JP2519402B2 - Method for manufacturing power semiconductor module substrate - Google Patents

Method for manufacturing power semiconductor module substrate

Info

Publication number
JP2519402B2
JP2519402B2 JP6300702A JP30070294A JP2519402B2 JP 2519402 B2 JP2519402 B2 JP 2519402B2 JP 6300702 A JP6300702 A JP 6300702A JP 30070294 A JP30070294 A JP 30070294A JP 2519402 B2 JP2519402 B2 JP 2519402B2
Authority
JP
Japan
Prior art keywords
aln
active metal
power semiconductor
plate
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6300702A
Other languages
Japanese (ja)
Other versions
JPH07176651A (en
Inventor
昌子 中橋
一三 霜鳥
博光 竹田
達雄 山崎
誠 白兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6300702A priority Critical patent/JP2519402B2/en
Publication of JPH07176651A publication Critical patent/JPH07176651A/en
Application granted granted Critical
Publication of JP2519402B2 publication Critical patent/JP2519402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワー半導体モジュー
ル基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power semiconductor module substrate.

【0002】[0002]

【従来の技術】近年、パワー半導体素子に対する高密度
集積化、ハイブリッド化、さらに大電流の制御など、種
々の要求が高まっている。こうした要求を達成しようと
すると、半導体素子より発生する多量の熱が問題にな
る。このため、発生する多量の熱を放出して半導体素子
の温度上昇を防ぐことが必要である。
2. Description of the Related Art In recent years, various demands such as high-density integration, hybridization, and control of large current for power semiconductor elements are increasing. In order to meet these requirements, a large amount of heat generated by the semiconductor device becomes a problem. Therefore, it is necessary to release a large amount of generated heat to prevent the temperature rise of the semiconductor element.

【0003】このようなことから、従来、放熱基板を用
いた図5に示すパワー半導体モジュールが知られてい
る。図中の1は、銅等からなるヒートシンクである。前
記ヒートシンク1上には、後述する熱拡散板との絶縁を
図るためのAl23 からなる第1絶縁板21 が半田層
3を介して接合されている。前記絶縁板21 上には、熱
拡散板4が半田層3を介して接合されている。前記熱拡
散板4上には、実装すべき半導体素子との絶縁を図るた
めのAl23 からなる複数の第2絶縁板22 がそれぞ
れ半田層3を介して接合されている。前記各第2絶縁板
2 上には、図示しないメタライズ層が形成され、この
メタライズ層上には半導体素子5が半田層3を介してそ
れぞれ接合されている。なお、図中の6は前記第1絶縁
板21 両面と前記半田層3の間、および前記第2絶縁板
2 両面と前記半田層3の間にそれぞれ形成された接合
層である。
For this reason, the power semiconductor module shown in FIG. 5 using a heat dissipation board has been conventionally known. Reference numeral 1 in the figure is a heat sink made of copper or the like. On the heat sink 1, a first insulating plate 2 1 made of Al 2 O 3 for insulation from a heat diffusion plate described later is joined via a solder layer 3. Wherein on the insulating plate 2 1, the thermal diffusion plate 4 is bonded through the solder layer 3. On the heat diffusion plate 4, a plurality of second insulating plates 2 2 made of Al 2 O 3 for insulation from a semiconductor element to be mounted are joined via solder layers 3, respectively. A metallization layer (not shown) is formed on each of the second insulating plates 2 2 , and the semiconductor elements 5 are bonded to the metallization layers via the solder layers 3, respectively. Reference numeral 6 in the figure denotes a bonding layer formed between both surfaces of the first insulating plate 2 1 and the solder layer 3 and between both surfaces of the second insulating plate 2 2 and the solder layer 3, respectively.

【0004】しかしながら、従来のパワー半導体モジュ
ール基板に用いられる放熱基板は前述した図3に示すよ
うに非常に複雑な構造になるという問題があった。これ
は、第1、第2の絶縁板21 、22 を構成するAl2
3 は耐圧が100kV/cmと良好であるものの、熱伝
導率が20W/m・℃と低いために、放熱性と絶縁耐性
との両方の機能を銅とアルミナの両材料を用いて満足さ
せる必要があるからである。
However, there is a problem in that the heat dissipation board used in the conventional power semiconductor module board has a very complicated structure as shown in FIG. This is the Al 2 O that constitutes the first and second insulating plates 2 1 and 2 2.
Although 3 has a good withstand voltage of 100 kV / cm, it has a low thermal conductivity of 20 W / m · ° C. Therefore, it is necessary to satisfy both functions of heat dissipation and insulation by using both copper and alumina materials. Because there is.

