JPH02222763A - Ultrapure water generator using heated deaerator - Google Patents

Ultrapure water generator using heated deaerator

Info

Publication number
JPH02222763A
JPH02222763A JP4242389A JP4242389A JPH02222763A JP H02222763 A JPH02222763 A JP H02222763A JP 4242389 A JP4242389 A JP 4242389A JP 4242389 A JP4242389 A JP 4242389A JP H02222763 A JPH02222763 A JP H02222763A
Authority
JP
Japan
Prior art keywords
water
ultrapure water
ultrapure
supplied
deaerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4242389A
Other languages
Japanese (ja)
Other versions
JP2703034B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Akihiko Hougetsu
宝月 章彦
Kenichi Ushigoe
健一 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP4242389A priority Critical patent/JP2703034B2/en
Publication of JPH02222763A publication Critical patent/JPH02222763A/en
Application granted granted Critical
Publication of JP2703034B2 publication Critical patent/JP2703034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To efficiently obtain ultrapure water by introducing the water from an ultrapure water tank into a heated deaerator, bringing the water into direct contact with steam to heat and deaerated the water, cooling the water and then supplying the water to the point of use. CONSTITUTION:Raw water is treated by a pretreating device 1 and then treated by a primary demineralizer 2 to generate primary water which is supplied to a closed ultrapure water tank 3 purged with gaseous nitrogen in a secondary ultrapure water circulating system. The ultrapure water, which has not been used at the point of use 4 and returned, is introduced into the tank 3 and circulated. The pure water from the tank 3 is supplied to a dissolved TOC decomposing device 6 using UV by an ultrapure water pump 5, treated therein, preheated by an indirect heat exchanger 7, and then supplied to the heated deaerator 8. Heat is recovered in the heat exchanger 7 by the heat exchange with deaerated water. By this method, the elution at high temp. can be minimized by using an insoluble material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子工業の半導体製造およびその関連産業に
用いられる超純水装置、特に半導体製造において洗浄に
用いられる超純水の溶存酸素を極限にまで減少させる超
純水装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an ultrapure water device used in semiconductor manufacturing in the electronics industry and related industries, and particularly in ultrapure water used for cleaning in semiconductor manufacturing. This article relates to an ultrapure water device that reduces water consumption to the utmost limit.

(従来の技術) 半導体の製造の際に洗浄に使用される超純水をつくる超
純水装置の技術分野では、超純水中の溶存酸素レベルを
低下させることの意義、必要性は種々論じられているが
、従来は、溶存酸素レベルを低下させることにより水中
の好気性微生物の増殖を防止し水質の制御に有効である
ことから、これらの目的で脱気が行われて来た。
(Prior art) In the technical field of ultrapure water equipment that produces ultrapure water used for cleaning during semiconductor manufacturing, there has been much discussion about the significance and necessity of lowering the dissolved oxygen level in ultrapure water. However, conventionally, deaeration has been carried out for these purposes because it is effective in preventing the growth of aerobic microorganisms in water and controlling water quality by lowering the dissolved oxygen level.

この点では超純水に残存する溶存酸素濃度レベルに対す
る要求は酷しいものではなく、脱気装置としても熱影響
を受けることが嫌われる超純水装置の系統に支障なく組
込み得るもの、例えば充填塔を用いた真空脱気方式、膜
を用いた真空脱気方式のもの、あるいは還元剤を注入し
触媒を用いて水中の酸素を除去する方法等が従来用いら
れている。
In this respect, the requirements for the dissolved oxygen concentration level remaining in ultrapure water are not severe, and it is possible to incorporate it into the system of ultrapure water equipment that does not like to be affected by heat even as a deaeration device, such as filling. Conventionally used methods include a vacuum deaeration method using a column, a vacuum deaeration method using a membrane, and a method in which a reducing agent is injected and oxygen in water is removed using a catalyst.

