JPH02217138A - Mold for continuous casting and controlling method thereof - Google Patents

Mold for continuous casting and controlling method thereof

Info

Publication number
JPH02217138A
JPH02217138A JP3664389A JP3664389A JPH02217138A JP H02217138 A JPH02217138 A JP H02217138A JP 3664389 A JP3664389 A JP 3664389A JP 3664389 A JP3664389 A JP 3664389A JP H02217138 A JPH02217138 A JP H02217138A
Authority
JP
Japan
Prior art keywords
mold
cooling water
cooling
water
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3664389A
Other languages
Japanese (ja)
Other versions
JP2808633B2 (en
Inventor
Takaharu Nakajima
敬治 中島
Toshihiko Murakami
敏彦 村上
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3664389A priority Critical patent/JP2808633B2/en
Publication of JPH02217138A publication Critical patent/JPH02217138A/en
Application granted granted Critical
Publication of JP2808633B2 publication Critical patent/JP2808633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent lowering of cooling capacity in a mold by forming as dividing a mold wall into two or more steps in casting direction of the mold, constituting as dividing a mold wall at downstream side of plural cooling water guide plates in width direction of a cast slab and making each cooling guide plate as possible to contact/separate and shift. CONSTITUTION:The mold is made to two divided assembling construction of an upstream side mold 1 and downstream side mold 2, and the downstream side mold wall 2 is composed of plural rectangular or tortoise shell-state cooling water guide plates 3. Both divided molds are connected with shifting device of cylinders 4, etc., through links 8 so that pair of the mold wall faces are possible to shift as coming into contact, respectively. The water supplying hole 5 series and water drainage hole 6 series are alternately arranged in the cooling water guide plate 3 constituting the downstream side mold 2 wall and water pressure is detected with pressure detectors 7 arranged at water supplying part and water drainage part, and the cooling water guide plate 3 is shifted with the cylinder 4 according to this detected value. By forming any one side of the water supplying hole and the water drainage hole to slit-state long hole, uniform stream of water film between the mold 10 and the cooling water guide plate 3, is obtd. By this method, the lowering of cooling capacity in the mold is prevented and formation of the solidified shell is increased and made uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型およびその鋳型の制御方法に関
し、詳しくは鋳型の下部構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous casting mold and a method of controlling the mold, and more particularly to a lower structure of the mold.

(従来の技術及びその課題) 連続鋳造用鋳型は通常600〜1200mmの長さを有
するもので鋳型内壁は高い熱伝導率を有する材料、すな
わち銅または銅合金等により構成されている。
(Prior art and its problems) A continuous casting mold usually has a length of 600 to 1200 mm, and the inner wall of the mold is made of a material having high thermal conductivity, such as copper or a copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するに伴い凝固シェルは収縮し
、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts, creating a void between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片凝固シェルは内部の溶調圧力により外
側に膨出し易く鋳型壁面と比較的よく接触し易いが、鋳
型広面側端部および挟置側の下部においては空隙が顕著
に現れ易い傾向がある。
Particularly in a mold with a rectangular cross section, the solidified slab shell in contact with the center of the wide wall of the mold tends to bulge outward due to the internal melting pressure and comes into relatively good contact with the mold wall, but at the wide end of the mold and There is a tendency for voids to appear conspicuously in the lower part on the sandwiching side.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面縦割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレークアウト
の大きな要因となる場合が多い。これは現状連続鋳造設
備の大きな基本的問題点となっており、特に高速鋳造化
指向への最大の障害になっている。
This generation of voids significantly reduces the efficiency of heat transfer from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell. This is often a major cause of breakout due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

