JPH02217322A - Production of glass containing semiconductor fine particle dispersed therein - Google Patents

Production of glass containing semiconductor fine particle dispersed therein

Info

Publication number
JPH02217322A
JPH02217322A JP3378489A JP3378489A JPH02217322A JP H02217322 A JPH02217322 A JP H02217322A JP 3378489 A JP3378489 A JP 3378489A JP 3378489 A JP3378489 A JP 3378489A JP H02217322 A JPH02217322 A JP H02217322A
Authority
JP
Japan
Prior art keywords
semiconductor fine
glass
solution
fine particles
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3378489A
Other languages
Japanese (ja)
Inventor
Hiroshi Suganuma
寛 菅沼
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Toshio Danzuka
彈塚 俊雄
Masahiro Takagi
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3378489A priority Critical patent/JPH02217322A/en
Publication of JPH02217322A publication Critical patent/JPH02217322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To reduce contamination of impurities and increase a nonlinear optical constant by impregnating a cellular glass unit consisting essentially of SiO2 with a metal ion-containing solution and a specific negative ion-containing solution, drying, heating and calcining the impregnated glass unit. CONSTITUTION:(a) One or more selected from CaCl2, Cd(ClO4), Cd(NO3)2, HgCl2, Pd(CH3COO)2, AgNO3, Pd(NO3)2, etc., are dissolved in (b) a solvent, such as water or alcohol, to provide a solution (B) containing one or more metal ions selected from Ag<+>, Hg<2+>, Cd<2+>, Pd<2+>, Cu<2+>, Bi<3+>, In<+>, etc. (c) One or more selected from Na2S, KI, H2S, H2Se, HCl, NaCl, etc., are separately dissolved in the composition (b) to afford a solution (C) containing one or more selected from negative ions of group VI and VII elements. (A) A cellular glass unit consisting essentially of SiO2 is separately impregnated with the components (B) and (C), dried, heated and calcined to afford glass containing one or more semiconductor fine particles consisting of metal elements selected from AgI, HgI2, CdS, CdSe, CuCl, PbS and Bi2S2 and group VI or VII element dispersed therein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学素子等に用いられる半導体微粒子を分散さ
せた大きな非線形光学定数を有するガラスの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing glass having large nonlinear optical constants in which fine semiconductor particles are dispersed and used for optical elements and the like.

〔従来の技術〕[Conventional technology]

半導体微粒子を分散させたガラスは波長フィルター等の
光学素子に用いられており、さらに大きな非線形光学特
性を有するため、光スィッチ等への利用が期待されてい
る。従来この種のガラスはガラス原料と半導体を高温で
溶融・混合させ、その後急冷することにより得られてい
た。
Glass in which semiconductor fine particles are dispersed is used in optical elements such as wavelength filters, and since it has even greater nonlinear optical properties, it is expected to be used in optical switches and the like. Conventionally, this type of glass has been obtained by melting and mixing glass raw materials and semiconductors at high temperatures and then rapidly cooling them.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体微粒子を分散させたガラスの非線形特性を大きく
するためには、半導体の粒径を約10λ程度に小さく、
かつ均一にし、また、ガラス中に半導体を均一に分散さ
せつつ半導体の密度を高くすることが望ましい。
In order to increase the nonlinear characteristics of glass in which semiconductor fine particles are dispersed, the semiconductor particle size must be reduced to about 10λ,
It is desirable to increase the density of the semiconductor while uniformly dispersing the semiconductor in the glass.

従来の製造方法では、粒径の揃った小径の半導体微粒子
をガラス内に高密度で均一に分散させることが困難であ
り、粒径は100人程度、密度(体積比)数%以下のも
のしか得られなかった。さらに、ガラス原料と半導体以
外の不純物が少ないことも、非線形特性を大きくするた
めには必要であるが、従来製法では、溶融・混合する段
階で容器等から不純物が混入し易かった。
With conventional manufacturing methods, it is difficult to uniformly disperse small semiconductor particles with a uniform particle size in glass at a high density, and the particle size is only about 100 particles and the density (volume ratio) is less than a few percent. I couldn't get it. Furthermore, it is necessary to have a small amount of impurities other than glass raw materials and semiconductors in order to increase nonlinear characteristics, but in conventional manufacturing methods, impurities easily get mixed in from containers etc. during the melting and mixing stage.