【0005】一方、窒化アルミニウム(AlN)は電気
絶縁性が140〜170kV/cm、熱伝導性が60W
/m・℃と共に優れた特性を有することに着目し、前記
AlN部材を銅(Cu)部材に接合してモジュールを製
造することが試みられている。しかしながら、AlNは
ろう材に対する濡れ性が劣るため、銀ろう材等でAlN
部材とCu部材とを接合しようとしても十分な接合強度
を得ることは殆ど困難であった。
On the other hand, aluminum nitride (AlN) has an electrical insulating property of 140 to 170 kV / cm and a thermal conductivity of 60 W.
Attention has been paid to the fact that it has excellent characteristics together with / m · ° C., and attempts have been made to manufacture a module by bonding the AlN member to a copper (Cu) member. However, since AlN has poor wettability with the brazing filler metal, it is not possible to use AlN with silver brazing filler metal.
Even if an attempt was made to join the member and the Cu member, it was almost difficult to obtain sufficient joining strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は、簡略化され
た構造で、かつ良好な絶縁耐圧を有することは勿論、優
れた放熱性、耐熱衝撃性を有し、さらに低抵抗の配線材
料等として機能するCu部材がAlN部材に強固に接合
されたパワー半導体モジュール基板の製造方法を提供し
ようとするものである。
DISCLOSURE OF THE INVENTION The present invention has a simplified structure and has a good withstand voltage, as well as excellent heat dissipation and thermal shock resistance, and further has a low resistance wiring material and the like. An attempt is made to provide a method for manufacturing a power semiconductor module substrate in which a Cu member that functions as a member is firmly bonded to an AlN member.

【0007】[0007]

【課題を解決するための手段】本発明に係わるパワー半
導体モジュール基板の製造方法は、窒化アルミニウム
(AlN)部材と銅(Cu)部材との間に活性金属層ま
たは活性金属および銅からなる合金層を介在させる工程
と、前記活性金属層または合金層が介在された前記Al
N部材および前記Cu部材を真空雰囲気もしくは不活性
雰囲気で加熱して前記AlN部材と前記Cu部材との間
にCuと活性金属からなる合金融液を生成する工程と、
さらに加熱を続行して前記合金融液を前記Cu部材に拡
散させる工程とを具備したことを特徴とするものであ
る。
A method of manufacturing a power semiconductor module substrate according to the present invention includes an active metal layer or an alloy layer composed of an active metal and copper between an aluminum nitride (AlN) member and a copper (Cu) member. And a step of interposing the Al with the active metal layer or alloy layer interposed.
Heating the N member and the Cu member in a vacuum atmosphere or an inert atmosphere to generate a financial liquid composed of Cu and an active metal between the AlN member and the Cu member;
Further, heating is continued to diffuse the synthetic financial liquid into the Cu member.

【0008】以下、本発明のパワー半導体モジュール基
板の製造方法を詳細に説明する。まず、AlN部材とC
u部材の間の接合部に活性金属層または活性金属および
Cuからなる合金層を介在させる。前記活性金属として
は、例えばTi、Zr、Hf等を用いることがことがで
きる。前記活性金属層または前記合金層は、100μm
以下の厚さを有することが好ましい。このような工程に
おいて、前記活性金属層または合金層を前記接合部に介
在させる手段としては、例えば活性金属または合金から
なる箔を前記接合部に介在させる方法、或いはCu部材
の片面に前記活性金属層または前記合金層をスパッタリ
ング法、LPC法(低圧プラズマコーティング法)など
により堆積し、前記Cu部材を前記AlN部材に前記活
性金属層等の堆積面が前記AlN部材側に位置するよう
に重ねる方法等を採用し得る。
The method of manufacturing the power semiconductor module substrate of the present invention will be described in detail below. First, AlN member and C
An active metal layer or an alloy layer composed of active metal and Cu is interposed at the joint between the u members. As the active metal, for example, Ti, Zr, Hf or the like can be used. The active metal layer or the alloy layer has a thickness of 100 μm.
It preferably has the following thickness. In such a step, as a means for interposing the active metal layer or alloy layer in the joint, for example, a method of interposing a foil made of an active metal or alloy in the joint, or the active metal on one surface of the Cu member is used. Layer or the alloy layer is deposited by a sputtering method, an LPC method (low-pressure plasma coating method) or the like, and the Cu member is superposed on the AlN member so that the deposition surface of the active metal layer or the like is located on the AlN member side. Etc. can be adopted.