この鋳型壁と凝固シェルの空隙発生を防止する鋳型(装
置)および方法として、■鋳型内における鋳片の平均凝
固収縮率に相当する量だけ鋳型内壁面(平面)を経験的
に内側に傾斜させて固定的に堅持する鋳型および方法、
■鋳型内壁に、鋳造方向に連続する少なくとも2つのテ
ーパー段を付与する、いわゆるマルチテーパー鋳型およ
び方法(特開昭53−125932号公報)等が提案さ
れている。しかしこのような鋳型壁の直線的1段または
2段以上、かつ固定的に堅持された傾斜(テーパー)付
与のみでは鋳造速度、温度、網種等様々の要因により変
動する複雑なa固数縮量に順応して凝固シェルと鋳型内
壁面とを適当な接触面圧を保ちなから当接させることは
極めて困難で、鋳型壁面下部で空隙を佳したり、逆に凝
固シェルとの断続的接触による鋳型壁の甚だしい摩耗を
生起しやすく、メツキ層の剥離の問題も多い。また、■
相対する2対の鋳型壁のうちの何れか一方もしくは両方
の鋳型壁を上下方向に2段以上分割形成するとともに、
最上段壁を除く下段壁をそれぞれ移動装置に連結し、鋳
型内方を指向して移動自在に設けた鋳型(特開昭56−
95451号公報)も提案されている。この鋳型は鋳片
との間に適当な面圧を有する下部内壁板が鋳片の収縮量
に順応して前後方向に摺動する事によって鋳片との間の
空隙発生を減少し、さらに鋳片との異常接触による下部
内壁板表面の異常摩耗を防止するように工夫したもので
ある。しかし通常どおり鋳型自溶鋼表面に潤滑剤として
モールドパウダー(CaO−5iO□CaFz−Naz
Oを主成分とする基材粉と炭素粉の混合物)を添加する
場合、下段鋳型壁と鋳片との隙間に自然にうまく流入さ
れないため、下段鋳型の冷却効果の向上また同時に潤滑
効果の向上も小さい。
As a mold (equipment) and method for preventing the generation of voids between the mold wall and the solidified shell, we have empirically shown that the inner wall surface (plane) of the mold is inclined inward by an amount corresponding to the average solidification shrinkage rate of the slab in the mold. a mold and method for holding it firmly;
(2) A so-called multi-taper mold and method (Japanese Unexamined Patent Publication No. 125932/1983) have been proposed in which the inner wall of the mold is provided with at least two tapered steps that are continuous in the casting direction. However, with only one or more straight steps of the mold wall and a fixedly maintained slope (taper), a complicated a-hardness reduction that varies depending on various factors such as casting speed, temperature, mesh type, etc. It is extremely difficult to bring the solidified shell into contact with the inner wall of the mold without maintaining an appropriate contact surface pressure depending on the amount of the solidified shell. This tends to cause severe wear on the mold wall, and there are many problems with peeling of the plating layer. Also,■
Either or both of the two pairs of opposing mold walls are divided into two or more stages in the vertical direction, and
A mold in which the lower walls except the uppermost wall are connected to a moving device so as to be movable inwardly of the mold
95451) has also been proposed. In this mold, the lower inner wall plate, which has an appropriate surface pressure between the slab and the slab, slides back and forth in accordance with the amount of contraction of the slab, thereby reducing the generation of gaps between the slab and the slab. This is designed to prevent abnormal wear on the surface of the lower inner wall plate due to abnormal contact with the pieces. However, as usual, mold powder (CaO-5iO□CaFz-Naz
When adding a mixture of O-based base material powder and carbon powder, it does not naturally flow into the gap between the lower mold wall and the slab, improving the cooling effect of the lower mold and improving the lubrication effect at the same time. It's also small.

したがって下部鋳型壁の摩耗もあまり改善されない。Therefore, the wear of the lower mold wall is not significantly improved.