本発明はこのような従来技術の欠点を解消して、大きな
非線形光学定数をすfする半導体体微粒子を分散させた
ガラスの新規な製造方法を提供せんとするものである。
The present invention aims to overcome the drawbacks of the prior art and provide a new method for producing glass in which semiconductor fine particles having a large nonlinear optical constant are dispersed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は従来の高温で溶融・混合する方法にかえて
、低温で混合・分散することを考えつき、実験と検討を
重ねた結果、大きな非線形特性を有する半導体微粒子分
散ガラスを不純物等の混入なく、容易に製造できる本発
明の方法を見出した。
The inventors of the present invention came up with the idea of mixing and dispersing at low temperatures instead of the conventional method of melting and mixing at high temperatures, and as a result of repeated experiments and studies, they discovered that semiconductor fine particle dispersion glass with large nonlinear characteristics could be mixed with impurities, etc. We have found a method of the present invention that can be easily manufactured without any problems.

すなわち、本発明は主としてst 01からなる多孔質
ガラス体に、金属イオンを1つ以−E含む溶液と、VI
族もしくはVII族元素のマイナスイオンのいずれか1
つ以上を含む溶液を別々に含浸させた後、該含浸多孔質
ガラス体を乾燥させ、次いで加熱・焼結することにより
、金属元素の1つとVI族もしくはVII族元素の1つ
とからなる半導体微粒子の1種以上が分散したガラスを
得ることを特徴とする半導体微粒子を分散させたガラス
の製造方法である。
That is, the present invention mainly provides a porous glass body consisting of st 01, a solution containing one or more metal ions -E, and VI
Any one of negative ions of Group or VII elements
After separately impregnating the impregnated porous glass body with a solution containing at least one metal element, the impregnated porous glass body is dried, and then heated and sintered to form semiconductor fine particles consisting of one of the metal elements and one of the Group VI or Group VII elements. This is a method for producing glass in which semiconductor fine particles are dispersed, characterized by obtaining glass in which one or more of the following are dispersed.

本発明にいう半導体とは、金属元素の1つと、VI族も
しくはVII族から選ばれる1つの元素の2種の元素か
らなる半導体であり、このような半導体としては例えば
^gl、 l1g1z、  CdS、 CdSe、 C
uCl、 PbS、 Bl□S、、 In、Se、等が
特に好適なものとして挙げられる。
The semiconductor referred to in the present invention is a semiconductor consisting of two elements, one metal element and one element selected from group VI or group VII. Examples of such semiconductors include ^gl, l1g1z, CdS, CdSe, C
Particularly preferred examples include uCl, PbS, Bl□S, In, Se, and the like.

本発明における上記多孔質ガラス体が気相軸付法により
得られたものであることは特に好ましい実施態様である
It is a particularly preferred embodiment that the porous glass body according to the present invention is obtained by a vapor phase axial deposition method.

以下、図面を参照して本発明を具体的に説明する。第1
図は本発明の一具体例を説明する概略図であって、!は
Si Osの多孔質ガラス体、2は支持棒、3は容器で
ある。4は金属イオンを1以上含む溶液であり、該金属
イオンとしては例えばAg +8g” 、 Cd″’、
 Pb”、 Cu”、 81”、 In’等が挙げられ
、この溶液の溶媒としては例えば水、アルコール等が挙
げられる。このような溶液4は、具体的ニハ上記の溶媒
に例えば、CdC1,、Cd(CIO,)、 Cd(N
Ox)x、 llgcIz、 Pb(C1lsCOO)
意、八fNO,,Pb(NO,)2等を溶解して調製で
きる。
Hereinafter, the present invention will be specifically explained with reference to the drawings. 1st
The figure is a schematic diagram illustrating a specific example of the present invention. 2 is a porous glass body of SiOs, 2 is a support rod, and 3 is a container. 4 is a solution containing one or more metal ions, and the metal ions include, for example, Ag +8g'', Cd'',
Pb'', Cu'', 81'', In', etc., and examples of the solvent for this solution include water, alcohol, etc. Such a solution 4 can be prepared by adding, for example, CdC1,... Cd(CIO,), Cd(N
Ox)x, llgcIz, Pb(C1lsCOO)
It can be prepared by dissolving Pb(NO,)2, etc.

第1図のように多孔質ガラス体lに溶液4を十分に含浸
した後、多孔質ガラス体lを引き上げて乾燥するが、こ
のときの条件は室温で数日間といった条件であるが、こ
れに限定されるものではなく、適宜最適な条件を選択で
きる。
As shown in Figure 1, after sufficiently impregnating the porous glass body l with solution 4, the porous glass body l is pulled up and dried.The conditions at this time are several days at room temperature. The conditions are not limited, and optimal conditions can be selected as appropriate.