【0009】次いで、前記活性金属層または前記合金層
が介在されたAlN部材とCu部材を真空雰囲気もしく
は不活性雰囲気で加熱する。この加熱工程において、前
記AlN部材と前記Cu部材間の前記活性金属層等に圧
力を加えなくてもよいが、必要に応じて0.01〜1k
g/mm2 の低圧を加えて加熱してもよい。前記加熱温
度は、Cu部材の融点より低いことが必要である。具体
的には、872〜1082℃の範囲で加熱すればよい。
このような熱処理によりして前記AlN部材と前記Cu
部材との間にCuと活性金属からなる合金融液が生成さ
れる。つづいて、前記加熱を続行して前記合金融液を前
記Cu部材に拡散させた後、冷却することにより前記A
lN部材と前記Cu部材とが強固に接合されたパワー半
導体モジュール基板が製造される。前記拡散工程は、前
記合金融液の冷却後において合金層が著しく薄く存在す
るか、または殆どの存在しない状態にすることが好まし
い。
Next, the AlN member and the Cu member in which the active metal layer or the alloy layer is interposed are heated in a vacuum atmosphere or an inert atmosphere. In this heating step, it is not necessary to apply pressure to the active metal layer or the like between the AlN member and the Cu member, but if necessary, 0.01 to 1 k
You may heat by adding the low pressure of g / mm < 2 >. The heating temperature needs to be lower than the melting point of the Cu member. Specifically, it may be heated in the range of 872 to 1082 ° C.
By such heat treatment, the AlN member and the Cu are
A financial liquid composed of Cu and an active metal is generated between the member and the member. Then, the heating is continued to diffuse the synthetic financial liquid in the Cu member, and then the cooling is performed to cool the A member.
A power semiconductor module substrate in which the 1N member and the Cu member are firmly joined is manufactured. In the diffusion step, it is preferable that the alloy layer is present very thinly or hardly after the cooling liquid is cooled.

【0010】[0010]

【作用】本発明に係わるパワー半導体モジュール基板の
製造方法は、AlN部材とCu部材との間に活性金属層
または活性金属および銅からなる合金層を介在させる工
程と、前記活性金属層または合金層が介在された前記A
lN部材および前記Cu部材を真空雰囲気もしくは不活
性雰囲気で加熱して前記AlN部材と前記Cu部材との
間にCuと活性金属からなる合金融液を生成する工程
と、さらに加熱を続行して前記合金融液を前記Cu部材
に拡散させる工程とを具備する。このような本発明方法
において、前記活性金属層または合金層が介在された前
記AlN部材および前記Cu部材を真空雰囲気もしくは
不活性雰囲気で加熱することによって、ろう材等に対し
て濡れ性の劣るAlN部材と低抵抗の配線材料等として
機能するCu部材とが高い強度で接合されたパワー半導
体モジュール基板を製造することができる。このような
モジュール基板のCu部材にパワー半導体素子を搭載し
た場合、前記Cu部材が接合されたAlN部材は高い熱
伝導率を有するため、前記半導体素子で発生した熱を前
記Cu部材、AlN等を通して良好に放出することがで
きる。
The method of manufacturing a power semiconductor module substrate according to the present invention comprises a step of interposing an active metal layer or an alloy layer composed of active metal and copper between an AlN member and a Cu member, and the active metal layer or alloy layer. The above-mentioned A
a step of heating the 1N member and the Cu member in a vacuum atmosphere or an inert atmosphere to generate a synthetic financial liquid composed of Cu and an active metal between the AlN member and the Cu member; And diffusing a synergistic liquid into the Cu member. In such a method of the present invention, by heating the AlN member and the Cu member in which the active metal layer or the alloy layer is interposed in a vacuum atmosphere or an inert atmosphere, AlN having poor wettability with respect to a brazing filler metal or the like. It is possible to manufacture a power semiconductor module substrate in which a member and a Cu member functioning as a low-resistance wiring material or the like are joined with high strength. When a power semiconductor element is mounted on a Cu member of such a module substrate, since the AlN member joined to the Cu member has high thermal conductivity, the heat generated in the semiconductor element is transmitted through the Cu member, AlN, etc. It can be released well.