第3図は真空脱気方式の脱気装置を組込んだ従来技術の
超純水装置の1例を示す、原水は前処理装置(a)で凝
集沈澱、濾過等により処理され、前処理水が加圧ポンプ
(b)により加圧されて逆浸透装置(C)により脱塩さ
れたのち、この脱塩水が充填塔形式の真空脱気装置(d
J内にスプレーされ、真空ポンプ(e)により真空引さ
れて脱気され酸素除去が行われる。こうして脱気された
水がポンプ(f)によりイオン交換塔(6)に通されて
残留イオンが除去され、さらにイオン交換樹脂の破片等
を除去するためフィルタ(5)に通され1次純水となっ
て、超純水循環系の超純水タンク(i)に供給される。
Figure 3 shows an example of a conventional ultrapure water equipment incorporating a vacuum degassing type deaerator. Raw water is treated by coagulation sedimentation, filtration, etc. in the pretreatment equipment (a), and the pretreated water is After the water is pressurized by a pressure pump (b) and desalted by a reverse osmosis device (C), this desalted water is sent to a packed column type vacuum deaerator (d).
It is sprayed into J and evacuated by a vacuum pump (e) to remove oxygen. The degassed water is passed through an ion exchange tower (6) by a pump (f) to remove residual ions, and is then passed through a filter (5) to remove ion exchange resin fragments, etc., to provide primary pure water. The water is then supplied to the ultrapure water tank (i) of the ultrapure water circulation system.

超純水循環系では、超純水タンク(i)からの純水が超
純水ポンプ(j)により真空ポンプ(9)に接続した膜
脱気装置(f)に供給され、さらに脱気される。このよ
うに膜脱気装! (I!、)が前記の真空脱気装置(d
)の代わりに2次超純水装置の循環系中に置かれること
もある。
In the ultrapure water circulation system, pure water from the ultrapure water tank (i) is supplied by an ultrapure water pump (j) to a membrane deaerator (f) connected to a vacuum pump (9), where it is further degassed. Ru. Membrane deaeration like this! (I!,) is the vacuum degassing device (d
) may be placed in the circulation system of a secondary ultrapure water device.

膜脱気された純水は、2次純水装置の紫外線殺菌器(ホ
)により殺菌処理され、イオン交換樹脂の非再生型ポリ
シャー(n)により最終的イオンボリシングされ限外濾
過器(0)により微粒子を完全に除去し超純水となる。
The membrane-degassed pure water is sterilized by the ultraviolet sterilizer (e) of the secondary water purification device, and finally ion-bored by the non-regenerating polisher (n) of ion exchange resin, and then passed through the ultrafilter (0). ) to completely remove fine particles and become ultrapure water.

この超純水は配管ループ(p)を経て各ユースポイント
(q)に分配供給される。配管ループ中の残りの超純水
は再度超純水タンク(i)に返送され循環される。超純
水タンク(i)は脱気された水が空気中の酸、素と接触
することを避けるため密閉形とし、気相部を窒素により
パージしている。
This ultrapure water is distributed and supplied to each use point (q) via a piping loop (p). The remaining ultrapure water in the piping loop is returned to the ultrapure water tank (i) and circulated again. The ultrapure water tank (i) is of a closed type to prevent the degassed water from coming into contact with acids and elements in the air, and the gas phase is purged with nitrogen.

このように真空脱気装置は超純水装置の系統内の最も適
切な個所に挿入して組入れられているが、真空脱気方式
を以てしては超純水中の溶存酸素レベルは30〜50p
pb程度までしか下げることができない。水素を還元剤
として用い触媒樹脂を用いて行う酸素脱気も、topp
b程度までで、樹脂からのTOC溶出の問題がある。
In this way, the vacuum degassing device is installed at the most appropriate location in the ultrapure water equipment system, but with the vacuum degassing method, the dissolved oxygen level in the ultrapure water is 30 to 50p.
It can only be lowered to about pb. Oxygen degassing using hydrogen as a reducing agent and catalytic resin also
Up to about b, there is a problem of TOC elution from the resin.

(発明が解決しようとする課題) しかし、半導体集積回路の集積度が進み微細加工技術が
一層必要とされるのに伴って超純水中の溶存酸素により
ウェハー表面に自然酸化膜が形成されることが無視でき
ないようになって来ている。この自然酸化膜が成長する
とコンタクトレジスタンスを増加させ、製造した集積回
路に欠陥が生ずることになる。
(Problem to be solved by the invention) However, as the degree of integration of semiconductor integrated circuits increases and microfabrication technology becomes more necessary, a natural oxide film is formed on the wafer surface due to dissolved oxygen in ultrapure water. It has become impossible to ignore this. When this native oxide film grows, it increases the contact resistance and causes defects in the manufactured integrated circuit.

ウェハー上にこのような自然酸化膜が形成されないよう
にするには、超純水中の溶存酸素レベルをさらに低下さ
せることが必要である。自然酸化膜の成長は溶存酸素濃
度だけでなく、水温、浸漬時間等によって影響される。
In order to prevent the formation of such a native oxide film on the wafer, it is necessary to further reduce the dissolved oxygen level in the ultrapure water. Growth of natural oxide film is affected not only by dissolved oxygen concentration but also by water temperature, immersion time, etc.

