JPH02225328A - Production of spherical silica glass - Google Patents

Production of spherical silica glass

Info

Publication number
JPH02225328A
JPH02225328A JP4394089A JP4394089A JPH02225328A JP H02225328 A JPH02225328 A JP H02225328A JP 4394089 A JP4394089 A JP 4394089A JP 4394089 A JP4394089 A JP 4394089A JP H02225328 A JPH02225328 A JP H02225328A
Authority
JP
Japan
Prior art keywords
gel
acid ester
silicic acid
silica glass
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4394089A
Other languages
Japanese (ja)
Other versions
JPH0519494B2 (en
Inventor
Ryuji Masuda
竜司 増田
Mitsuru Ishii
満 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP4394089A priority Critical patent/JPH02225328A/en
Publication of JPH02225328A publication Critical patent/JPH02225328A/en
Publication of JPH0519494B2 publication Critical patent/JPH0519494B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain spherical silica glass excellent in dispersibility in high yield by hydrolyzing a solution of a silicic acid ester raw material, converting the hydrolyzed sol into a gel with butanol as a dispersion medium, separating and calcining the resultant gel. CONSTITUTION:A solution of a silicic acid ester raw material is hydrolyzed and the hydrolyzed sol is then formed into a gel using butanol as a dispersion medium. The resultant gel is subsequently separated and calcined to provide spherical silica glass excellent in dispersibility. Methyl silicate, ethyl silicate, propyl silicate, etc., are cited as the silicic acid ester used. The hydrolysis of the silicic acid ester is preferably carried out by mixing and stirring the silicic acid ester with water and a catalyst, such as aqueous ammonia, and suspending the silicic acid ester therein and the mixing ratio thereof is about 3-10mol water based on 1mol silicic acid ester. If the aqueous ammonia is used as the catalyst, the mixing ratio thereof is preferably about 5X10<-5> to 5X10<-3>mol based on 1mol silicic acid ester.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば半導体素子用封止材の充填材(フィシ
)等として使用される球状シリカガラスの製造方法に関
する。更に詳しくはゾル−ゲル法による球状シリカガラ
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing spherical silica glass used as a filler (filler) of a sealing material for semiconductor elements, for example. More specifically, the present invention relates to a method for producing spherical silica glass using a sol-gel method.

(従来の技術) 従来、この種の球状シリカガラスの製造方法としては、
天然の珪石および水晶を粉砕し、これを再溶融して球状
化させて球状シリカガラスを製造する方法が知られてい
るが、シリカガラスの高純度化の要求に伴って、これに
代えSIC!<1を02−82炎中で加水分解してガラ
ススートを作成し、これを温度1800〜2000℃で
焼結、粉砕し、再びたび”2 112炎中て加熱球状化
させて球状シリカガラスを製造する所謂気相法が採用さ
れてきた。
(Prior art) Conventionally, as a method for manufacturing this type of spherical silica glass,
There is a known method of producing spherical silica glass by crushing natural silica stone and crystal, remelting it, and spheroidizing it, but due to the demand for higher purity silica glass, SIC! <1 was hydrolyzed in a 02-82 flame to create a glass soot, which was sintered and crushed at a temperature of 1800 to 2000°C, and then heated again in a 2-112 flame to form a spherical shape to form spherical silica glass. The so-called gas phase method of manufacturing has been adopted.

しかしながら、この気相法は、5iCj!、の加水分解
、焼結、粉末の再溶融を温度1800〜2000℃の0
2− H2炎中で行うため、多量の熱エネルギーを必要
とするため、エネルギー費の製造コスト中に占める割合
いが著しく高くなって製品価格は高価であるという問題
がある。
However, this gas phase method has 5iCj! , hydrolysis, sintering, and remelting of the powder at a temperature of 1800-2000℃.
Since the process is carried out in a 2-H2 flame, a large amount of thermal energy is required, which causes a problem in that the proportion of energy costs in the manufacturing cost becomes extremely high, making the product expensive.

そこで前記問題点がないものとして特開昭58−176
1313号公報に開示されているように珪酸エステル、
水、アルコールの混合溶液を、これらと実質的に相溶性
がない液体に分散、懸濁させて粉粒状のゲルを生成させ
、得られた粉粒状ゲルを分離し焼成させて球状シリカガ
ラスを形成させる所謂ゾル−ゲル法が注目されている。
Therefore, assuming that the above-mentioned problem does not exist,
Silicate ester as disclosed in Japanese Patent No. 1313,
A mixed solution of water and alcohol is dispersed and suspended in a liquid that is substantially incompatible with these to form a granular gel, and the resulting granular gel is separated and fired to form spherical silica glass. The so-called sol-gel method is attracting attention.