一方、この鋳型壁と凝固シェルの空隙に伝熱媒体を充填
し、空隙部分の冷却を強化する方法として、■伝熱媒体
として黒鉛、塩化カリウム、塩化カルシウム、塩化ナト
リウム、はう酸等をパウダー状あるいはそれらに菜種油
などを加えてペースト状にして空隙に供給する方法(特
開昭55−92256号公報)、さらに前記黒鉛微粒子
の混合液を粘度、熱伝導度の観点から改良を加えた、■
植物油(菜種油など)に1000メツシユ以下の黒鉛微
粒子を15〜25体積%添加した混合液を空隙に供給す
る方法(特開昭57−154351号公報)も別途提案
されている。しかし、これらの伝熱媒体供給法は、流動
性が悪いため刻々形状が変化する空隙の細部まで行きわ
たらず、十分な伝熱媒体効果が上がらないという問題が
ある。
On the other hand, as a method of filling the void between the mold wall and the solidified shell with a heat transfer medium to strengthen the cooling of the void, the method is as follows: ■ Powder of graphite, potassium chloride, calcium chloride, sodium chloride, ferrous acid, etc. or by adding rapeseed oil or the like to the paste and supplying it to the voids (Japanese Unexamined Patent Publication No. 55-92256), and further improving the mixed liquid of graphite particles from the viewpoint of viscosity and thermal conductivity. ■
A method (Japanese Unexamined Patent Publication No. 154351/1982) has also been proposed in which a mixture of vegetable oil (rapeseed oil, etc.) to which 15 to 25% by volume of graphite particles of 1000 mesh or less is added is supplied to the voids. However, these methods of supplying a heat transfer medium have a problem in that, due to poor fluidity, the heat transfer medium cannot reach the fine details of the gaps whose shape changes every moment, and therefore a sufficient heat transfer medium effect cannot be achieved.

本発明は前述の諸点に鑑みてなされたものである。すな
わち本発明は、鋳型広面側端部および挟置側下部に形成
される空隙による鋳型冷却能の低下を防止し、凝固シェ
ル形成を増進、均一化し、または潤滑の改善により鋳型
壁の甚だしい摩耗防止を目的とするものである。
The present invention has been made in view of the above-mentioned points. That is, the present invention prevents a decrease in mold cooling ability due to the voids formed at the wide end of the mold and the lower part of the clamping side, promotes and uniformizes the formation of a solidified shell, and prevents severe wear on the mold wall by improving lubrication. The purpose is to

(課題を解決するための手段) 上記目的を達成するために本発明に係る連続鋳造鋳型は
、矩形断面を有する連続鋳造組立鋳型において、相対す
る2対の鋳型壁のうちの何れか一方もしくは両方の鋳型
壁を鋳片鋳込方向に2段以上に分割形成すると共に、最
上流側鋳型壁を除く下流側鋳型壁を複数の冷却水ガイド
板で鋳片輻方向に分割構成し、対を成す下流側鋳型壁を
構成する前記夫々の冷却ガイド板を互いに接離移動可能
に構成している。
(Means for Solving the Problems) In order to achieve the above object, a continuous casting mold according to the present invention provides a continuous casting mold having a rectangular cross section, in which one or both of two pairs of opposing mold walls are used. The mold wall is divided into two or more stages in the slab casting direction, and the downstream mold wall except the most upstream mold wall is divided in the slab radial direction with a plurality of cooling water guide plates, forming a pair. The respective cooling guide plates constituting the downstream mold wall are configured to be movable toward and away from each other.

またかかる構成の連続鋳造用鋳型の構成要素である対を
成す冷却水ガイド板の夫々相対する面に給水口列と排水
口列を交互に設けてこれら給水系及び排水系の圧力を検
出し、この検出値に基づいて鋳片と下流側鋳型壁間に形
成されろ水膜厚さ、冷却水流速を鋳片幅方向において均
一と成すべ(前記対を成す夫々の冷却水ガイド板の接離
移動制御を行うこととしている。
Further, water supply port rows and drain port rows are provided alternately on opposing surfaces of the pair of cooling water guide plates, which are the constituent elements of the continuous casting mold having such a configuration, and the pressures of these water supply and drainage systems are detected, Based on this detected value, the thickness of the filter film formed between the slab and the downstream mold wall and the flow velocity of the cooling water are made uniform in the width direction of the slab. Movement control will be performed.

