JPH02102550A - Thermal expansion adjusting material - Google Patents

Thermal expansion adjusting material

Info

Publication number
JPH02102550A
JPH02102550A JP25630588A JP25630588A JPH02102550A JP H02102550 A JPH02102550 A JP H02102550A JP 25630588 A JP25630588 A JP 25630588A JP 25630588 A JP25630588 A JP 25630588A JP H02102550 A JPH02102550 A JP H02102550A
Authority
JP
Japan
Prior art keywords
copper
layer
thermal expansion
alloy
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25630588A
Other languages
Japanese (ja)
Inventor
Kenji Yamaguchi
健司 山口
Yasuhiko Miyake
三宅 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25630588A priority Critical patent/JPH02102550A/en
Publication of JPH02102550A publication Critical patent/JPH02102550A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To improve a solderability while the superior thermal expansion adaptability of a Zr layer with a ceramics layer is maintained intact by a method wherein a thermal expansion adjusting material is constituted in such a way that copper layers or copper alloy layers are respectively cladded on both surfaces of the Zr layer and the thickness ratio of the copper layer: the Zr layer: the copper layer is set at a specified range. CONSTITUTION:Copper plates or copper alloy plates 1b and 1b, whose thicknesses are almost equal, are respectively cladded on both surfaces of a zirconium(Zr) plate 1a and the plates 1a, 1b and 1b are constituted into a thermal expansion adjustable clad material (a thermal expansion adjusting material) 1. The plate thickness ratio of the copper plate: the Zr plate: the copper plate is set at range between 1:500:1 (about 0.4% of the coating volume percentage of Cu) and 2:1:1. As this result, a layer, to which a silver solder layer 2 comes into contact, is not the Zr layer but is changed into the copper layer 1b and a difference between this silver soldering and a silver soldering with the copper layer itself is eliminated. Thereby, a significant improvement and a stabilization of a solderability can be achieved without impairing the thermal expansion adaptability of the Zr layer with an Al2O3 ceramics layer 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パッケージ型半導体デバイスにおけるセラミ
ックス基板と封止部品との銀ろう付は接合などにおいて
、熱膨vA差を具合よく整合させ得る熱膨張調整材に関
するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a method for silver soldering between a ceramic substrate and a sealing component in a packaged semiconductor device using heat that can suitably match the difference in thermal expansion vA in bonding or the like. This invention relates to an expansion adjusting material.

[従来の技術J 例えばバヅケージ型の半導体デバイスにおいては、第4
図に示すように、AjzO3セラミックス基板3を銀ろ
う2により筐体1゛に接合し、前記セラミックス基板3
にパワー用ダイオードの如きSiチップ5を半田4によ
り接合することが行なわれている。
[Prior art J For example, in a bug cage type semiconductor device, the fourth
As shown in the figure, an AjzO3 ceramics substrate 3 is bonded to a housing 1'' with silver solder 2, and the ceramics substrate 3
A Si chip 5 such as a power diode is bonded by solder 4 to the device.

この場合、筐体とセラミックス基板との銀ろう付けにお
いては、約800〜900℃の高温に加熱されるため、
AJ203セラミックスと筐体との熱膨張の整合を得る
必要があり、筐体側の材料には一般にその熱W6張係数
がセラミックスに近いコバールやモリブデンが使用され
ているが、ジルコニウム(以下Zr)のような低膨張性
金属又は合金を使用することも試みられている。
In this case, silver brazing between the casing and the ceramic substrate is heated to a high temperature of about 800 to 900 degrees Celsius, so
It is necessary to match the thermal expansion between AJ203 ceramics and the casing, and the material for the casing is generally Kovar or Molybdenum, whose thermal W6 tensile coefficient is close to that of ceramics. Attempts have also been made to use low expansion metals or alloys.

[発明が解決しようとする課題] 筐体として使用されるZ「に上記AJ203セラミック
スを銀ろう付けする場合、Z「表面における銀ろう(A
a−28%CU合金など)との濡れ性が悪く、ろう付は
部が不安定となり信頼性に欠ける上、Z「の熱膨張係数
がAjzOsより小さいためろう付は後備ろう接合部に
大きな応力が残留し、ろう付は後の剥離のおそれを生じ
させるなどとかくの問題を残していた。
[Problems to be Solved by the Invention] When silver brazing the above AJ203 ceramics to Z" used as a casing, silver soldering (A
A-28% CU alloy, etc.) has poor wettability, making the parts unstable during brazing and lacking in reliability. Furthermore, since the coefficient of thermal expansion of Z" is smaller than that of AjzOs, brazing causes large stress on the solder joints. remained, and brazing left problems such as the risk of peeling later.