【0011】また、前記加熱を続行して前記AlN部材
と前記Cu部材との間に生成されたCuと活性金属から
なる合金融液を前記Cu部材に拡散させることによっ
て、熱衝撃による前記AlN部材のクラック発生を防止
したパワー半導体モジュール基板を製造することができ
る。
Further, by continuing the heating and diffusing into the Cu member a synthetic financial liquid composed of Cu and an active metal generated between the AlN member and the Cu member, the AlN member due to thermal shock. It is possible to manufacture a power semiconductor module substrate in which the occurrence of cracks is prevented.

【0012】すなわち、Cuまたは活性金属のような金
属とAlNとは熱膨張係数(Cu;17×10-6/℃、
AlN;4×10-6/℃)が大きく異なるため、前記C
u部材と前記AlN部材の温度が上昇ないし下降する
と、前記部材間の接合部に大きな応力が加わる。この場
合、Cuはその硬度が低く、柔らかいために前記Cu部
材は前記応力により容易に変形してそれを緩和する作用
を有する。これに対し、CuとTi、Zrのような活性
金属からなる合金は硬く変形し難いために、前記接合部
に前記合金の層が厚く存在すると、前記応力の緩和作用
が小さく、AlN部材に前記応力が加わってクラックを
発生する恐れがある。このようなことから本発明方法
は、前述したようにAlN部材と前記Cu部材との間に
生成されたCuと活性金属からなる合金融液をさらに加
熱を続行して前記Cu部材に拡散させることによって、
冷却後のAlN部材と前記Cu部材との間に位置する合
金層を著しく薄くするか、もしくは殆どの存在しない状
態にすることができる。その結果、前記合金層に起因す
る熱衝撃による前記AlN部材のクラック発生を抑制な
いし防止することができる。
That is, a metal such as Cu or an active metal and AlN have a coefficient of thermal expansion (Cu; 17 × 10 -6 / ° C.,
AlN; 4 × 10 −6 / ° C.) is significantly different,
When the temperature of the u member and the temperature of the AlN member rise or fall, a large stress is applied to the joint between the members. In this case, since Cu has low hardness and is soft, the Cu member has a function of easily deforming and relaxing the stress. On the other hand, since an alloy composed of Cu and an active metal such as Ti or Zr is hard and difficult to deform, if a thick layer of the alloy is present in the joint, the stress relaxation effect is small and the AlN member has the above-mentioned effect. There is a risk that stress will be applied and cracks will occur. From the above, the method of the present invention, as described above, is to continue heating the diffused solution of Cu and active metal generated between the AlN member and the Cu member to diffuse it into the Cu member. By
The alloy layer located between the cooled AlN member and the Cu member can be made extremely thin, or can be made almost nonexistent. As a result, cracking of the AlN member due to thermal shock caused by the alloy layer can be suppressed or prevented.

【0013】さらに、AlN部材と前記Cu部材との間
に介在させる活性金属層または活性金属および銅からな
る合金層の厚さを100μm以下と薄くすれば、より一
層放熱特性の優れたパワー半導体モジュール基板を製造
することができる。
Further, if the thickness of the active metal layer or the alloy layer composed of the active metal and copper interposed between the AlN member and the Cu member is made as thin as 100 μm or less, the power semiconductor module having further excellent heat dissipation characteristics. The substrate can be manufactured.