本発明鋳型において、複数の冷却水ガイド板を用いて下
流側鋳型を鋳片幅方向に分割構成したのは、■凝固シェ
ルが広幅面中央のみ膨らんでいるため、分割構成するこ
とによって中央部と、端部の隙間を一定にするため、■
広幅の冷却水ガイド板を使用した場合、熱変形による歪
が大きく、隙間の一様化が不可能なため、である。
In the mold of the present invention, the reason why the downstream mold is divided in the slab width direction using a plurality of cooling water guide plates is because the solidified shell bulges only in the center of the wide side. , In order to keep the gap at the end constant, ■
This is because when a wide cooling water guide plate is used, distortion due to thermal deformation is large and it is impossible to make the gap uniform.

本発明における鋳型の制御方法において、鋳片幅方向に
おいて均一と成す鋳片と下流側鋳型壁間に形成されろ水
膜厚さ、冷却水流速値は何等限定されるものではないが
、本発明者らの研究・実験によれば水膜厚さは0.2〜
3.0mm、冷却水の流速は6〜40m/Sの範囲に設
定すれば、下流側鋳型に高速水膜による強冷却と強制潤
滑の2つの機能を持たせることができる。
In the mold control method of the present invention, the thickness of the filter film formed between the slab and the downstream mold wall, which is uniform in the slab width direction, and the cooling water flow rate are not limited in any way, but the present invention According to their research and experiments, the water film thickness is 0.2~
3.0 mm, and the flow rate of the cooling water is set in the range of 6 to 40 m/s, the downstream mold can have two functions: strong cooling by a high-speed water film and forced lubrication.

(作  用) 上記した構成の本発明によれば、下流側鋳型を構成する
冷却ガイド板を夫々移動可能にしたため、鋳片と鋳型壁
間の間隔を鋳片幅方向に均一となるように制御できる。
(Function) According to the present invention configured as described above, since the cooling guide plates constituting the downstream mold are made movable, the distance between the slab and the mold wall can be controlled to be uniform in the width direction of the slab. can.

(実 施 例) 以下本発明を添付図面に基づいて更に具体的に説明する
(Example) The present invention will be described in more detail below based on the accompanying drawings.

第1図は本発明の一実施例を示したものであり、連続鋳
造用鋳型を上流側鋳型1と下流側鋳型2の二分割にした
場合の組込み構造を示す。ところで、上流側鋳型1は通
常、テーパーを付与された鋳型壁、または相対する2対
の平行鋳型壁を有する。
FIG. 1 shows an embodiment of the present invention, and shows an assembly structure in which a continuous casting mold is divided into two parts, an upstream mold 1 and a downstream mold 2. By the way, the upstream mold 1 usually has a tapered mold wall or two pairs of opposing parallel mold walls.

一方、下流側鋳型2は例えば第二図(イ)に示す短冊状
または同図(ロ)に示す亀甲状に類する形状の複数の冷
却水ガイド板3より構成され、それぞれ例えばシリンダ
4等の移動装置にリンク8を介して連結され、対を成す
鋳型壁面が接離移動できるように成されている。なお、
第1図中9はスプリングを示す。
On the other hand, the downstream mold 2 is composed of a plurality of cooling water guide plates 3 each having a rectangular shape as shown in FIG. 2 (A) or a tortoise shell shape as shown in FIG. It is connected to the device via a link 8 so that the paired mold wall surfaces can move toward and away from each other. In addition,
9 in FIG. 1 indicates a spring.

第2図は下流側鋳型2壁を構成する冷却水ガイド板3の
概略を示すものであり、当該冷却水ガイド板3には給水
口5列と排水口6列を交互に設け、当該給水部と排水部
とに設けられた圧力検知器7により圧力を検出し、この
検出値に応じてシリンダ4により各冷却水ガイド板3を
移動できるようにしている。
FIG. 2 schematically shows the cooling water guide plate 3 that constitutes the wall of the downstream mold 2, and the cooling water guide plate 3 is provided with five rows of water supply ports and six rows of drainage ports alternately. The pressure is detected by pressure detectors 7 provided in the and drainage parts, and each cooling water guide plate 3 can be moved by the cylinder 4 according to the detected value.