本発明の目的は、上記した銀ろう付は上での懸念を解消
し、Z「の有するセラミックスとのすぐれた熱膨張整合
性をそのまま維持しつつろう付は性を大巾に改善した熱
膨張調整材を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned concerns by silver brazing, and to achieve a thermal expansion property that greatly improves brazing properties while maintaining the excellent thermal expansion compatibility with ceramics that Z" has. The aim is to provide a conditioning material.

[課題を解決するための手段] 本発明は、Zrの両面に銅又は銅合金をクラッドし、銅
・Z「 ・銅の厚さ比が2:1:2から1=500+1
の範囲となるように構成したらのである。
[Means for Solving the Problems] The present invention clads both sides of Zr with copper or a copper alloy, so that the thickness ratio of copper and Zr is from 2:1:2 to 1=500+1.
It is configured so that it falls within the range of .

[作用] 上記の構成比であれば、Zrの有するセラミックスとの
熱膨張整合性を害することなく表面に銅層を有すること
によるろう付は性の大巾な改善と安定化を達成すること
ができ、半導体デバイスとしての代願性の向上に寄与す
ることができる。
[Effect] With the above composition ratio, brazing properties can be greatly improved and stabilized by having a copper layer on the surface without impairing the thermal expansion compatibility with ceramics that Zr has. This can contribute to improving the applicability of semiconductor devices.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] The present invention will be described below with reference to Examples.

本発明においては、第1図に示すようにZr1aの両面
にほぼ同じ厚さの銅又は銅合金tb。
In the present invention, as shown in FIG. 1, copper or copper alloy tb is coated on both sides of Zr1a with approximately the same thickness.

1bをクラッドし、熱膨張調整可能なりラッド材1に構
成する。
1b is clad and configured into a rad material 1 capable of adjusting thermal expansion.

両面にほぼ同じ厚さに久ラッドするのは、加熱の際の反
りを防止し熱的安定性を確保するためである。
The reason for applying long rad to approximately the same thickness on both sides is to prevent warping during heating and ensure thermal stability.

銅又は銅合金をクラッドするのは、Aj 203セラミ
ツクス3と接合させる際に、銅が銀ろうとの濡れ性なら
びに接合性においてとくにすぐれている上、熱伝導性に
もすぐれているなめである。
The cladding is made of copper or a copper alloy because copper has particularly excellent wettability and bondability with silver solder when bonded to Aj 203 ceramics 3, and also has excellent thermal conductivity.

すなわち、本発明に係るクラツド材1を用いることによ
り銀ろう2が接するのは第4図の従来例のように2「で
はなく第2図に示すように銅層1bとなり、銅そのもの
との銀ろう付けと変るところがなく、良好な熱伝導性と
相俟って安定かつすぐれた接合を得ることができる。
That is, by using the cladding material 1 according to the present invention, the silver solder 2 comes into contact with the copper layer 1b as shown in FIG. 2, rather than with the conventional example shown in FIG. It is no different from brazing, and combined with good thermal conductivity, it is possible to obtain a stable and excellent bond.

第3図は、上記のようにして得た本発明に係るクラツド
材とAJzOsセラミックスとの熱IIj張量の温度に
よる変化を示す線図である。
FIG. 3 is a diagram showing the change in thermal IIj tensile strength of the clad material according to the present invention obtained as described above and AJzOs ceramics depending on the temperature.

第3図かられかるように、熱膨張の観点からみると、ク
ラツド材における銅の板厚比が小さいほどその熱膨張量
がセラミックスに近接してくることになる。しかし、銅
・Z「・銅の板厚比が1:500:1(Ctl被覆体積
率約0.4%ンよりも小さくなると、銅の厚さが不足気
味となり、前記したろう付は性の改善がやや不十分とな
る上、銅のすぐれた熱伝導性に基く熱放散能力ら低下し
好ましくない。
As can be seen from FIG. 3, from the viewpoint of thermal expansion, the smaller the plate thickness ratio of copper in the cladding material, the closer the amount of thermal expansion will be to that of ceramics. However, when the plate thickness ratio of copper/Z'/copper becomes smaller than 1:500:1 (Ctl coverage volume ratio of about 0.4%), the thickness of the copper becomes insufficient, and the above-mentioned brazing becomes difficult. This is not preferable because the improvement is somewhat insufficient and the heat dissipation ability based on copper's excellent thermal conductivity is degraded.