(発明が解決しようとする課題) 前記ゾル−ゲル法は、生成された粉粒状ゲルの分散に前
記混合溶液と実質的に相溶性がない液体即ち分散媒とし
て、ヘキサノール、オクタツール等の高級アルコール、
ヘキサン、キシレン等の芳香族炭化水素、ジエチルエー
テル、アニソール等のエーテル等を用いているが、生成
したゲル粒子が互いに凝集し易く、完全に単分散した乾
燥ゲルが得られないため、充分に単分散した球状シリカ
ガラスが得られず、また粒径が2jI11以上のゲルの
収率が低い等の問題がある。
(Problems to be Solved by the Invention) The sol-gel method uses a higher alcohol such as hexanol or octatool as a liquid that is substantially incompatible with the mixed solution, that is, as a dispersion medium, for dispersing the generated powdery gel. ,
Aromatic hydrocarbons such as hexane and xylene, ethers such as diethyl ether and anisole, etc. are used, but the resulting gel particles tend to aggregate with each other, making it impossible to obtain a completely monodispersed dry gel. There are problems in that dispersed spherical silica glass cannot be obtained and the yield of gel having a particle size of 2jI11 or more is low.

本発明は、前記問題点を解消し、ゲルを凝集することな
く良好に分散し得、かつ粒径が2jm以上のゲルの収率
が良好なゾル−ゲル法による球状シリカガラスの製造方
法を提供することを目的とする。
The present invention solves the above-mentioned problems and provides a method for producing spherical silica glass using a sol-gel method, in which the gel can be well dispersed without agglomeration, and the yield of gel having a particle size of 2 jm or more is good. The purpose is to

(課題を解決するための手段) 本発明者らは、前記目的を達成すべく鋭意研究の結果、
ゾル−ゲル法において分散媒に低級アルコールの一つで
あるブタノールを用いると生成されたゲルの分散性が良
好で、かつ粒径2μm以上のゲルの収率が向上すること
を知見した。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventors have found that
It has been found that when butanol, which is one of the lower alcohols, is used as a dispersion medium in the sol-gel method, the dispersibility of the generated gel is good and the yield of gel with a particle size of 2 μm or more is improved.

本発明は前記知見に基づいてなされたものであって、そ
の球状シリカガラスの製造方法は、珪酸エステル原料溶
液を加水分解して得られたゾルを分散媒中で分散させて
ゲルを生成させ、得られたゲルを分離、焼成するゾル−
ゲル法により球状シリカガラスを製造する方法において
、前記分散媒としてブタノールを用いることを特徴とす
る。
The present invention has been made based on the above findings, and the method for producing spherical silica glass comprises: dispersing a sol obtained by hydrolyzing a silicate ester raw material solution in a dispersion medium to generate a gel; A sol that separates and bakes the resulting gel.
The method for producing spherical silica glass by a gel method is characterized in that butanol is used as the dispersion medium.

本発明で用いる珪酸エステルとしては、珪酸メチル、珪
酸エチル、珪酸プロピル等が挙げられる。
Examples of the silicic acid ester used in the present invention include methyl silicate, ethyl silicate, and propyl silicate.

また珪酸エステルの加水分解は、珪酸エステルと、水と
、例えばアンモニア水等の触媒を混合撹拌して懸濁させ
ればよく、その混合比は珪酸エステル1モルに対して水
3〜10モル&、 度トし、また触媒としてアンモニア
水を用いる場合は珪酸エステル1モルに対して5 X 
10−’〜5×10−3モル程度とするのが好ましい。
Hydrolysis of a silicate ester can be carried out by mixing and stirring a silicate ester, water, and a catalyst such as aqueous ammonia, and the mixing ratio is 3 to 10 moles of water to 1 mole of silicate ester. , and when using aqueous ammonia as a catalyst, 5X per mole of silicate ester
The amount is preferably about 10-' to 5 x 10-3 moles.

また、分散媒量は一般には珪酸エステル原料溶液の1〜
3倍容量程度とする。
In addition, the amount of dispersion medium is generally 1 to 1 of the silicate ester raw material solution.
It should be about 3 times the capacity.

(実施例) 次に本発明の具体的実施例を比較例と共に説明する。(Example) Next, specific examples of the present invention will be described together with comparative examples.