超純水の溶存酸素レベルをさらに低下させる手段とじて
加熱脱気が有効であるが、超純水装置の構成各部、配管
、弁等に高温の超純水が常時接触することは、各部から
の材料の溶出を増加させる傾向を伴うので、これまで採
用されなかった。
Thermal degassing is an effective means of further lowering the dissolved oxygen level in ultrapure water, but constant contact of high-temperature ultrapure water with the components, piping, valves, etc. of an ultrapure water equipment means that has not been adopted to date because of its tendency to increase the elution of materials.

本発明は従来技術の上記問題点に解決を与え、超純水中
の溶存酸素レベルをtoppb以下に、さらに2ppb
以下の程度の極限にまで低下させることのできる超純水
装置を提供することを課題とする。
The present invention provides a solution to the above-mentioned problems of the prior art, and reduces the dissolved oxygen level in ultrapure water to below the top ppb, further reducing the level to 2 ppb.
It is an object of the present invention to provide an ultrapure water device that can reduce water consumption to the following extreme level.

(課題を解決するための手段) 前記課題の解決のため、本発明では、1次純水装置、ま
たは好ましくは超純水装置の2次超純水の循環精製の系
統内における、イオン交換ポリシャー、最終固体粒子除
去濾過器からなる超純水装置以前の段階に加熱脱気装置
を設け、加熱脱気装置内において純水をスプレーし水蒸
気発生装置により発生させた水蒸気を吹込み直接接触さ
せて加熱し効果的に脱気する。この直接接触水蒸気とし
ては脱気された純水の一部をボイラーより発生する軟水
の水蒸気を熱源として間接熱交換により発生させる。こ
のようにすれば脱気された純水中にボイラー水が混入す
ることはない。スプレー形式の加熱脱気装置とする代わ
りにトレー形式として直接接触させるようにしてもよい
。加熱脱気装置に流入、流出する純水は加熱脱気装置の
前後で間接熱交換を行い熱回収を図るとともに、脱気さ
れた純水を降温した状態で、その後、2次超純水装置の
段階に送給する。従って2次超純水装置に高温の影響は
及ばない。そして少なくとも高温の超純水と接触する範
囲における機器、配管の構成材料はオーステナイト系ス
テンレス鋼を電解研磨し高温酸化性雰囲気下で不動態化
処理した材料を使用し、材料からの純水中への溶出が起
こることを極小とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides an ion exchange polisher in a system for circulating and purifying secondary ultrapure water in a primary water purification device or preferably in an ultrapure water device. A heating deaerator is installed before the ultrapure water equipment consisting of the final solid particle removal filter, and pure water is sprayed inside the heating deaerator and water vapor generated by the steam generator is blown into the water vapor generator for direct contact. Heating and effectively degassing. This direct contact steam is generated by indirect heat exchange using a portion of the degassed pure water as a heat source using soft water steam generated from a boiler. In this way, boiler water will not be mixed into the degassed pure water. Instead of using a spray-type heating deaerator, a tray-type heating deaerator may be used for direct contact. The pure water flowing into and out of the heating deaerator undergoes indirect heat exchange before and after the heating deaerator to recover heat, and the temperature of the degassed pure water is lowered before passing it through the secondary ultrapure water equipment. feed to the next stage. Therefore, the high temperature does not affect the secondary ultrapure water device. At least the components of equipment and piping in areas that come into contact with high-temperature ultrapure water are made of austenitic stainless steel that has been electrolytically polished and passivated in a high-temperature oxidizing atmosphere. Minimize the amount of elution that occurs.

これらの解決手段を総合して本発明の加熱脱気装置を用
いた超純水装置は、構成上、1次純水装置から補給され
る1次純水と返送される超純水とを超純水タンクに受入
れそれからの給水を2次超純水装置により精製してユー
スポイントに供給し使用残照純水を超純水タンクに返送
して循環させる超純水装置であって、超純水タンクから
の給水を加熱脱気装置に導入し加熱脱気装置において吹
込み水蒸気と直接接触させて加熱脱気し、間接熱交換器
で冷却したのち、イオン交換ポリシャー、最終濾過器を
含む2次超純水装置に通過させてユースポイントに供給
する超純水に精製するようにしたことを特徴とする。
By combining these solutions, the ultrapure water system using the heating deaerator of the present invention has a structure that allows the primary pure water replenished from the primary water purification system and the ultrapure water returned to be super pure. An ultrapure water device that processes water received in a pure water tank, purified by a secondary ultrapure water device, supplied to a point of use, and returns used afterglow pure water to the ultrapure water tank for circulation. Feed water from the tank is introduced into a heating deaerator where it is brought into direct contact with blown water vapor to be heated and degassed, cooled by an indirect heat exchanger, and then transferred to a secondary stage including an ion exchange polisher and a final filter. It is characterized in that it is purified into ultrapure water that is passed through an ultrapure water device and supplied to points of use.