上記の熱放散の意味からすれば、銅のW、厚比は大きい
方が好ましいことになるが、第3図からもわかるように
銅の板厚比が大きくなると熱膨張量が次第に増大しセラ
ミックスとの整合性が悪くなる。
From the above-mentioned meaning of heat dissipation, it is preferable that the copper W to thickness ratio be larger, but as can be seen from Figure 3, as the copper plate thickness ratio increases, the amount of thermal expansion gradually increases. The consistency with the

従って、銅・Z「・銅の板厚比の上限としては2:1:
2までが限度となるのである。
Therefore, the upper limit of the copper plate thickness ratio is 2:1:
The limit is up to 2.

なお、銅層については純銅であっても差支えはないが、
合金成分を2211%以下添架しなCu −Sn合金、
Cu−Ag合金、Cu−zr金合金Cu−p合金、Cu
−Zn合金あるいはCu −A、Q203複合材などを
用いれば、ろう付は性の改善と同時に耐熱性の改善をも
実現することができ、非常に好ましいということができ
る。
Note that the copper layer may be made of pure copper, but
Cu-Sn alloy with alloy components not more than 2211% cross-linked;
Cu-Ag alloy, Cu-zr gold alloy, Cu-p alloy, Cu
If -Zn alloy, Cu-A, Q203 composite material, etc. are used, it is possible to improve brazing properties and heat resistance at the same time, which is very preferable.

実施例1゜ 冷間圧延圧接により銅層・zr層・銅層の各板厚が10
μm: 1.98IllI: 10μmとなるようにし
て銅・Zr ・銅クラツド材(全板厚2.0mn)を製
作した。このクラツド材をメタルキャップに加工し、こ
れとAJ203セラミックスとをAQろう(Ag−28
%CU合金)で接合してセラミックパッケージを組立て
たところ、ろう付は性も良好でしかも室温に冷却した後
も Aj 203セラミツクスとの熱膨張差によるAgろう
の剥離もなく、良好なパッケージを得ることができた。
Example 1゜The copper layer, ZR layer, and copper layer each have a thickness of 10 mm by cold rolling and welding.
A copper/Zr/copper clad material (total thickness 2.0 mm) was manufactured so that μm: 1.98 IllI: 10 μm. This clad material is processed into a metal cap, and AQ brazing (Ag-28
When a ceramic package was assembled by bonding with Aj 203 ceramics, the brazing properties were good, and even after cooling to room temperature, there was no peeling of the Ag solder due to the difference in thermal expansion with Aj 203 ceramics, resulting in a good package. I was able to do that.

実施例2゜ 耐熱性の複合材であるCu−0,1%A1zOa複合材
(軟化温度600℃)とZrとを組合せ、第1図の断面
形状になるよう3層jfR造のクラツド材に冷間圧延圧
接した。さらに、800℃で金属接合を十分にするため
の拡散加熱処理後、仕上圧延を行ない、全板厚が1.0
鴎、 Cu  Aj 203 ・Zr −Cu −AJ 20
3の板厚比を0.02:0.96:0.02としてなる
本発明に係るクラツド材を製作した。
Example 2 A heat-resistant composite material, Cu-0.1%A1zOa composite material (softening temperature 600°C), was combined with Zr and cooled into a three-layer JFR cladding material so as to have the cross-sectional shape shown in Figure 1. It was rolled and welded. Furthermore, after diffusion heat treatment at 800℃ to ensure sufficient metal bonding, finish rolling is performed to reduce the total plate thickness to 1.0
Seagull, Cu Aj 203 ・Zr -Cu -AJ 20
A clad material according to the present invention was manufactured with a plate thickness ratio of 0.02:0.96:0.02.

このクラツド材をメタルキャップに加工し、AJ203
セラミックスとAgろう(Aa −28%Cu合金)を
用い温度900℃で接合し、マルチレイヤー型のセラミ
ックパッケージに組立てた。
This clad material is processed into a metal cap, and AJ203
Ceramics and Ag solder (Aa-28% Cu alloy) were bonded at a temperature of 900°C, and a multilayer ceramic package was assembled.

AQろうによるろう付は性はきわめて良好で、しかも室
温に冷却してもAJ203セラミックスの熱膨張差によ
る割れもなく、Agろうの剥離もみとめられず、良好な
パッケージを得ることができた。これを実装試験した結
果、熱抵抗の変動も少く良好な熱伝導性を示すことがわ
かった。
The properties of brazing with AQ brazing were very good, and even after cooling to room temperature, there was no cracking due to the difference in thermal expansion of AJ203 ceramics, and no peeling of the Ag brazing was observed, making it possible to obtain a good package. As a result of mounting tests on this product, it was found that it exhibited good thermal conductivity with little variation in thermal resistance.