なお、上流側鋳型1方向への冷却水の吹き上げを防止す
るため、冷却水ガイド板3の最上段の列は排水口とした
方が望ましい。
In addition, in order to prevent the cooling water from blowing up in the direction of the upstream mold 1, it is preferable that the uppermost row of the cooling water guide plate 3 be used as a drain port.

また給水口5および排水口6の少なくともどちらか一方
を第2図(イ)に示すようにスリット状長孔とすること
によって、鋳片10と冷却水ガイド板3間に形成された
水膜内の冷却水の均一な流れを実現できる。
In addition, by making at least one of the water supply port 5 and the drain port 6 into a slit-like elongated hole as shown in FIG. A uniform flow of cooling water can be achieved.

ところで第3図は、通常の鋳型の場合の鋳型冷却水と鋳
片表面間の総括熱伝達係数の鋳造方向分布を測定し、図
示したものである。この分布がら人体において鋳型メニ
スカスから約100〜300 twn以上下方において
空隙が発止し易く、最上流側鋳型の長さは、メニスカス
下100〜300 mmの長さを持たせることが有効で
あること、また鋳片凝固シェル厚さの増加には平均総括
熱伝達係数がioo。
By the way, FIG. 3 shows the measured distribution of the overall heat transfer coefficient in the casting direction between the mold cooling water and the surface of the slab in the case of a normal mold. Due to this distribution, voids are likely to form approximately 100 to 300 twn or more below the mold meniscus in the human body, and it is effective to make the length of the most upstream mold 100 to 300 mm below the meniscus. , and the average overall heat transfer coefficient is ioo for the increase in slab solidification shell thickness.

kcal/m2・hr・°C以上の下流側鋳型冷却能力
が必要であることが判る。これを改善するために通常鋳
型の冷却水増大、また冷却水圧力の上昇等積々の試みが
なされてきたが、前記空隙の生成により限度がある。そ
こで本発明者らは高速水膜の利用を思いつき、鋭意研究
を重ねた結果、鋳型を上記した如く構成し、かつ鋳型壁
と鋳片間に形成される水膜厚さを0.2〜3.0+nl
11、冷却水の平均流速Vを6〜40m/Sの範囲に設
定すれば、水膜の厚さの変動を防止して鋳型幅方向の厚
み精度を確保し、強冷却化、強制潤滑がより効果的に行
えることを見出した。以下この水膜条件につき詳細に説
明する。
It can be seen that a downstream mold cooling capacity of kcal/m2·hr·°C or more is required. In order to improve this problem, many attempts have been made to increase the amount of cooling water in the mold or to increase the pressure of the cooling water, but there are limits due to the formation of the voids. Therefore, the present inventors came up with the idea of using a high-speed water film, and as a result of intensive research, they constructed a mold as described above, and the thickness of the water film formed between the mold wall and the slab was 0.2 to 3. .0+nl
11. By setting the average flow velocity V of the cooling water in the range of 6 to 40 m/s, fluctuations in the thickness of the water film can be prevented, thickness accuracy in the mold width direction can be ensured, and stronger cooling and forced lubrication can be achieved. I found out that it can be done effectively. This water film condition will be explained in detail below.

第2図(イ)に示す冷却水ガイドFi3の給水口5から
流出した冷却水の平均流速■を8 m / Sに制御し
て、鋳造中の平均水膜ItさTと、その変動幅Δδ5を
測定した結果を第4図に示す。同図からも判るように、
鋳造中の平均水膜厚さTが3.0mm以上および0.2
mm以下になると水膜の変動幅Δδが増加する。
By controlling the average flow velocity of the cooling water flowing out from the water supply port 5 of the cooling water guide Fi3 shown in FIG. The measurement results are shown in Figure 4. As can be seen from the same figure,
The average water film thickness T during casting is 3.0 mm or more and 0.2
When it becomes less than mm, the fluctuation width Δδ of the water film increases.