第1図は本発明により構成した加熱脱気装置を用いた超
純水装置の1例を示す。
FIG. 1 shows an example of an ultrapure water apparatus using a heating deaerator constructed according to the present invention.

原水は、前処理装置(1)で凝集沈澱、濾過等により処
理され、前処理水は逆浸透装置、イオン交換装置等の1
次純水装置(2)により処理され、1次純水となって、
2次超純水循環系統中の密閉式気相窒素パージの超純水
タンク(3)に供給される。純水タンク(3)にはユー
スポイント(4)で使用されずにそこから返送される超
純水が流入し循環する。−次純水は超純水の補給に対応
する量でよい。
The raw water is treated by coagulation sedimentation, filtration, etc. in a pre-treatment device (1), and the pre-treated water is treated by a reverse osmosis device, an ion exchange device, etc.
It is processed by the secondary water purifier (2) and becomes primary pure water.
It is supplied to the ultrapure water tank (3) of the closed gas phase nitrogen purge in the secondary ultrapure water circulation system. Ultrapure water that is not used at the point of use (4) and is returned from there flows into the pure water tank (3) and is circulated there. - The amount of sub-pure water that corresponds to the replenishment of ultra-pure water may be sufficient.

このタンク(3)からの純水は、先ず超純水ポンプ(5
)により紫外線を用いる溶存TOC分解装置(6)で処
理されたのち間接熱交換器(7)を通り予備加熱されて
加熱脱気装置(8)に供給される。間接熱交換器(7)
では脱気処理水との熱交換により熱回収がなされる。
The pure water from this tank (3) is first pumped into the ultrapure water pump (5).
) and treated in a dissolved TOC decomposition device (6) using ultraviolet rays, passed through an indirect heat exchanger (7), preheated, and supplied to a heating deaerator (8). Indirect heat exchanger (7)
In this case, heat is recovered by heat exchange with deaerated water.

加熱脱気装置(8)では、予備加熱純水は水蒸気との直
接接触により105〜120″C程度に加熱脱気される
。脱気により水中の溶存酸素および炭酸ガスが除去され
、これらガスはベント弁(9)および運転停止時の空気
の逆流人も防止するための自動弁θ0)を経て放出され
る。一方加熱された脱気処理水は径路θ1)を経て前記
間接熱交換器(7)を通り2次純水装置に向かう。脱気
処理水の一部は水蒸気発生装置供給ポンプ02)により
水蒸気発生装置側に供給されここで高圧水蒸気に変換さ
れ、この水蒸気は加熱脱気装置(8)に吹込まれて直接
接触加熱脱気を遂行するのに用いられる。
In the heating deaerator (8), the preheated pure water is heated and degassed to about 105 to 120"C by direct contact with water vapor. Dissolved oxygen and carbon dioxide gas in the water are removed by deaeration, and these gases are It is discharged through a vent valve (9) and an automatic valve θ0) to prevent backflow of air when the operation is stopped.Meanwhile, the heated degassed water passes through a path θ1) and is discharged from the indirect heat exchanger (7). ) to the secondary water deionization device.A portion of the degassed water is supplied to the steam generator side by the steam generator supply pump 02), where it is converted to high-pressure steam, and this steam is passed through the heating deaerator ( 8) and used to perform direct contact heating deaeration.

従って結局は純水系に戻る。Therefore, it will eventually return to a pure water system.