【0014】すなわち、前記パワー半導体モジュール基
板において前記Cu部材にパワー半導体素子を搭載する
と、前記半導体素子からの熱は前記Cu部材、および前
記Cu部材と前記AlN部材の間のCuと活性金属から
なる合金層を通して熱伝導率の高いAlN部材に伝達さ
れ、前記AlN部材から放熱される。この放熱特性は、
前記AlN部材の熱伝導率の良否のみならず、前記熱伝
達経路に位置し、AlNおよびCuに比べて熱伝導率が
劣る前記合金層や前記活性金属が拡散された前記Cu部
材の拡散領域の厚さも影響される。前述したように前記
活性金属層または活性金属および銅からなる前記合金層
の厚さを100μm以下と薄くすることによって、前記
AlN部材と前記Cu部材との間に生成されるCuと活
性金属からなる合金融液の量を少なくすることができ
る。その結果、さらに加熱を続行して前記合金融液を前
記Cu部材に拡散させることにより前記Cu部材の接合
部側に形成されるCuと活性金属からなる合金層の厚さ
や活性金属の拡散領域の厚さを薄くすることができる。
したがって、熱伝達経路に位置する前記拡散領域に起因
する熱伝導熱の低下を抑制できるため、より一層放熱特
性の優れたパワー半導体モジュール基板を製造すること
ができる。
That is, when a power semiconductor element is mounted on the Cu member in the power semiconductor module substrate, the heat from the semiconductor element is composed of the Cu member and Cu between the Cu member and the AlN member and the active metal. It is transmitted to the AlN member having a high thermal conductivity through the alloy layer and is radiated from the AlN member. This heat dissipation characteristic is
Not only the thermal conductivity of the AlN member is good or bad, but the alloy layer located in the heat transfer path and inferior in thermal conductivity to AlN and Cu or the diffusion region of the Cu member in which the active metal is diffused Thickness is also affected. As described above, by reducing the thickness of the active metal layer or the alloy layer made of active metal and copper to 100 μm or less, Cu formed between the AlN member and the Cu member and the active metal are formed. The amount of synergistic liquid can be reduced. As a result, the thickness of the alloy layer formed of Cu and the active metal and the diffusion region of the active metal formed on the joint side of the Cu member by continuing heating to diffuse the synthetic financial liquid into the Cu member The thickness can be reduced.
Therefore, it is possible to suppress a decrease in heat conduction heat due to the diffusion region located in the heat transfer path, and thus it is possible to manufacture a power semiconductor module substrate having further excellent heat dissipation characteristics.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1 まず、絶縁板、放熱板およびヒートシンクを兼ねるAl
N板11と複数枚のCu板12をトリクレンおよびアセ
トンで洗浄して脱脂した後、AlN板11とCu板12
の接合部に厚さ20μmのTi箔を介在させ、2×10
-5torrの真空度に保持したホットプレス内にセット
した。つづいて、AlN板11と複数枚のCu板12を
上下方向から0.1kg/mm2 の圧力を加え、高周波
加熱により接合部を930℃に保持した。加熱後30分
間未満の時間で前記Ti箔が溶融してCuとTiを含む
合金融液が生成された。圧力を解除した後、950℃で
96時間保持する加熱をさらに続行することにより、C
uとTiを含む合金融液をCu板12に拡散させた。加
熱後、アルゴンガス雰囲気中で冷却することにより図1
に示すようにAlN板11とCu板12とが接合された
構造のパワー半導体モジュール13を製造した。
Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1 First, Al that also serves as an insulating plate, a heat sink and a heat sink
After cleaning the N plate 11 and the plurality of Cu plates 12 with trichlene and acetone to degrease them, the AlN plate 11 and the Cu plate 12
A Ti foil with a thickness of 20 μm is interposed at the joint part of 2 × 10
It was set in a hot press maintained at a vacuum degree of -5 torr. Subsequently, a pressure of 0.1 kg / mm 2 was applied to the AlN plate 11 and the plurality of Cu plates 12 from above and below, and the joint was maintained at 930 ° C. by high frequency heating. The Ti foil was melted in less than 30 minutes after heating to generate a combined financial liquid containing Cu and Ti. After releasing the pressure, by further maintaining heating at 950 ° C. for 96 hours, C
A joint finance liquid containing u and Ti was diffused on the Cu plate 12. After heating, it is cooled in an argon gas atmosphere, as shown in FIG.
A power semiconductor module 13 having a structure in which an AlN plate 11 and a Cu plate 12 are joined as shown in FIG.

【0016】得られたモジュール基板13の接合部を1
00倍の光学顕微鏡で観察した。その結果、前記AlN
板11と前記Cu板12との間の接合部にはCuとTi
を含む合金層は観察されず、かつ前記AlN板11には
クラック発生もなく、良好な接合状態を有することが確
認された。
The joint portion of the obtained module substrate 13 is set to 1
It was observed with an optical microscope of 00 magnification. As a result, the AlN
At the joint between the plate 11 and the Cu plate 12, Cu and Ti
It was confirmed that an alloy layer containing P was not observed, and that the AlN plate 11 had no cracks and had a good bonding state.