その理由として、平均水膜厚さTが、0.2mm以下に
なると、局所的な水膜切れが生じ、さらに冷却水ガイド
板3が熱変形し、水膜の変動幅Δδが大きくなったもの
と推定される。また、併せて同図中に鋳造された鋳片凝
固シェルの厚さ偏差Δdを示しているが、水膜の変動幅
Δδと同じ傾向を示しており、凝固シェルの厚さの均一
化を良好にするには平均水膜厚さTを(L2〜3.0m
mの範囲に設定することが好ましい。図示省略したが、
上記第4図に示した傾向は、冷却水の流速を6〜40m
/Sの範囲内で変化させた場合も同様であった。
The reason for this is that when the average water film thickness T becomes 0.2 mm or less, local breakage of the water film occurs, and furthermore, the cooling water guide plate 3 is thermally deformed, and the fluctuation width Δδ of the water film becomes large. It is estimated to be. In addition, the same figure also shows the thickness deviation Δd of the cast slab solidified shell, which shows the same tendency as the water film variation width Δδ, and the thickness of the solidified shell can be made uniform. To make the average water film thickness T (L2~3.0m
It is preferable to set it within the range of m. Although not shown,
The trend shown in Figure 4 above is that the flow rate of cooling water is 6 to 40 m.
The same result was obtained when the value was changed within the range of /S.

次に、平均水膜厚さ1を0.5mmにして、冷却水の平
均流速を1〜100m/Sの範囲で変化させて、鋳型冷
却水と鋳型表面間の総括伝達係数を調べた結果を第5図
に示す。同図からも判るように、冷却水の平均流速■が
6 m / S未満であると、水膜の水温が上昇して気
泡の発生を招き、冷却能が不足する。また冷却水の平均
流速Vが40m/S以」二になっても熱伝達係数は余り
上昇せず、冷却水を大量に流すために設備が大損りとな
るので、冷却水の平均流速Vは6〜40m/Sの範囲と
することが好ましい。上記の傾向は、水膜の平均水膜厚
さTを0.2〜3.0Mの範囲内で変化させた場合も同
様であった。
Next, we set the average water film thickness 1 to 0.5 mm, varied the average flow velocity of the cooling water in the range of 1 to 100 m/s, and investigated the overall transfer coefficient between the mold cooling water and the mold surface. It is shown in FIG. As can be seen from the figure, if the average flow velocity of the cooling water is less than 6 m/s, the water temperature of the water film increases, leading to the generation of bubbles, resulting in insufficient cooling performance. Furthermore, even if the average flow velocity V of the cooling water becomes 40 m/s or more, the heat transfer coefficient will not increase much, and the equipment will be seriously damaged due to the large amount of cooling water flowing, so the average flow velocity V of the cooling water will be It is preferable to set it as the range of 6-40m/S. The above tendency was the same when the average water film thickness T of the water film was changed within the range of 0.2 to 3.0M.

次に本発明の効果を確認するために行った実験の結果に
ついて説明する。
Next, the results of experiments conducted to confirm the effects of the present invention will be explained.

1ヒート50トンの低炭素アルミキルド鋼を、4m/m
inなる鋳造条件で第1図に示す2段式連続鋳造用鋳型
を供えた連続鋳造機により、厚さ105mm、幅105
0mmの鋳片を鋳造した。この際使用した上流側鋳型の
長さは350 mm (メニスカス下250mm)であ
り、下流側鋳型には第2図(イ)に示す短冊状冷却水ガ
イド板(幅: 100 mm、長さ:550mm)を2
2個取り付けた((鋳型法面倒10個、鋳型挾面側1個
)×2)。冷却水ガイド板の給水口、排水口の詳細は次
のとおりである。
50 tons of low carbon aluminum killed steel per heat, 4m/m
A continuous casting machine equipped with a two-stage continuous casting mold shown in Fig. 1 was used under casting conditions of 105 mm in thickness and 105 mm in width.
A slab of 0 mm was cast. The length of the upstream mold used at this time was 350 mm (250 mm below the meniscus), and the downstream mold was equipped with a rectangular cooling water guide plate (width: 100 mm, length: 550 mm) shown in Figure 2 (a). ) to 2
Two were attached ((10 on the mold side, 1 on the mold clamping side) x 2). Details of the water inlet and drain outlet of the cooling water guide plate are as follows.