第2図は加熱脱気装置(8)の代表的1例を示し、スプ
レー式である。前記の予備加熱水は径路0滲から加熱脱
気装置(8)向上部のベントコンデンサ05)に供給さ
れスプレーパルプOeよりスプレーされて下方の脱気室
0?)で1次的に加熱され脱気される。1次脱気された
水はダウンカマー08)を通りスチームスクラバQ9)
に流入する。スチームスクラバ09には径路(2Iから
高圧水蒸気が供給され、ここで激しく混合されて最終的
に加熱と脱気が行われ、脱気処理水は器底の貯留部(2
1)に入り、ここから前記径路(11)を経て間接熱交
換器(7)に向かう。他方、水中から脱気された酸素、
炭素ガス等はスプレー弁間の空間(22)を通り、前記
のベント弁(9)、自動弁00)を経て大気中に放出さ
れる。このスプレー式加熱脱気装置は最も効果的な加熱
脱気を遂行する例として説明したが、100分解処理水
と水蒸気とを直接接触させる例えば内蔵トレイ式の加熱
脱気装置も有効に使用できる。
FIG. 2 shows a typical example of a heating deaerator (8), which is of a spray type. The preheated water is supplied from the path 0 to the vent condenser 05 in the upper part of the heating deaerator (8), and is sprayed from the spray pulp Oe into the deaeration chamber 0? below. ) and is first heated and degassed. The primary deaerated water passes through the downcomer 08) and the steam scrubber Q9).
flows into. High-pressure steam is supplied to the steam scrubber 09 from the path (2I), where it is vigorously mixed and finally heated and degassed.
1), and from there it heads to the indirect heat exchanger (7) via the path (11). On the other hand, the oxygen degassed from the water,
Carbon gas and the like pass through the space (22) between the spray valves and are released into the atmosphere via the vent valve (9) and automatic valve 00). Although this spray-type heating deaerator has been described as an example of achieving the most effective heat deaeration, for example, a built-in tray type heating deaerator that brings the 100 decomposition treated water into direct contact with steam can also be effectively used.

前記の間接熱交換器(7)で1次的に冷却された脱気処
理水は超純水ポンプ(23)により第2の間傍熱交換器
(24)に通され、ここで適温にまで最終的に冷却され
たのち2次超純水装置に供給される。2次超純水装置で
は、先ずプレフィルタ−(25)を通り、系内で発生す
るかも知れない粒子を除去する0次にイオン交換樹脂を
充填したカラムからなるイオン交換ポリシャー(26)
に通し、水中イオンを最終的にボリシングする。次に最
終的な固形粒子除去のための限外濾過器、逆浸透装置、
精密濾過器等の最終濾過器(27)を通る。こうして精
製された2次超純水は分配管路(28)を経てユースポ
イント(4)に供給される。
The degassed water that has been primarily cooled in the indirect heat exchanger (7) is passed through the second indirect heat exchanger (24) by the ultrapure water pump (23), where it is heated to an appropriate temperature. After being finally cooled, it is supplied to a secondary ultrapure water device. In the secondary ultrapure water system, it first passes through a pre-filter (25) and an ion exchange polisher (26) consisting of a column filled with zero-order ion exchange resin to remove particles that may be generated in the system.
to finally borize the ions in the water. Then an ultrafilter, reverse osmosis device for final solid particle removal,
Pass through a final filter (27), such as a microfilter. The secondary ultrapure water purified in this way is supplied to the point of use (4) via the distribution pipe (28).

使用されずに残った2次超純水は純水タンク(7)に返
送され、常時通水を停止することなく循環するようにす
る。本発明では加熱脱気装置(8)で脱気と同時に殺菌
が行われるため、第3図の従来技術の紫外線殺菌器(ホ
)を用いる必要はない。
The secondary ultrapure water that remains unused is returned to the pure water tank (7) and is constantly circulated without stopping the water flow. In the present invention, since sterilization is performed at the same time as deaeration by the heating deaerator (8), there is no need to use the conventional ultraviolet sterilizer (E) in FIG. 3.

加熱脱気装置(8)で脱気のために使用する純水の水蒸
気を発生させるには前記水蒸気発生装置0りを例えばシ
ェル・チューブ型とし、その間接加熱の熱源としてはボ
イラー(29)で発生させた水蒸気を使用する。ボイラ
ー用軟水供給装置(30)から軟水槽(31)に受入れ
た軟水をボイラー給水ポンプ(32)によりボイラー(
29)に給水する。この給水を先ず前記第2間接熱交換
器(24)の冷水源として使用して効果的な熱回収を図
る。ボイラー(29)で発生した水蒸気を蒸気発生装置
(13)に導入して純水の水蒸気を発生させる。このよ
うにして軟水が純水系統に入り込むことは防止される。
In order to generate steam of pure water used for degassing in the heating deaerator (8), the steam generator 0 is of a shell-tube type, for example, and a boiler (29) is used as the heat source for indirect heating. Use the generated water vapor. Soft water received from the boiler soft water supply device (30) into the soft water tank (31) is supplied to the boiler (
29) Supply water. This supplied water is first used as a cold water source for the second indirect heat exchanger (24) to achieve effective heat recovery. Steam generated in the boiler (29) is introduced into a steam generator (13) to generate pure water steam. In this way, soft water is prevented from entering the pure water system.