実験例 先ず、500ccビーカー中に蒸溜精製した珪酸メチル
1モルに対して蒸溜水5モル、純度99.5%のアンモ
ニア水1×10−4モルとなるように夫々加え、マグネ
チックスターラにより温度25℃で、30分間激しく撹
拌し、約250ccの粘度がlOボイズ(東京計器製B
型粘度計)のゾルを調製した。
Experimental Example First, 5 moles of distilled water and 1 x 10-4 moles of ammonia water with a purity of 99.5% were added to 1 mole of methyl silicate purified by distillation into a 500cc beaker, and the mixture was heated to 25% using a magnetic stirrer. ℃, stirred vigorously for 30 minutes, and a viscosity of about 250 cc was obtained using 1O bois (Tokyo Keiki B).
(type viscometer) was prepared.

次に、前記ゾルzsoccを、別個に用意した1000
ccビーカー中の前記ゾル量に対して容積比で2倍容量
のブタノール分散液中に投入し、マグネチックスターラ
によって温度25℃で、5時間激しく撹拌して、ゲルを
生成させた。
Next, the sol zsocc was prepared separately.
The mixture was poured into a butanol dispersion having a volume ratio twice that of the sol in the CC beaker, and vigorously stirred with a magnetic stirrer at a temperature of 25° C. for 5 hours to form a gel.

撹拌終了後直ちに静置させて生成されたゲルの沈降開始
時間と、静置5分経過後のゲルの分散状態を調べ、その
結果を表に示した。
Immediately after the stirring was completed, the gel was allowed to stand still, and the sedimentation start time and the dispersion state of the gel after 5 minutes of standing were investigated, and the results are shown in the table.

また生成されたゲルを光学顕微鏡で観察(倍率100倍
)したところ粒径が2〜100μm程度の球状粒子とし
て単分散していることが確認された。
Further, when the produced gel was observed with an optical microscope (magnification: 100 times), it was confirmed that it was monodispersed as spherical particles with a particle size of about 2 to 100 μm.

次いで生成されたゲル分散液を孔径が2:ll11の濾
紙を用いて減圧濾過してゲルと濾液に分離し、濾紙上の
ゲルを純度98%のブタノール500ccで2回、次い
で蒸溜水250ccで1回洗浄後、温度BO℃、湿度9
5%の恒温恒湿器内で24時間乾燥した。
Next, the generated gel dispersion was filtered under reduced pressure using a filter paper with a pore size of 2:111 to separate the gel and the filtrate. After washing twice, temperature BO℃, humidity 9
It was dried for 24 hours in a 5% temperature and humidity chamber.

乾燥後の粒状ゲルを電気炉内で昇温速度100”C/1
時間で温度800℃まで昇温し、該温度で2時間焼成し
たのち、常温まで冷却して球状シリカガラスを得た。
After drying, the granular gel is heated at a heating rate of 100”C/1 in an electric furnace.
The temperature was raised to 800° C. for 2 hours, and after firing at this temperature for 2 hours, it was cooled to room temperature to obtain spherical silica glass.

得られた白色粉末をX線回折法で調べたところシリカガ
ラスであることが確認された。
When the obtained white powder was examined by X-ray diffraction, it was confirmed that it was silica glass.

また、得られたゲルの収率を次式により求め、その結果
を表に示した。
Further, the yield of the obtained gel was determined using the following formula, and the results are shown in the table.

尚、MX:得られた球状シリカガラス量。Incidentally, MX: amount of obtained spherical silica glass.

MA:原料に用いた珪酸メチル量から理論的に計算され
るシリカガラス量。
MA: The amount of silica glass theoretically calculated from the amount of methyl silicate used in the raw material.

比較実験例1 ゾルを分散させる分散媒にブタノールの代わりにプロパ
ツールを用いた以外は実験例と同様の方法で球状シリカ
ガラスを作成した。
Comparative Experimental Example 1 Spherical silica glass was produced in the same manner as in the experimental example except that propatool was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
0倍)したところ粒径が1νm以下の均一な球状粒子と
して単分散していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
0 times), it was found that the particles were monodispersed as uniform spherical particles with a particle size of 1 νm or less.

比較実験例2 ゾルを分散させる分散媒にブタノールの代わりにヘキサ
ノールを用いた以外は実施例と同様の方法で球状シリカ
ガラスを作成した。
Comparative Experimental Example 2 Spherical silica glass was produced in the same manner as in Example except that hexanol was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径が2〜100μmの球状粒子が複数
個凝集していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, a plurality of spherical particles having a particle size of 2 to 100 μm were aggregated.