【0017】また、図2に示すように前記モジュール基
板13の複数枚のCu板12にパワー半導体素子14を
Pb−Sn系半田層15を介してそれぞれ実装した。そ
の結果、半導体素子14からの多量の熱を良好に放出で
きると共に、AlN板11のクラック発生のない高信頼
性のパワー半導体モジュールを得ることができた。
Further, as shown in FIG. 2, the power semiconductor elements 14 are mounted on the plurality of Cu plates 12 of the module substrate 13 via the Pb-Sn solder layers 15 respectively. As a result, a large amount of heat from the semiconductor element 14 can be satisfactorily radiated, and a highly reliable power semiconductor module without cracking of the AlN plate 11 can be obtained.

【0018】実施例2 まず、複数枚のCu板12およびCuからなる熱拡散板
16をそれぞれトリクレンおよびアセトンで洗浄して脱
脂した後、前記Cu板12および熱拡散板16の片面に
60torrのアルゴン雰囲気中で低圧プラズマ溶射法
により厚さ30μmのCu−Ti合金層(72重量%C
u−Ti)をそれぞれ堆積した。つづいて、AlN板1
1をトリクレンおよびアセトンで洗浄し、このAlN板
11を前記熱拡散板16のCu−Ti合金層上に載せ、
さらに前記AlN板11上に複数枚の前記Cu板12を
予め堆積されたCu−Ti合金層が前記AlN板11側
に位置するように載せた後、2×10-5torrの真空
度に保持したホットプレス内にセットした。ひきつづ
き、Cu板12、AlN板11および熱拡散板16を上
下方向から0.1kg/mm2 の圧力を加え、高周波加
熱により前記AlN11と前記Cu板の間の接合部およ
び前記AlN板11と前記熱拡散板16の間の接合部を
900℃に保持した。加熱直後に前記Cu−Ti合金層
が溶融してCuとTiを含む合金融液が生成された。圧
力を解除した後、950℃で96時間保持する加熱をさ
らに続行することにより、CuとTiを含む合金融液を
前記AlN11と前記Cu板の間の接合部においてCu
板12に拡散させ、前記AlN板11と前記熱拡散板1
6の間の接合部において熱拡散板16に拡散させた。加
熱後、アルゴンガス雰囲気中で冷却することによりAl
N板11とCu板12、AlN板11と熱拡散板16を
それぞれ接合した。次いで、前記熱拡散板16の下面に
Cu製のヒートシンク17をPb−Sn系半田層15を
介して接合することにより図3に示すパワー半導体モジ
ュール13´を製造した。
Example 2 First, a plurality of Cu plates 12 and a heat diffusion plate 16 made of Cu were washed and degreased with trichlene and acetone, respectively. A Cu-Ti alloy layer (72 wt% C) having a thickness of 30 μm was formed by low pressure plasma spraying in an atmosphere.
u-Ti) were deposited respectively. Next, AlN plate 1
1 was washed with trichlene and acetone, and this AlN plate 11 was placed on the Cu—Ti alloy layer of the heat diffusion plate 16,
Further, a plurality of the Cu plates 12 are placed on the AlN plate 11 so that the previously deposited Cu—Ti alloy layer is located on the AlN plate 11 side, and then the vacuum degree of 2 × 10 −5 torr is maintained. It was set in the hot press. Subsequently, a pressure of 0.1 kg / mm 2 is applied to the Cu plate 12, the AlN plate 11 and the thermal diffusion plate 16 from above and below, and the joint between the AlN 11 and the Cu plate and the AlN plate 11 and the thermal diffusion are applied by high frequency heating. The joint between the plates 16 was kept at 900 ° C. Immediately after heating, the Cu-Ti alloy layer was melted to generate a combined financial liquid containing Cu and Ti. After releasing the pressure, by continuing heating at 950 ° C. for 96 hours, the combined financial liquid containing Cu and Ti was added to Cu at the joint between the AlN 11 and the Cu plate.
The AlN plate 11 and the heat diffusion plate 1 are diffused in the plate 12.
It was diffused to the heat diffusion plate 16 at the joint portion between 6. After heating, cooling in an argon gas atmosphere causes Al
The N plate 11 and the Cu plate 12 were joined together, and the AlN plate 11 and the heat diffusion plate 16 were joined together. Next, a heat sink 17 made of Cu was bonded to the lower surface of the heat diffusion plate 16 via the Pb-Sn solder layer 15 to manufacture a power semiconductor module 13 'shown in FIG.