超純水タンク(3)、TOC分解装置(6)、加熱脱気
装置(8)、熱交換器(7)(24)、プレフィルタ−
(25)、イオン交換ポリシャー(26)およびポンプ
、配管、弁等の超純水に接する部分および機器は可能な
限りオーステナイトステンレス鋼製とし、その表面を電
解研磨ののち高温酸化雰囲気下において不動態膜を形成
した材質で構成し、材料からの溶出を極力少なくする。
Ultrapure water tank (3), TOC decomposition device (6), heating deaerator (8), heat exchanger (7) (24), pre-filter
(25) The parts and equipment that come into contact with ultrapure water, such as the ion exchange polisher (26) and pumps, piping, and valves, are made of austenitic stainless steel as much as possible, and after electropolishing, the surface is made passive in a high-temperature oxidizing atmosphere. Constructed from a material that forms a membrane to minimize elution from the material.

少なくとも加熱脱気装置およびその前後の高温化する領
域ではこのようにする。
This is done at least in the heating deaerator and in the areas before and after it where the temperature increases.

なお、加熱脱気装置を1次純水装置内に設置することも
できる。
Note that the heating deaeration device can also be installed within the primary pure water device.

(作 用) 以上のように、本発明°によると、超純水装置に加熱脱
気装置を組込んで使用することが可能となり、効果的な
脱気作用が行われることにより超純水中の溶存酸素レベ
ルを極限の21]pb以下に低下させることができる。
(Function) As described above, according to the present invention, it becomes possible to incorporate a heating deaerator into an ultrapure water device and use it, and by performing effective deaeration, ultrapure water can reduce the dissolved oxygen level below the limit of 21 pb.

紫外線TOC分解装置でTOC分解に伴い発生する炭素
ガスも加熱脱気装置で同時に脱気され、後続のイオン交
換装置の負担を軽減する。そして2次純水系統のループ
内で、加熱脱気装置で殺菌が行われるので、超純水ポリ
シング精製部での紫外線殺菌を必要としない。熱回収、
熱バランスとも合理的で加熱脱気のためのエネルキー消
費は少なくて済む。
The carbon gas generated as a result of TOC decomposition in the ultraviolet TOC decomposition device is also degassed in the heating deaerator at the same time, reducing the burden on the subsequent ion exchange device. Since sterilization is performed in the loop of the secondary pure water system using a heating deaerator, there is no need for ultraviolet sterilization in the ultrapure water polishing and purification section. heat recovery,
The heat balance is reasonable, and energy consumption for heating and degassing is low.

(実施例) 実施例として、第1図の本発明装置による2次超純水装
置の出口における水質分析値例を第3図の従来技術の装
置によるそれと対比して次表に示す。
(Example) As an example, the following table shows examples of water quality analysis values at the outlet of the secondary ultrapure water apparatus using the apparatus of the present invention shown in FIG. 1 in comparison with those obtained using the prior art apparatus shown in FIG.