次いで該乾燥多孔質体を第1図と同様の構成で、周期律
表のVI族もしくはVII族元素のいずれか1以上をイ
オン状態で含む溶液(図示は省略したが溶液5という)
中に倉浸し、十分に含浸した後、引き上げて乾燥する。
Next, the dry porous body was prepared in the same manner as shown in FIG. 1, and a solution containing one or more of the group VI or VII elements of the periodic table in an ionic state (referred to as solution 5, although not shown)
After soaking it in the tank until it is fully impregnated, it is taken out and dried.

■族もしくは■族元素のイオンとしては、例えばCI 
 、  S”、 Se”、 I  を挙げることができ
、この溶液5の溶媒としては 例えば水、アルコール等
が挙げられる。具体的には例えばNa2S3 K1. 
II2S3 l1zSe、 IIcI、 NaCl等を
水又はアルコール等に溶解すればよい。
Examples of ions of group ■ or group ■ elements include CI
, S'', Se'', and I, and examples of the solvent for this solution 5 include water, alcohol, and the like. Specifically, for example, Na2S3 K1.
II2S3 l1zSe, IIcI, NaCl, etc. may be dissolved in water, alcohol, or the like.

溶液4と溶液5の雀は、溶液4に含まれる金属イオンと
溶液5に倉まれるマイナスイオンが半導体を形成できる
理論1+1となるよう、固溶液を含浸させる。なお、溶
液の含浸の順は別に上記に限定されず、溶液5を先に含
浸してから溶液4を含浸することも差しつかえない。
The solutions 4 and 5 are impregnated with solid solutions so that the metal ions contained in the solution 4 and the negative ions contained in the solution 5 form a 1+1 ratio, which is the theory that a semiconductor can be formed. Note that the order of impregnation with the solutions is not particularly limited to the above, and it is also possible to first impregnate with solution 5 and then impregnate with solution 4.

その後、多孔質ガラス体1を例えば電気炉内において1
400〜1600℃に加熱・焼結することによって、半
導体粒子を分散させたガラスが得られる。例えば150
0℃以下の温度で1ト雰囲気中で30分間程度加熱し、
続いて1500〜1600℃で1に雰囲気中で1時間程
度焼結するといった条件であるが、勿論これに限定され
るものではない。
After that, the porous glass body 1 is placed in an electric furnace for example.
Glass in which semiconductor particles are dispersed can be obtained by heating and sintering at 400 to 1600°C. For example 150
Heating in a 1-ton atmosphere for about 30 minutes at a temperature of 0°C or less,
Subsequently, the conditions are that the material is sintered at 1,500 to 1,600° C. in an atmosphere for about 1 hour, but the conditions are of course not limited thereto.

本発明に係る出発材の多孔質ガラス体としては何れの公
知技術によるものでもよいが、例えばS。
The porous glass body of the starting material according to the present invention may be made of any known technique, for example, S.

Ce、またはその他のSi化合物等のガラス原料を、水
素等の燃料ガスと酸素等の支燃性ガスさらにA。
Glass raw materials such as Ce or other Si compounds are mixed with a fuel gas such as hydrogen and a combustion supporting gas such as oxygen.

等のキャリヤーガスと共にバーナーに導入し、火炎中で
ガラス原料を加水分解又は酸化反応させることにより生
成するガラス微粒子を出発材上に堆積させて多孔質ガラ
ス体を得る、所謂気相軸付法によるものを用いることは
、多孔質ガラス体が高品質で不純物含有量も少ない点で
特に好ましい。
The glass material is introduced into a burner together with a carrier gas such as, and the glass raw material is subjected to a hydrolysis or oxidation reaction in a flame, and the resulting glass fine particles are deposited on the starting material to obtain a porous glass body. It is particularly preferable to use a porous glass body since the porous glass body is of high quality and has a low content of impurities.

〔作用〕[Effect]

本発明では、2元素よりなる半導体を、2つの元素を別
々に溶液状態として多孔質ガラス体に含浸させ、多孔質
ガラス体内で化学反応させることにより作製する点に特
徴を有する。このようにすることにより、ガラス内に均
一に半導体を分散させることが容易に可能である。また
、半導体の粒子は多孔質ガラスの空孔内で生成するため
、多孔質ガラスの孔径により、半導体の粒径を容易に制
御できる。また、半導体以外の生成物例えばNaCl等
は焼結段階で気散してしまうので、特別の除去工程は不
用である。
The present invention is characterized in that a semiconductor composed of two elements is produced by impregnating a porous glass body with the two elements separately in a solution state and causing a chemical reaction within the porous glass body. By doing so, it is possible to easily disperse the semiconductor uniformly within the glass. Furthermore, since the semiconductor particles are generated within the pores of the porous glass, the semiconductor particle size can be easily controlled by the pore size of the porous glass. Further, since products other than semiconductors, such as NaCl, are vaporized during the sintering step, no special removal step is necessary.