【0019】得られたモジュール基板13´における前
記AlN11と前記Cu板の間、前記AlN板11と前
記熱拡散板16の間の各接合部を100倍の光学顕微鏡
で観察した。その結果、前記各接合部にはCuとTiを
含む合金層は観察されず、かつ前記AlN板11にはク
ラック発生もなく、良好な接合状態を有することが確認
された。
The joints between the AlN 11 and the Cu plate and between the AlN plate 11 and the thermal diffusion plate 16 in the obtained module substrate 13 'were observed with a 100 × optical microscope. As a result, it was confirmed that no alloy layer containing Cu and Ti was observed in each of the joints, and that the AlN plate 11 had no cracks and had a good joint state.

【0020】また、図4に示すように前記モジュール基
板13´の複数枚のCu板12にパワー半導体素子14
をPb−Sn系半田層15を介してそれぞれ実装した。
その結果、半導体素子14からの多量の熱を良好に放出
できると共に、AlN板11のクラック発生のない高信
頼性のパワー半導体モジュールを得ることができた。
As shown in FIG. 4, the power semiconductor element 14 is formed on the plurality of Cu plates 12 of the module substrate 13 '.
Were mounted via the Pb-Sn solder layer 15.
As a result, a large amount of heat from the semiconductor element 14 can be satisfactorily radiated, and a highly reliable power semiconductor module without cracking of the AlN plate 11 can be obtained.

【0021】[0021]

【発明の効果】以上詳述したように本発明によれば、簡
略化された構造で、かつ良好な絶縁耐圧を有することは
勿論、優れた放熱特性、耐熱衝撃性を有し、さらに低抵
抗の配線材料等として機能するCu部材がAlN部材に
強固に接合されたパワー半導体モジュール基板の製造方
法を提供することができる。
As described in detail above, according to the present invention, not only the structure is simplified and the dielectric strength is good, but also the heat dissipation property and the thermal shock resistance are excellent, and the resistance is low. It is possible to provide a method for manufacturing a power semiconductor module substrate, in which a Cu member functioning as a wiring material or the like is firmly bonded to an AlN member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1により製造されたパワー半導
体モジュール基板を示す断面図。
FIG. 1 is a cross-sectional view showing a power semiconductor module substrate manufactured according to a first embodiment of the present invention.

【図2】本発明の実施例1により製造されたパワー半導
体モジュールを示す断面図。
FIG. 2 is a sectional view showing a power semiconductor module manufactured according to Example 1 of the present invention.

【図3】本発明の実施例2により製造されたパワー半導
体モジュール基板を示す断面図。
FIG. 3 is a cross-sectional view showing a power semiconductor module substrate manufactured according to a second embodiment of the present invention.

【図4】本発明の実施例1により製造されたパワー半導
体モジュールを示す断面図。
FIG. 4 is a sectional view showing a power semiconductor module manufactured according to Example 1 of the present invention.

【図5】従来の放熱板を有するパワー半導体モジュール
を示す断面図。
FIG. 5 is a sectional view showing a power semiconductor module having a conventional heat sink.

【符号の説明】[Explanation of symbols]