給水口:高さ1.5mmX幅12mm 排水口:高さ2.2mmX幅12mm 給水口および排水口の相互間隔:それぞれ2mm給水口
と排水口の横方向ピッチ:14mm給水口列と排水口列
との間隔:50M 鋳造中、水膜の平均水膜厚さTを0.5岨に維持し、冷
却水の流速を10〜15m/Sの範囲にして鋳造した。
Water inlet: Height 1.5 mm x Width 12 mm Drain port: Height 2.2 mm x Width 12 mm Interval between water inlet and drain outlet: 2 mm each Horizontal pitch between water inlet and drain outlet: 14 mm Water inlet row and drain outlet row interval: 50M During casting, the average water film thickness T of the water film was maintained at 0.5 m/s, and the cooling water flow rate was set in the range of 10 to 15 m/s.

その結果、鋳造速度4m/minでも凝固シェル厚さが
確保され、下流側鋳型壁の摩耗、摩擦力の上昇もなかっ
た。
As a result, the solidified shell thickness was ensured even at a casting speed of 4 m/min, and there was no wear on the downstream mold wall and no increase in frictional force.

(発明の効果) 以上説明したように本発明によれば、鋳型広面側端部お
よび挟部側下部に形成される空隙による鋳型冷却能低下
を防止し、凝固シェル形成を増進・均一化し、さらに潤
滑の改善により鋳型壁の甚だしい摩耗防止が図られる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to prevent a decrease in mold cooling ability due to the voids formed at the end of the wide side of the mold and the lower part of the nip side, to promote and uniformize solidification shell formation, and to Improved lubrication prevents excessive wear on the mold walls.

すなわち、4m/min以上の高速鋳造が安定して可能
になる。
That is, high-speed casting of 4 m/min or more is stably possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋳型の一実施例を示す図面、第2図は冷
却水ガイド板の説明図であり、(イ)は第1実施例を示
す正面図、(ロ)は第2実施例の要部を示す正面図、(
ハ)は断面して示す側面図、第3図は通常鋳型の鋳型冷
却水と鋳片表面間の統括熱伝達係数の鋳造方向分布を示
す図面、第4図は平均水膜厚さTと水膜厚さ変動Δδお
よび鋳片凝固シェルの厚さ偏差Δdとの関係図、第5図
は冷却水平均流速Vと、鋳型冷却水と鋳片表面間の総括
熱伝達係数との関係を示す図面である。 1は上流側鋳型、2は下流側鋳型、3は冷却水ガイド板
、4はシリンダ、5は給水口、6は排水口、7は圧力検
知器。 工4 第3図 鋳型上端か5の距畷−飢) 第4図 乎均水AjIL屑さ S(」0 第5図
Fig. 1 is a drawing showing one embodiment of the mold of the present invention, Fig. 2 is an explanatory diagram of a cooling water guide plate, (a) is a front view showing the first embodiment, and (b) is a diagram of the second embodiment. Front view showing the main parts of (
C) is a cross-sectional side view, Figure 3 is a diagram showing the distribution of the overall heat transfer coefficient between the mold cooling water of a normal mold and the slab surface in the casting direction, and Figure 4 is the average water film thickness T and water A diagram showing the relationship between the film thickness variation Δδ and the thickness deviation Δd of the slab solidified shell, and Figure 5 is a diagram showing the relationship between the average cooling water flow velocity V and the overall heat transfer coefficient between the mold cooling water and the slab surface. It is. 1 is an upstream mold, 2 is a downstream mold, 3 is a cooling water guide plate, 4 is a cylinder, 5 is a water supply port, 6 is a drain port, and 7 is a pressure detector. Work 4 Fig. 3 Upper end of the mold 5.