さらには、多孔質ガラス体として光フアイバ用高純度石
英ガラスの製造方法である気相軸付法(VAD法)によ
り得たものを用いた場合には、半導体を含んだ多孔質ガ
ラスの焼結も光フアイバ用高純度ガラスの製造方法と同
様の条件で行なうことができるため、容易に高純度の半
導体微粒子分散石英ガラスを製造することができる。
Furthermore, when using a porous glass body obtained by the vapor deposition method (VAD method), which is a manufacturing method of high-purity quartz glass for optical fibers, it is possible to sinter the porous glass containing semiconductors. Since this method can be carried out under the same conditions as the method for producing high-purity glass for optical fibers, it is possible to easily produce high-purity semiconductor fine particle-dispersed quartz glass.

〔実施例〕〔Example〕

実施例 気相軸付法によって得られた多孔質ガラス(スス体)を
、電気炉を用いて約1450℃で30分間加熱し、収縮
させた。このとき多孔質ガラスのカサ密度は2 g/c
dとなった。この多孔質ガラス体を0.05mo1%の
CdC1!水溶液に48時間浸漬した後、大気中で1週
間乾燥した。その後、この多孔質ガラスを0.05ao
1%のHa、S水溶液に48時間浸漬した。その後多孔
質ガラス体を大気中室温にて1週間乾燥し、次にIle
ガス雰囲気の気密型電気炉内で温度1600℃で焼結し
て、透明ガラス体を得た。
EXAMPLE A porous glass (soot body) obtained by the vapor phase axial attachment method was heated at about 1450° C. for 30 minutes using an electric furnace to shrink it. At this time, the bulk density of the porous glass is 2 g/c
It became d. This porous glass body contains 0.05 mo1% CdC1! After being immersed in an aqueous solution for 48 hours, it was dried in the air for one week. After that, this porous glass was 0.05ao
It was immersed in a 1% Ha, S aqueous solution for 48 hours. The porous glass body was then dried in the air at room temperature for one week, and then
A transparent glass body was obtained by sintering at a temperature of 1600° C. in an airtight electric furnace in a gas atmosphere.

得られたガラス体を、透過電子顕微鏡により調査した結
果、本ガラス体内には粒径50±10人のCdS粒子が
分散していることが分かった。また、該CdSの濃度は
5重量%であった。更に上記で得られたガラスの非線形
光学定数χ1を測定したところ、χコ=lXlO’es
v、と石英ガラスの10’倍程度、従来法による半導体
微粒子分散ガラスの10倍程度もあった。
As a result of examining the obtained glass body using a transmission electron microscope, it was found that CdS particles with a particle size of 50±10 were dispersed within the glass body. Further, the concentration of CdS was 5% by weight. Furthermore, when we measured the nonlinear optical constant χ1 of the glass obtained above, we found that χ co=lXlO'es
v, which was about 10 times that of quartz glass, and about 10 times that of glass in which semiconductor fine particles were dispersed by the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は高品質の多孔質ガラス体
の中で半導体を構成する金属元素と陰イオンを反応させ
ることにより、半導体微粒子がガラス中に均一に分散さ
れ、しかも粒径も任意に制御された半導体微粒子分散ガ
ラスを容易に製造できる。そして本発明によれば、半導
体微粒子分散ガラスの非線形光学定数は従来法によるも
のより大きいものが得られる。
As explained above, the present invention enables semiconductor fine particles to be uniformly dispersed in the glass by reacting the metal elements constituting the semiconductor with anions in a high-quality porous glass body, and the particle size can also be adjusted. It is possible to easily produce a glass in which semiconductor fine particles are dispersed in a controlled manner. According to the present invention, it is possible to obtain a semiconductor fine particle dispersed glass with a nonlinear optical constant larger than that obtained by the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する概略図である。 lは多孔質ガラス体、2は支持棒、3は容器、4は金属
イオンを含む溶液を表す。
FIG. 1 is a schematic diagram illustrating the invention in detail. 1 represents a porous glass body, 2 represents a support rod, 3 represents a container, and 4 represents a solution containing metal ions.