実施例3゜ 1.0m厚さのCu−0,1%2「合金素条と1.0m
厚さのZ「素条と1.OB厚さのCu −0,1%2「
合金素条とを3層に重ね合せ、冷間圧延圧接および仕上
圧延して、板厚1.0+weの3層構造のクラツド材を
製作した。このクラツド材を金属基板としてこれに厚さ
1.0鴎のAjzOaセラミックスをAgろう(A(J
 −22%Cu −18%Zn−5%S口合金)を用い
て接合し、さらにAJ 203セラミツクス上にパワー
用のSiダイードを半田付けして、第2図に示すような
構成よりなるデバイスを作製した。この場合、AQろう
付は温度700℃から室温に冷却したが、AjzO3セ
ラミックスの割れもなく良好なろう付けを行なうことが
できた。これを実装試験した結果、熱による半田の疲労
もなく良好な表面実装メタル基板を得ることができた。
Example 3 1.0m thick Cu-0.1%2 alloy strip and 1.0m thick
Thickness Z "Material and 1.OB thickness Cu -0,1%2"
A three-layer cladding material with a plate thickness of 1.0+WE was produced by stacking three layers of alloy strips, cold rolling, and finish rolling. This clad material was used as a metal substrate, and AjzOa ceramics with a thickness of 1.0 mm was coated with Ag wax (A(J
-22% Cu -18% Zn -5% S alloy), and a power Si diode was soldered onto the AJ 203 ceramics to form a device with the configuration shown in Figure 2. Created. In this case, AQ brazing was performed by cooling from a temperature of 700° C. to room temperature, but good brazing could be performed without cracking of the AjzO3 ceramics. As a result of mounting tests, it was possible to obtain a good surface-mount metal board without solder fatigue caused by heat.

応用例1゜ 上記実施例においては冷間圧延圧接により3層構造の銅
・Z「・銅クラツド材を製作したが、さらに板厚比を1
:500:1と小さくし板厚を1.0mmとするような
場合には、Zr板の両面に約2μm厚の銅を蒸着法を含
む気相法あるいは電気めっき法を用いて被着さぜ製造す
ることが可能であることがわかった。
Application example 1゜In the above example, a three-layer structure of copper/Z"/copper clad material was produced by cold rolling welding, but the plate thickness ratio was further reduced to 1.
:500:1 and the plate thickness is 1.0 mm, copper with a thickness of approximately 2 μm is deposited on both sides of the Zr plate using a vapor phase method including vapor deposition method or an electroplating method. It turned out that it is possible to manufacture.

応用例2゜ 上記実施例ではZr板(純度99.90%以上)を利用
したが、Zr−10%Cu合金(焼結材)を利用するこ
とにより銅被覆厚さを薄くし、しかも銅・Zr−10%
Cu焼結圧延材・銅の接着性を良好ならしめた3層構造
のクラツド材を簡単に製造できることがわかった。
Application example 2゜In the above example, a Zr plate (purity of 99.90% or more) was used, but by using a Zr-10% Cu alloy (sintered material), the thickness of the copper coating was reduced, and the thickness of the copper coating was reduced. Zr-10%
It has been found that it is possible to easily produce a three-layered cladding material with good adhesion between Cu sintered and rolled material and copper.

[発明の効果] 以上の通り、本発明によればつぎのようなすぐれた効果
を奏することができる。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be achieved.

(1)AJ203セラミックスと熱膨張の傾きが類似し
、ろう付は温度900℃から室温に冷却してもセラミッ
クスが割れたり剥離したりするおそれのない熱膨張整合
性のある材料を得ることができる。
(1) The slope of thermal expansion is similar to that of AJ203 ceramics, and brazing can produce a material with thermal expansion consistency that does not cause the ceramic to crack or peel even when cooled from 900°C to room temperature. .

(2)銅・Z「・銅クラツド材は、加工性が2「単体よ
りも改善され、Agろう付けの信頼性が高く、パッケー
ジ部品として製品の歩留りを向上できる利点を有する。
(2) Copper/Z'/Copper clad material has the advantage of improved workability compared to single material, high reliability of Ag brazing, and can improve the yield of products as package parts.