Claims (2)

【特許請求の範囲】[Claims] (1)矩形断面を有する連続鋳造組立鋳型において、相
対する2対の鋳型壁のうちの何れか一方もしくは両方の
鋳型壁を鋳片鋳込方向に2段以上に分割形成すると共に
、最上流側鋳型壁を除く下流側鋳型壁を複数の冷却水ガ
イド板で鋳片幅方向に分割構成し、対を成す下流側鋳型
壁を構成する前記夫々の冷却ガイド板を互いに接離移動
可能に構成したことを特徴とする連続鋳造用鋳型。
(1) In a continuous casting assembly mold having a rectangular cross section, one or both of the two opposing mold walls are divided into two or more stages in the slab casting direction, and the most upstream side The downstream mold wall other than the mold wall is divided in the slab width direction by a plurality of cooling water guide plates, and the cooling guide plates forming the pair of downstream mold walls are movable toward and away from each other. A continuous casting mold characterized by:
(2)請求項1記載の連続鋳造用鋳型を構成する対を成
す冷却水ガイド板の夫々相対する面に給水口列と排水口
列を交互に設けてこれら給水系及び排水系の圧力を検出
し、この検出値に基づいて鋳片と下流側鋳型壁間に形成
される水膜厚さ、冷却水流速を鋳片幅方向において均一
と成すべく前記対を成す夫々の冷却水ガイド板の接離移
動制御を行うことを特徴とする連続鋳造用鋳型の制御方
法。
(2) Water supply port rows and drain port rows are provided alternately on opposing surfaces of the pair of cooling water guide plates constituting the continuous casting mold according to claim 1, and the pressures of these water supply systems and drainage systems are detected. Based on this detected value, the contact between each of the pair of cooling water guide plates is adjusted so that the thickness of the water film formed between the slab and the downstream mold wall and the flow velocity of the cooling water are made uniform in the width direction of the slab. A method for controlling a continuous casting mold, characterized by performing separation control.
JP3664389A 1989-02-16 1989-02-16 Continuous casting mold and control method thereof Expired - Lifetime JP2808633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3664389A JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3664389A JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Publications (2)

Publication Number Publication Date
JPH02217138A true JPH02217138A (en) 1990-08-29
JP2808633B2 JP2808633B2 (en) 1998-10-08

Family

ID=12475529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3664389A Expired - Lifetime JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Country Status (1)

Country Link
JP (1) JP2808633B2 (en)

Also Published As

Publication number Publication date
JP2808633B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US3595302A (en) Cooling structure for continuous-casting mold
RU2310543C2 (en) Method for correlating heat transfer of molds, namely in zone of metal heel
RU2240892C2 (en) Liquid-cooled mold
US6315030B1 (en) High speed continuous casting device and relative method
US6152209A (en) Method and device for measuring and regulating the temperature and quantity of cooling water for water-coolable walls of a continuous casting mold
JPH02217138A (en) Mold for continuous casting and controlling method thereof
JP2003311377A (en) Tube-type mold for continuous casting
MXPA00001023A (en) Mould plate for a mould with a funnel shaped entry for the continuous casting of metal.
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
CA2420232A1 (en) Chilled continuous casting mould for casting metal
JPH0366448A (en) Mold for continuous casting
JPH03297541A (en) Mold for continuous casting equipment
JPH0810905A (en) Continuous casting mold for slab
JPH04294843A (en) Method for controlling mold for continuous casting
CN213080005U (en) Combined H-shaped crystallizer
JPS62158554A (en) Continuous casting method
JPH0335849A (en) Mold for continuous casting and lubricating method thereof
US20230415223A1 (en) Crystallizer for the continuous casting of a metal product, and corresponding casting method
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JPH0270358A (en) Mold for continuous casting
SU1002086A1 (en) Mould for metal continuous casting plants
CN111774540A (en) Combined H-shaped crystallizer
JPH02104446A (en) Method for cooling continuous casting mold, and mold and cooling device for execution thereof
JPH03114627A (en) Mold for continuous casting
JPH03291148A (en) Dummy bar for drawing billet and continuous casting method