比較実験例3 ゾルを分散させる分散媒にブタノールの代わりにヘプタ
ツールを用いた以外は実験例と同様の方法で球状シリカ
ガラスを作成した。
Comparative Experimental Example 3 Spherical silica glass was produced in the same manner as in Experimental Example except that heptatool was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径が2〜100μmの球状粒子が複数
個凝集していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, a plurality of spherical particles having a particle size of 2 to 100 μm were aggregated.

比較実験例4 ゾルを分散させる分散媒にブタノールの代わりにオクタ
ツールを用いた以外は実験例と同様の方法で球状シリカ
ガラスを作成した。
Comparative Experimental Example 4 Spherical silica glass was produced in the same manner as in Experimental Example except that octatool was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径が2〜ioo amの球状粒子が複
数個凝集していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, a plurality of spherical particles having a particle size of 2 to 100 am were aggregated.

比較実験例5 ゾルを分散させる分散媒にブタノールの代わりにヘキサ
ンを用いた以外は実験例と同様の方法で球状シリカガラ
スを作成した。
Comparative Experimental Example 5 Spherical silica glass was produced in the same manner as in Experimental Example except that hexane was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径がlO〜2001mの塊状粒子が生
成していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, it was found that lumpy particles with a particle size of 10 to 2001 m were produced.

比較実験例6 ゾルを分散させる分散媒にブタノールの代わりにヘプタ
ンを用いた以外は実験例と同様の方法で球状シリカガラ
スを作成した。
Comparative Experimental Example 6 Spherical silica glass was produced in the same manner as in Experimental Example except that heptane was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径が10〜200μmの塊状粒子が生
成していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, bulk particles with a particle size of 10 to 200 μm were produced.

比較実験例7 ゾルを分散させる分散媒にブタノールの代わりにトルエ
ンを用いた以外は実験例と同様の方法で球状シリカガラ
スを作成した。
Comparative Experimental Example 7 Spherical silica glass was produced in the same manner as in Experimental Example except that toluene was used instead of butanol as the dispersion medium for dispersing the sol.

前記実験例と同様にして、撹拌後直ちに静置させて生成
されたゲルの沈降開始時間と、静置5分経過後のゲルの
分散状態並びにゲルの収率を調べ、その結果を表に示し
た。
In the same manner as in the above experimental example, the settling start time of the gel produced by allowing it to stand immediately after stirring, the dispersion state of the gel after 5 minutes of standing, and the gel yield were investigated, and the results are shown in the table. Ta.

また、生成されたゲルを光学顕微鏡で観察(倍率100
倍)したところ粒径が10〜200μmの塊状粒子が生
成していた。
In addition, the generated gel was observed under an optical microscope (magnification: 100
As a result, bulk particles with a particle size of 10 to 200 μm were produced.

表 尚、表におけるゲルの分散性の評価は次の通りである。table In addition, the evaluation of the dispersibility of the gel in the table is as follows.

◎ 分散性極めて良好 O分散性良好 △ 凝集状態 × 凝集状態が著しい 表から明らかなように、分散媒にブタノールを用いた本
発明の実験例の方法は、ゲルの分散性が良好であり、か
つ粒径2μm以上のゲルの収率も高かった。これに対し
て分散媒にプロパツールを用いた比較実験例1の方法は
、ゲルの分散性は良好であるがゲルの沈降開始が遅く、
かつ生成されたゲルの粒径が極めて小さいため粒径2p
m以上のゲル収率が0であった。また分散媒にヘキサノ
ール、ヘプタツール、オクタツール等の高級アルコール
を用いた比較実験例2〜4の方法は、ゲルの沈降開始は
非常に速くゲルの分散性が悪く、かつゲルの収率が低か
った。
◎ Very good dispersibility O Good dispersibility △ Agglomerated state The yield of gels with particle sizes of 2 μm or more was also high. On the other hand, in the method of Comparative Experiment Example 1 using propatool as the dispersion medium, the dispersibility of the gel was good, but the gel began to settle slowly.
And the particle size of the generated gel is extremely small, so the particle size is 2p.
The gel yield of m or more was 0. In addition, in the methods of Comparative Experiments 2 to 4 in which higher alcohols such as hexanol, heptatool, and octatool were used as the dispersion medium, the gel sedimentation started very quickly, the gel dispersibility was poor, and the gel yield was low. Ta.