(3)銅・2「・銅クラツド材の板厚構成比を2:1:
2から1:500:1まで自由に変えることによって7
00〜900℃の高温における熱膨張を調整できる。
(3) Copper 2" plate thickness composition ratio of copper clad material 2:1:
7 by changing freely from 2 to 1:500:1
Thermal expansion at high temperatures of 00 to 900°C can be adjusted.

(4)Zrはコバールやモリブデンに比較して格段に安
価であり、その分原価低減を図ることができる。
(4) Zr is much cheaper than Kovar or Molybdenum, and the cost can be reduced accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るクラツド材の構成を示す断面図、
第2図は本発明に係るクラツド材をパッケージ用封止材
とし半導体を実装した様子を示す説明断面図、第3図は
温度と熱膨張との関係を示す線図、第4図は従来のパッ
ケージの実装状況を示す説明見取図である。 :熱膨張調整材、 1a:ジルコニウム、 ■ :#I又は銅合金、 :銀ろう、 3 : J セラミックス、 二半田、 5 二 Si チップ。
FIG. 1 is a sectional view showing the structure of the cladding material according to the present invention;
Fig. 2 is an explanatory cross-sectional view showing how a semiconductor is mounted using the cladding material according to the present invention as a package sealing material, Fig. 3 is a diagram showing the relationship between temperature and thermal expansion, and Fig. 4 is a diagram showing the relationship between temperature and thermal expansion. FIG. 2 is an explanatory sketch showing the package implementation status. : thermal expansion adjusting material, 1a: zirconium, ■: #I or copper alloy, : silver solder, 3: J ceramics, 2 solder, 5 2 Si chip.

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム板の両面にほぼ同じ厚さの銅又は銅
合金を被覆した3層複合材よりなり、銅層・ジルコニウ
ム・銅層の比を2:1: 2(銅被覆体積率80%)から1:500:1(銅被覆
体積率0.4%)の範囲としてなる熱膨張調整材。
(1) Made of a three-layer composite material in which both sides of a zirconium plate are coated with copper or copper alloy of approximately the same thickness, the ratio of copper layer, zirconium, and copper layer is 2:1:2 (copper coating volume ratio 80%) to 1:500:1 (copper coating volume ratio 0.4%).
(2)銅層として合金成分の添加量が2重量%以下のC
u−Sn合金、Cu−Ag合金、Cu−Zr合金、Cu
−P合金、Cu−Zn合金あるいはCu−Al_2O_
3複合材を用いてなる請求項1記載の熱膨張調整材。
(2) C with an alloy component added in an amount of 2% by weight or less as a copper layer
u-Sn alloy, Cu-Ag alloy, Cu-Zr alloy, Cu
-P alloy, Cu-Zn alloy or Cu-Al_2O_
2. The thermal expansion adjusting material according to claim 1, comprising a three-component composite material.
JP25630588A 1988-10-12 1988-10-12 Thermal expansion adjusting material Pending JPH02102550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25630588A JPH02102550A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25630588A JPH02102550A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Publications (1)

Publication Number Publication Date
JPH02102550A true JPH02102550A (en) 1990-04-16

Family

ID=17290817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25630588A Pending JPH02102550A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Country Status (1)

Country Link
JP (1) JPH02102550A (en)

Similar Documents

Publication Publication Date Title
JP6753869B2 (en) How to make composites
JPS61154764A (en) Method of combining metal with structural member and combining material
JPH0217509B2 (en)
JPS60177635A (en) Manufacture of good heat conductive substrate
JPH08509844A (en) Power semiconductor device having buffer layer
JP2020520807A (en) Lead-free solder film for diffusion soldering and method for its manufacture
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
JP3398203B2 (en) Aluminum alloy and copper brazing filler metal and composites joined by this brazing filler metal
JPH0586662B2 (en)
JP4951932B2 (en) Power module substrate manufacturing method
JPH0867978A (en) Method for soldering target for sputtering
JPH02102550A (en) Thermal expansion adjusting material
JPH02102551A (en) Thermal expansion adjusting material
JPH0222831A (en) Thermal-expansion adjusting material for high-temperature use
JP3571905B2 (en) Heat radiating device and manufacturing method thereof
JPH02102549A (en) Thermal expansion adjusting material
JP2503775B2 (en) Substrate for semiconductor device
JPH02102548A (en) Thermal expansion adjusting material
JPS6090879A (en) Ceramic and metal bonding method
JPH01249296A (en) Paste for brazing
JP2002307165A (en) Brazing method
JP2503778B2 (en) Substrate for semiconductor device
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JP2519402B2 (en) Method for manufacturing power semiconductor module substrate