11…AlN板、12…Cu板、13、13´…パワー
半導体モジュール基板、14…パワー半導体素子、15
…半田層、17…熱拡散板、17…ヒートシンク。
11 ... AlN plate, 12 ... Cu plate, 13, 13 '... Power semiconductor module substrate, 14 ... Power semiconductor element, 15
... Solder layer, 17 ... Heat diffusion plate, 17 ... Heat sink.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 達雄 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 白兼 誠 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭58−48926(JP,A) 特開 昭50−75208(JP,A) 特開 昭51−73014(JP,A) 特開 昭60−32648(JP,A) 特公 平5−86662(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Yamazaki 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute, Ltd. (72) Inventor Makoto Shirakane Komukai-shi Toshiba, Kawasaki-shi, Kanagawa No. 1 in Toshiba Research Institute Co., Ltd. (56) Reference JP 58-48926 (JP, A) JP 50-75208 (JP, A) JP 51-73014 (JP, A) JP 60 -32648 (JP, A) Japanese Patent Publication 5-86662 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化アルミニウム部材と銅部材との間に
活性金属層または活性金属および銅からなる合金層を介
在させる工程と、 前記活性金属層または合金層が介在された前記窒化アル
ミニウム部材および前記銅部材を真空雰囲気もしくは不
活性雰囲気で加熱して前記窒化アルミニウム部材と前記
銅部材との間に銅と活性金属からなる合金融液を生成す
る工程と、 さらに加熱を続行して前記合金融液を前記銅部材に拡散
させる工程とを具備したことを特徴とするパワー半導体
モジュール基板の製造方法。
1. A step of interposing an active metal layer or an alloy layer composed of an active metal and copper between an aluminum nitride member and a copper member; and the aluminum nitride member and the aluminum nitride member in which the active metal layer or alloy layer is interposed. A step of heating a copper member in a vacuum atmosphere or an inert atmosphere to generate a combined financial liquid composed of copper and an active metal between the aluminum nitride member and the copper member; And a step of diffusing the copper into the copper member.
【請求項2】 前記活性金属は、チタンまたはジルコニ
ウムであることを特徴とする請求項1記載のパワー半導
体モジュール基板の製造方法。
2. The method for manufacturing a power semiconductor module substrate according to claim 1, wherein the active metal is titanium or zirconium.
【請求項3】 前記活性金属層または前記合金層は、1
00μm以下の厚さを有することを特徴とする請求項1
記載のパワー半導体モジュール基板の製造方法。
3. The active metal layer or the alloy layer is 1
2. A thickness of less than 00 μm.
A method for manufacturing the power semiconductor module substrate described.
JP6300702A 1994-12-05 1994-12-05 Method for manufacturing power semiconductor module substrate Expired - Lifetime JP2519402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300702A JP2519402B2 (en) 1994-12-05 1994-12-05 Method for manufacturing power semiconductor module substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300702A JP2519402B2 (en) 1994-12-05 1994-12-05 Method for manufacturing power semiconductor module substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14131983A Division JPS6032343A (en) 1983-08-02 1983-08-02 Power semiconductor module substrate

Publications (2)

Publication Number Publication Date
JPH07176651A JPH07176651A (en) 1995-07-14
JP2519402B2 true JP2519402B2 (en) 1996-07-31

Family

ID=17888061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300702A Expired - Lifetime JP2519402B2 (en) 1994-12-05 1994-12-05 Method for manufacturing power semiconductor module substrate

Country Status (1)

Country Link
JP (1) JP2519402B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380107B1 (en) 2001-04-30 2003-04-11 삼성전자주식회사 Circuit board having a heating means and multichip package having hermetic sealing part

Also Published As

Publication number Publication date
JPH07176651A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
US4611745A (en) Method for preparing highly heat-conductive substrate and copper wiring sheet usable in the same
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
WO2004015756A1 (en) Submount and semiconductor device
JP4700681B2 (en) Si circuit die, method of manufacturing Si circuit die, method of attaching Si circuit die to heat sink, circuit package and power module
EP1430007B1 (en) Brazeable matallizations for diamond components
JPH0697671B2 (en) Method for manufacturing power semiconductor module substrate
JPH0586662B2 (en)
US6534792B1 (en) Microelectronic device structure with metallic interlayer between substrate and die
JP2003168770A (en) Silicon nitride circuit board
JP2519402B2 (en) Method for manufacturing power semiconductor module substrate
US6699571B1 (en) Devices and methods for mounting components of electronic circuitry
JP4244723B2 (en) Power module and manufacturing method thereof
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH08102570A (en) Ceramic circuit board
JP2000138320A (en) Semiconductor element mounting substrate or heat sink and its manufacture and jointed body of the substrate or the heat sink with semiconductor element
JP3192911B2 (en) Ceramic circuit board
JPS61119051A (en) Semiconductor device
JPH0518477B2 (en)
JP2503775B2 (en) Substrate for semiconductor device
JPS639665B2 (en)
JPH10138052A (en) Method of coupling diamond substrate to at least one metal substrate
JP2717918B2 (en) Metal composite parts
JPH1041443A (en) Semiconductor device
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH0834265B2 (en) Good thermal conductive substrate