(発明の効果) 本発明によれば、ユースポイントに供給する超純水の水
質として、溶存酸素濃度に関し極限と見做せる2 pp
b以下を達成することができ、またTOCの分解による
炭酸ガスの脱気によりイオン交換装置の負担を軽減し、
オーステナイト系ステンレス鋼を不動態化処理した非溶
解性材質を用いて高温下での溶出を極限にまで低下させ
ることができる。
(Effects of the Invention) According to the present invention, the quality of ultrapure water supplied to points of use is 2 pp, which can be considered to be the ultimate in dissolved oxygen concentration.
B or less can be achieved, and the burden on ion exchange equipment is reduced by degassing carbon dioxide gas by decomposing TOC,
Using a non-dissolvable material made of passivated austenitic stainless steel, elution at high temperatures can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による加熱脱気装置を用いた超純水装置
の1実施例のフロー線図、第2図はその加熱脱気装置の
1例の縦断側面略示図、第3図は従来技術の真空脱気装
置を用いた超純水装置の比較例のフロー線図である。 (1)・・・前処理装置、(2)・・・1次純水装置、
(3)・・・超に水タンク、(4)・・・ユースポイン
ト、(5)・・・超純水ポンプ、(6)・・・TOC分
解装置、(7)・・・間接熱交換器、(8)・・・加熱
脱気装置、(9)・・・ベント弁、00)・・・自動弁
、01)・・・径路、θり・・・水蒸気発生装置給水ポ
ンプ、03)・・・水蒸気発生装置、04)・・・径路
、aつ・・・ベントコンデンサ、Oe・・・スプレーパ
ルプ、07)・・・脱気室、側・・・ダウンカマー、(
19)・・・スチームスクラバ、f2111−・・径路
、(21)・・・貯留部、(22)・・・空間、(23
)・・・超純水ポンプ、(24)・・・第2間接熱交換
器、(25)・・・プレフィルタ−1(26)・・・イ
オン交換ポリシャー(27)・・・最終濾過器、(28
)・・・分配管路、(29)・・・ボイラー、(30)
・・・ボイラー用軟水供給装置、(31)・・・軟水槽
、(32)・・・ボイ、ラー給水ポンプ、(a)・・・
前処理装置、(b)・・・加圧ポンプ、(C)・・・逆
浸透装置、(d)・・・真空脱気装置、(e)・・・真
空ポンプ、(f)・・・ポンプ、(g)・・・イオン交
換塔、(h)・・・フィルタ、)(i)・・・超純水タ
ンク、(j)・・・超純水ポンプ、(k)・・・真空ポ
ンプ、(2)・・・膜脱気装置、に)・・・紫外線殺菌
器、(n)・・・ポリシャー、(0)・・・限外濾過器
、(p)・・・配管ループ、 (Q)・・・ユースポイント。
FIG. 1 is a flow diagram of an embodiment of an ultrapure water apparatus using a heating deaerator according to the present invention, FIG. 2 is a schematic longitudinal cross-sectional side view of an example of the heating deaerator, and FIG. FIG. 2 is a flow diagram of a comparative example of an ultrapure water apparatus using a conventional vacuum deaerator. (1)...Pre-treatment device, (2)...Primary pure water device,
(3)...Ultra water tank, (4)...Point of use, (5)...Ultra pure water pump, (6)...TOC decomposition device, (7)...Indirect heat exchange equipment, (8)...heating deaerator, (9)...vent valve, 00)...automatic valve, 01)...route, θri...steam generator water supply pump, 03)... ...Steam generator, 04)...Route, a...Vent condenser, Oe...Spray pulp, 07)...Degassing chamber, Side...Downcomer, (
19)...Steam scrubber, f2111-...Route, (21)...Storage part, (22)...Space, (23)...
)...Ultra pure water pump, (24)...Second indirect heat exchanger, (25)...Prefilter-1 (26)...Ion exchange polisher (27)...Final filter , (28
)...Distribution line, (29)...Boiler, (30)
... Soft water supply device for boiler, (31) ... Soft water tank, (32) ... Boiler, water supply pump, (a) ...
Pretreatment device, (b)...pressure pump, (C)...reverse osmosis device, (d)...vacuum deaerator, (e)...vacuum pump, (f)... Pump, (g)...Ion exchange tower, (h)...Filter,) (i)...Ultra pure water tank, (j)...Ultra pure water pump, (k)...Vacuum pump, (2)... membrane deaerator, (n)... ultraviolet sterilizer, (n)... polisher, (0)... ultrafilter, (p)... piping loop, (Q)...Use point.

Claims (3)

【特許請求の範囲】[Claims] (1)1次純水装置から補給される1次純水を超純水タ
ンクに受入れそれからの給水を2次超純水装置により精
製してユースポイントに供給し使用残超純水を超純水タ
ンクに返送して循環させる超純水装置における1次純水
装置、または2次超純水装置内に加熱脱気装置を設置し
、超純水タンクからの給水を加熱脱気装置に導入し、加
熱脱気装置において吹込み水蒸気と直接接触させて加熱
脱気し、間接熱交換器で冷却したのち、イオン交換ポリ
シャー、最終濾過器を含む2次超純水装置に通過させて
ユースポイントに供給する超純水に精製するようにした
ことを特徴とする加熱脱気装置を用いた超純水装置。
(1) The primary pure water supplied from the primary water purification device is received into the ultrapure water tank, the water supplied from there is purified by the secondary ultrapure water device and supplied to the point of use, and the remaining ultrapure water is made ultrapure. A heating deaeration device is installed in the primary pure water device of the ultrapure water device that is returned to the water tank for circulation, or in the secondary ultrapure water device, and the water supplied from the ultrapure water tank is introduced into the heating deaeration device. The water is heated and degassed by direct contact with blown steam in a heating deaerator, cooled in an indirect heat exchanger, and then passed through a secondary ultrapure water device including an ion exchange polisher and a final filter to reach the point of use. An ultrapure water device using a heating deaerator, characterized in that it purifies ultrapure water to be supplied to a person.
(2)高温の超純水と接触する機器、配管の表面をオー
ステナイト系ステンレス鋼製で、その表面の少なくとも
一部に電解研磨ののち高温酸化雰囲気下において不動態
化膜を形成した材料を用いた特許請求の範囲第1項記載
の加熱脱気装置を用いた超純水装置。
(2) The surfaces of equipment and piping that come into contact with high-temperature ultrapure water are made of austenitic stainless steel, and at least part of the surface is electrolytically polished and then a passivation film is formed in a high-temperature oxidizing atmosphere. An ultrapure water device using the heating deaerator according to claim 1.
(3)前記加熱脱気装置の上流に紫外線を用いる溶存T
OC分解装置を設ける特許請求の範囲第1項記載の加熱
脱気装置を用いた超純水装置。
(3) Dissolved T using ultraviolet light upstream of the heating deaerator
An ultrapure water device using a heating deaerator according to claim 1, which is provided with an OC decomposition device.
JP4242389A 1989-02-21 1989-02-21 Ultrapure water equipment using a heating deaerator Expired - Lifetime JP2703034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242389A JP2703034B2 (en) 1989-02-21 1989-02-21 Ultrapure water equipment using a heating deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242389A JP2703034B2 (en) 1989-02-21 1989-02-21 Ultrapure water equipment using a heating deaerator