Claims (3)

【特許請求の範囲】[Claims] (1)主としてSiO_2からなる多孔質ガラス体に、
金属イオンを1つ以上含む溶液と、VI族もしくはVII族
元素のマイナスイオンのいずれか1つ以上を含む溶液を
別々に含浸させた後、該含浸多孔質ガラス体を乾燥させ
、次いで加熱・焼結することにより、金属元素の1つと
VI族もしくはVII族元素の1つとからなる半導体微粒子
の1種以上が分散したガラスを得ることを特徴とする半
導体微粒子を分散させたガラスの製造方法。
(1) In a porous glass body mainly composed of SiO_2,
After separately impregnating a solution containing one or more metal ions and a solution containing one or more negative ions of Group VI or VII elements, the impregnated porous glass body is dried, and then heated and baked. By combining with one of the metal elements
1. A method for producing glass in which semiconductor fine particles are dispersed, the method comprising obtaining a glass in which one or more types of semiconductor fine particles comprising one of group VI or VII elements are dispersed.
(2)上記半導体微粒子がAgI、HgI_2CdS、
CdSe、CuCl、PbS、Bi_2S_3から選ば
れる1以上であることを特徴とする請求項(1)に記載
の半導体微粒子を分散させたガラスの製造方法。
(2) The semiconductor fine particles are AgI, HgI_2CdS,
The method for producing glass in which semiconductor fine particles are dispersed according to claim 1, wherein the semiconductor particles are one or more selected from CdSe, CuCl, PbS, and Bi_2S_3.
(3)上記多孔質ガラス体が気相軸付法により得られた
ものであることを特徴とする請求項(1)又は(2)に
記載の半導体微粒子を分散させた製造方法。
(3) The method for manufacturing semiconductor fine particles dispersed therein according to claim (1) or (2), characterized in that the porous glass body is obtained by a vapor phase axial deposition method.
JP3378489A 1989-02-15 1989-02-15 Production of glass containing semiconductor fine particle dispersed therein Pending JPH02217322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3378489A JPH02217322A (en) 1989-02-15 1989-02-15 Production of glass containing semiconductor fine particle dispersed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3378489A JPH02217322A (en) 1989-02-15 1989-02-15 Production of glass containing semiconductor fine particle dispersed therein

Publications (1)

Publication Number Publication Date
JPH02217322A true JPH02217322A (en) 1990-08-30

Family

ID=12396094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3378489A Pending JPH02217322A (en) 1989-02-15 1989-02-15 Production of glass containing semiconductor fine particle dispersed therein

Country Status (1)

Country Link
JP (1) JPH02217322A (en)

Similar Documents

Publication Publication Date Title
DE102008033945B4 (en) Process for the preparation of quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the process, process for producing a quartz glass strand and method for producing a quartz glass crucible
EP0283933B1 (en) Process for producing unsintered cristobalite silica
JP5118007B2 (en) Silica container and method for producing the same
Akgun et al. Effect of silver incorporation on crystallization and microstructural properties of sol–gel derived titania thin films on glass
Iskhakova et al. Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms
EP0826651B1 (en) Method for producing an oxidation protection for porous ceramics based on SiC and Si3N4
KR20050067150A (en) Photocatalyst material and process for producing the same
Subasri et al. Investigations on the photocatalytic activity of sol–gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates
Shan et al. Core–Shell Heterostructured BiVO 4/BiVO 4: Eu 3+ with Improved Photocatalytic Activity
JPH02217322A (en) Production of glass containing semiconductor fine particle dispersed therein
US6997015B2 (en) EUV lithography glass structures formed by extrusion consolidation process
JP2002220278A (en) Light-transmitting ceramic and method of manufacturing the same
CN111747445B (en) TiO 2 2 -SiO 2 Oxide composite material and preparation method thereof
Takada et al. Control of particle size distribution of CdS quantum dots in gel matrix
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
FR2587231A1 (en) OPEN POROSITY MICROPOROUS THIN FILMS HAVING CONDUCTIVE PROPERTIES, THEIR PREPARATION AND THEIR APPLICATION TO CHEMICAL ANALYSIS
Matsubara et al. Porous silicon prepared from monolithic porous silica glass using a two‐step magnesiothermic reduction
JP2005246340A (en) Manufacturing method of inorganic filter having one-dimensional through nanopore membrane
WO2003024894A1 (en) Method for producing high purity low dielectric constant ceramic and hybrid ceramic films
US20010015079A1 (en) Method for producing dopant doped high pure silica Glass
JP2001113177A (en) Composition for photocatalyst and method for manufacturing photocatalyst
JPH03232742A (en) Nonlinear optical quartz glass and production thereof
CN113023692B (en) Preparation method of graphite-phase carbon nitride inverse opal structure
JP2006044995A (en) Doped silica glass and its manufacturing method
JPH01219804A (en) Production of thin glass film having functionability