また分散媒にヘキサン、ヘプタン、トルエンを用いた比
較実験例5〜7の方法では、ゲルは分散せずに塊状であ
った。
Furthermore, in the methods of Comparative Experiments 5 to 7 in which hexane, heptane, or toluene was used as the dispersion medium, the gels were not dispersed but were in the form of lumps.

(発明の効果) このように球状シリカガラスの製造方法によれば、分散
媒としてブタノールを用いるようにしたので、生成され
たゲルが凝集することなく均一に分散媒中に分散し、か
つ粒径21m以上のゲルの収率を向上させることが出来
、分散性のよい球状シリカガラスを高収率で製造出来る
等の効果を1−fする。
(Effects of the Invention) According to the method for producing spherical silica glass, butanol is used as the dispersion medium, so that the generated gel is uniformly dispersed in the dispersion medium without agglomeration, and the particle size Effects such as being able to improve the yield of gels of 21 m or more and producing spherical silica glass with good dispersibility at a high yield are 1-f.

特  許  出  願  人 日本無機株式会社 外3名 平成 年 月 日Patent applicant Nihon Muki Co., Ltd. 3 other people Month, Heisei Day

Claims (1)

【特許請求の範囲】[Claims] 珪酸エステル原料溶液を加水分解して得られたゾルを分
散媒中で分散させてゲルを生成させ、得られたゲルを分
離、焼成するゾル−ゲル法により球状シリカガラスを製
造する方法において、前記分散媒としてブタノールを用
いることを特徴とする球状シリカガラスの製造方法。
In the method for producing spherical silica glass by the sol-gel method, the sol obtained by hydrolyzing a silicate ester raw material solution is dispersed in a dispersion medium to form a gel, and the resulting gel is separated and fired. A method for producing spherical silica glass characterized by using butanol as a dispersion medium.
JP4394089A 1989-02-23 1989-02-23 Production of spherical silica glass Granted JPH02225328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4394089A JPH02225328A (en) 1989-02-23 1989-02-23 Production of spherical silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4394089A JPH02225328A (en) 1989-02-23 1989-02-23 Production of spherical silica glass

Publications (2)

Publication Number Publication Date
JPH02225328A true JPH02225328A (en) 1990-09-07
JPH0519494B2 JPH0519494B2 (en) 1993-03-16

Family

ID=12677698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4394089A Granted JPH02225328A (en) 1989-02-23 1989-02-23 Production of spherical silica glass

Country Status (1)

Country Link
JP (1) JPH02225328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225978C1 (en) * 1992-08-06 1994-04-07 Degussa Shaped organosiloxane polycondensates, process for their preparation and use
JP2016539903A (en) * 2013-11-26 2016-12-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Process for producing inorganic particulate material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225978C1 (en) * 1992-08-06 1994-04-07 Degussa Shaped organosiloxane polycondensates, process for their preparation and use
JP2016539903A (en) * 2013-11-26 2016-12-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Process for producing inorganic particulate material

Also Published As

Publication number Publication date
JPH0519494B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
Zawrah et al. Facile and economic synthesis of silica nanoparticles
JPH02503790A (en) sinterable nitride
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
EP0331187B1 (en) Process for producing a ceramic preform
JPH02225328A (en) Production of spherical silica glass
JPH085660B2 (en) Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein
KR960003236B1 (en) Method for preparing silica gel particles
JPS5939366B2 (en) Manufacturing method of zirconium oxide fine powder
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JPH02307830A (en) Production of quartz glass powder
US4774068A (en) Method for production of mullite of high purity
JP2903242B2 (en) Method for producing powdery spherical silica glass
JPS62158116A (en) Production of fine aluminium oxide particles
JPS61204033A (en) Granulating method for powder of inorganic raw material
JPH02293314A (en) Aggregate of particle and production thereof
JP2010254574A (en) Spherical multicomponent glass fine particle
JP4822550B2 (en) Spherical multi-component glass particles
RU2144505C1 (en) Method of preparing titanium dioxide
JPH02184514A (en) Cylindrical quartz glass powder and production thereof
JP2734083B2 (en) Method for producing transparent quartz glass molded body
JPS62226821A (en) Production of glass
CN1049485A (en) The production method of the compound material of metal oxide, metal oxide composite material powder end and stupalith
JPH0521855B2 (en)
CN1375457A (en) Prepn. of nano yttrium oxide
JPH02225327A (en) Production of filler for sealing material and hollow spherical silica glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees