
% or less) with a linear expansion coefficient of 4.0 to 4.2X at 30°C to 450°C.
104/'C (normal Kovar alloy is 4.5~4.1X
It is also possible to use a material with a temperature of l0/℃).

[発明の効果] 以上の通り、本発明によればつぎのようなすぐれた効果
を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be obtained.

(11AJ 203セラミツクスと熱膨張の傾きが類似
し、ろう付は温度900℃から室温に冷却してもセラミ
ックスが割れたり剥離しなりするおそれのない熱膨張整
合性のある材料を得ることができる。
(The slope of thermal expansion is similar to that of 11AJ 203 ceramics, and brazing can produce a material with thermal expansion matching that prevents the ceramic from cracking, peeling, or bending even when cooled from a temperature of 900°C to room temperature.

(2)  素材として非常に安価な銅およびコバール合
金を採用でき、安価な製品を工業的に製造することがで
きる。
(2) Very inexpensive copper and Kovar alloy can be used as materials, and inexpensive products can be manufactured industrially.

(3)  !iA・コバール・銅クラツド材は、加工性
に優れ、Agろう付けの信頼性が高く、製品の歩留りを
向上できる利点を有する。
(3)! The iA Kovar copper clad material has the advantage of excellent workability, high reliability in Ag brazing, and the ability to improve product yield.

(4)  #A・コバール・別クラッド材の板厚構成比
を2:1:2〜1:200:1さらに必要あれば1:5
00:1までも自由に変えることによって700〜90
0℃の高温における熱膨張を調整できる。
(4) The plate thickness composition ratio of #A, Kovar, and other cladding materials is 2:1:2 to 1:200:1, and 1:5 if necessary.
700-90 by freely changing even 00:1
Thermal expansion at high temperatures of 0°C can be adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るクラツド材の構成を示す断面図、
第2図は本発明に係るクラツド材をパッケージ用封止材
とし半導体を実装した様子を示す説明図、第3図は従来
のパッケージの実装状況を示す説明図、第4図は温度と
熱膨張との関係を示す線区である。 :熱膨張調整材、 2:銀ろう、 3 : セラミックス1. 5 : 81 チップ。
FIG. 1 is a sectional view showing the structure of the cladding material according to the present invention;
Fig. 2 is an explanatory diagram showing how a semiconductor is mounted using the cladding material according to the present invention as a package sealing material, Fig. 3 is an explanatory diagram showing the mounting situation of a conventional package, and Fig. 4 is an explanatory diagram showing temperature and thermal expansion. This is a line section that shows the relationship between : thermal expansion adjusting material, 2: silver solder, 3: ceramics 1. 5: 81 chips.

Claims (2)

【特許請求の範囲】[Claims] (1)コバール板の両面に銅又は銅合金を被覆した3層
複合材よりなり、銅層・コバール層・銅層の比を2:1
:2(銅被覆体積率80%)から1:500:1(銅被
覆体積率0.4%)好ましくは1:200;1(銅被覆
体積率1%)の範囲としてなる高温用熱膨張調整材。
(1) Made of a three-layer composite material with copper or copper alloy coated on both sides of a Kovar plate, with a ratio of copper layer, Kovar layer, and copper layer of 2:1.
Thermal expansion adjustment for high temperature in the range of :2 (copper coating volume ratio: 80%) to 1:500:1 (copper coating volume ratio: 0.4%), preferably 1:200:1 (copper coating volume ratio: 1%) Material.
(2)銅層として合金成分の添加量が2重量%以下のC
u−Sn合金、Cu−Ag合金、Cu−Zr合金、Cu
−P合金、Cu−Zn合金あるいはCu−Al_2O_
3複合材を用いる請求項1記載の高温用熱膨張調整材。
(2) C with an alloy component added in an amount of 2% by weight or less as a copper layer
u-Sn alloy, Cu-Ag alloy, Cu-Zr alloy, Cu
-P alloy, Cu-Zn alloy or Cu-Al_2O_
3. The high temperature thermal expansion adjusting material according to claim 1, which uses a composite material.
JP63172286A 1988-07-11 1988-07-11 Thermal-expansion adjusting material for high-temperature use Pending JPH0222831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172286A JPH0222831A (en) 1988-07-11 1988-07-11 Thermal-expansion adjusting material for high-temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172286A JPH0222831A (en) 1988-07-11 1988-07-11 Thermal-expansion adjusting material for high-temperature use

Publications (1)

Publication Number Publication Date
JPH0222831A true JPH0222831A (en) 1990-01-25

Family

ID=15939114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172286A Pending JPH0222831A (en) 1988-07-11 1988-07-11 Thermal-expansion adjusting material for high-temperature use

Country Status (1)

Country Link
JP (1) JPH0222831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554178B1 (en) 1999-04-08 2003-04-29 Quallion Llc Battery case feedthrough
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554178B1 (en) 1999-04-08 2003-04-29 Quallion Llc Battery case feedthrough
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
US7108166B2 (en) 1999-04-08 2006-09-19 Quallion Llc Method for sealing a battery case

Similar Documents

Publication Publication Date Title
US5028495A (en) Composite foil brazing material and method of using
JP6753869B2 (en) How to make composites
JPS60177635A (en) Manufacture of good heat conductive substrate
KR19990045105A (en) Board
EP3407380B1 (en) Bonded body, power module substrate, bonded body manufacturing method, and power module substrate manufacturing method
CN1059418C (en) Ceramic and metal part instant liquid phase connecting method
JPH0222831A (en) Thermal-expansion adjusting material for high-temperature use
JPH03125463A (en) Light weight substrate for semiconductor device
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH0133278B2 (en)
JPH02102551A (en) Thermal expansion adjusting material
JPH02102548A (en) Thermal expansion adjusting material
JPH02102549A (en) Thermal expansion adjusting material
JPH02102550A (en) Thermal expansion adjusting material
JPH01249296A (en) Paste for brazing
WO2005086218A1 (en) Process for producing semiconductor module
JP2503775B2 (en) Substrate for semiconductor device
JP2503778B2 (en) Substrate for semiconductor device
JP2002307165A (en) Brazing method
JPS61269998A (en) Sn alloy solder having excellent thermal fatigue characteristic
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JP2503779B2 (en) Substrate for semiconductor device
JPH0927572A (en) Manufacture of lightweight substrate for semiconductor device
JP2503774B2 (en) Substrate for semiconductor device
JP2519402B2 (en) Method for manufacturing power semiconductor module substrate