Publications (2)

Publication Number Publication Date
JPH02222763A true JPH02222763A (en) 1990-09-05
JP2703034B2 JP2703034B2 (en) 1998-01-26

Family

ID=12635652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242389A Expired - Lifetime JP2703034B2 (en) 1989-02-21 1989-02-21 Ultrapure water equipment using a heating deaerator

Country Status (1)

Country Link
JP (1) JP2703034B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023816A1 (en) * 1993-04-14 1994-10-27 Nippon Sanso Corporation Dissolved oxygen reducing apparatus
JP2003010849A (en) * 2001-07-02 2003-01-14 Kurita Water Ind Ltd Secondary pure water making apparatus
JP2013202581A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus
CN109562959A (en) * 2016-09-14 2019-04-02 栗田工业株式会社 Ultrapure Water Purifiers
JP2023508019A (en) * 2019-12-25 2023-02-28 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Apparatus and method for preparing high-purity hydrogen and/or oxygen by electrolysis of water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023816A1 (en) * 1993-04-14 1994-10-27 Nippon Sanso Corporation Dissolved oxygen reducing apparatus
US5766321A (en) * 1993-04-14 1998-06-16 Nippon Sanso Corporation Apparatus for reducing dissolved oxygen
JP2003010849A (en) * 2001-07-02 2003-01-14 Kurita Water Ind Ltd Secondary pure water making apparatus
JP2013202581A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus
CN109562959A (en) * 2016-09-14 2019-04-02 栗田工业株式会社 Ultrapure Water Purifiers
CN109562959B (en) * 2016-09-14 2020-05-19 栗田工业株式会社 Ultrapure water production apparatus
JP2023508019A (en) * 2019-12-25 2023-02-28 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Apparatus and method for preparing high-purity hydrogen and/or oxygen by electrolysis of water

Also Published As

Publication number Publication date
JP2703034B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP2768732B2 (en) Heat degassing ultrapure water equipment
KR0156743B1 (en) Process and system for purifying pure water of ultra-pure water
US6991733B2 (en) Process for removing organics from ultrapure water
JPH0630764B2 (en) Ultrapure water line sterilization method
JPS6161689A (en) Apparatus for producing pure water
JP4294731B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH0555761B2 (en)
JPH02222763A (en) Ultrapure water generator using heated deaerator
JP3778158B2 (en) Ultrapure water production equipment
JP3849766B2 (en) Apparatus and method for treating water containing organic matter
JP2018038943A (en) Washing machine of non-regeneration type ion exchange resin and ultrapure water production system
JP3593723B2 (en) Boiler feedwater treatment apparatus and boiler feedwater treatment method
JPS60172390A (en) Manufacture of highly demineralized water
JP3645007B2 (en) Ultrapure water production equipment
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
KR20210145125A (en) Membrane degassing device cleaning method and ultrapure water production system
JP3580648B2 (en) Ultrapure water production equipment
JP3899545B2 (en) Supply water supply device to condenser
JPS63141694A (en) Production of ultra-pure water
JPH04161242A (en) Purified water supply and supply device
JPH0630792B2 (en) Treatment method of water supply treatment device
JP2003290639A (en) Oxygen injection device
JPS61209097A (en) Apparatus for treatment of sewage
JP2003185786A (en) Condensate processing system and method
JPS62234507A (en) Sterilizing method for ultrafilter membrane device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12