JP2808633B2 - Continuous casting mold and control method thereof - Google Patents

Continuous casting mold and control method thereof

Info

Publication number
JP2808633B2
JP2808633B2 JP3664389A JP3664389A JP2808633B2 JP 2808633 B2 JP2808633 B2 JP 2808633B2 JP 3664389 A JP3664389 A JP 3664389A JP 3664389 A JP3664389 A JP 3664389A JP 2808633 B2 JP2808633 B2 JP 2808633B2
Authority
JP
Japan
Prior art keywords
mold
cooling water
slab
continuous casting
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3664389A
Other languages
Japanese (ja)
Other versions
JPH02217138A (en
Inventor
敬治 中島
敏彦 村上
健 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3664389A priority Critical patent/JP2808633B2/en
Publication of JPH02217138A publication Critical patent/JPH02217138A/en
Application granted granted Critical
Publication of JP2808633B2 publication Critical patent/JP2808633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型およびその鋳型の制御方法に
関し、詳しくは鋳型の下部構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a continuous casting mold and a method of controlling the mold, and more particularly to a lower structure of the mold.

(従来の技術及びその課題) 連続鋳造用鋳型は通常600〜1200mmの長さを有するも
ので鋳型内壁は高い熱伝導率を有する材料、すなわち銅
または銅合金等により構成されている。
(Conventional technology and its problems) A continuous casting mold usually has a length of 600 to 1200 mm, and the inner wall of the mold is made of a material having high thermal conductivity, that is, copper or a copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型
壁内部に供給される冷却媒体(例えば水)により間接的
に冷却作用を受け、鋳型壁に接する部分から漸次凝固が
進行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧
力に耐え得る程度まで成長するに伴い凝固シェルは収縮
し、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (for example, water) supplied to the inside of the mold wall, and gradually solidifies from a portion in contact with the mold wall, and a solidified shell is formed. As the thickness of the solidified shell grows to a level that can withstand the hydrostatic pressure of the internal molten steel, the solidified shell shrinks, creating voids between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁
中央部と接する鋳片凝固シェルは内部の溶鋼圧力により
外側に膨出し易く鋳型壁面と比較的よく接触し易いが、
鋳型広面側端部および挟面側の下部においては空隙が顕
著に現れ易い傾向がある。
In particular, in a mold having a rectangular cross section, the slab solidified shell that is in contact with the central portion of the wide surface wall of the mold is easily swelled outward due to the internal molten steel pressure and relatively easily contacts the mold wall surface,
At the end on the wide surface side of the mold and the lower portion on the side of the sandwiching surface, voids tend to be noticeable.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著し
く低下させ、鋳片の凝固シェル成長を大きく阻害し、凝
固シェル厚さの不均一による表面縦割れ等品質欠陥の誘
因となり、さらには凝固シェル破損によるブレークアウ
トの大きな要因となる場合が多い。これは現状連続鋳造
設備の大きな基本的問題点となっており、特に高速鋳造
化指向への最大の障害になっている。
This void generation significantly reduces the heat transfer efficiency from the slab to the mold wall, greatly hinders the growth of the solidified shell of the slab, causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell, and furthermore, Breakout due to breakage of the solidified shell is often a major factor. This has become a major fundamental problem of continuous casting equipment at present, and is the biggest obstacle particularly toward high-speed casting.

この鋳型壁と凝固シェルの空隙発生を防止する鋳型
(装置)および方法として、鋳型内における鋳片の平
均凝固収縮率に相当する量だけ鋳型内壁面(平面)を経
験的に内側に傾斜させて固定的に堅持する鋳型および方
法、鋳型内壁に、鋳造方向に連続する少なくとも2つ
のテーパー段を付与する、いわゆるマルチテーパー鋳型
および方法(特開昭53−125932号公報)等が提案されて
いる。しかしこのような鋳型壁の直線的1段または2段
以上、かつ固定的に堅持された傾斜(テーパー)付与の
みでは鋳造速度、温度、鋼種等様々の要因により変動す
る複雑な凝固収縮量に順応して凝固シェルと鋳型内壁面
とを適当な接触面圧を保ちながら当接させることは極め
て困難で、鋳型壁面下部で空隙を生じたり、逆に凝固シ
ェルとの断続的接触による鋳型壁の甚だしい摩耗を生起
しやすく、メッキ層の剥離の問題も多い。また、相対
する2対の鋳型壁のうちの何れか一方もしくは両方の鋳
型壁を上下方向に2段以上分割形成するとともに、最上
段壁を除く下段壁をそれぞれ移動装置に連結し、鋳型内
方を指向して移動自在に設けた鋳型(特開昭56−95451
号公報)も提案されている。この鋳型は鋳片との間に適
当な面圧を有する下部内壁板が鋳片の収縮量に順応して
前後方向に摺動する事によって鋳片との間の隙間発生を
減少し、さらに鋳片との異常接触による下部内壁板表面
の異常摩耗を防止するように工夫したものである。しか
し通常どおり鋳型内溶鋼表面に潤滑剤としてモールドパ
ウダー(CaO−SiO2−CaF2−Na2Oを主成分とする基材粉
と炭素粉の混合物)を添加する場合、下段鋳型壁と鋳片
との隙間に自然にうまく流入されないため、下段鋳型の
冷却効果の向上また同時に潤滑効果の向上も小さい。し
たがって下部鋳型壁の摩耗もあまり改善されない。
As a mold (apparatus) and method for preventing the generation of voids between the mold wall and the solidified shell, the mold inner wall surface (plane) is empirically inclined inward by an amount corresponding to the average solidification shrinkage of the slab in the mold. A so-called multi-tapered mold and method (Japanese Patent Application Laid-Open No. Sho 53-125932) have been proposed in which a mold and a method for fixedly holding the mold, and at least two tapered steps continuous in the casting direction are provided on the inner wall of the mold. However, if only one or two or more steps of such a mold wall are fixed and a fixedly fixed inclination (taper) is applied only, it is possible to adapt to a complicated solidification shrinkage that varies depending on various factors such as casting speed, temperature, and steel type. It is extremely difficult to bring the solidified shell into contact with the inner wall surface of the mold while maintaining an appropriate contact surface pressure, resulting in voids at the lower part of the mold wall, or conversely, severe mold wall due to intermittent contact with the solidified shell. Wear tends to occur and there are many problems of peeling of the plating layer. In addition, one or both of the two pairs of opposed mold walls are formed in two or more stages in the vertical direction, and the lower walls except for the uppermost wall are connected to the moving device, respectively. A mold provided movably in a direction (Japanese Patent Laid-Open No. 56-95451)
Has also been proposed. In this mold, the lower inner wall plate having an appropriate surface pressure between the slab and the slab is slid in the front-rear direction according to the shrinkage of the slab, thereby reducing the gap between the slab and the slab. It is devised to prevent abnormal wear of the lower inner wall plate surface due to abnormal contact with the piece. However, when normally the molten steel in the mold surface addition of mold powder as a lubricant (mixture of CaO-SiO 2 -CaF 2 -Na 2 O as main components base powder and carbon powder), the lower mold wall and the slab The cooling effect of the lower mold and the improvement of the lubricating effect at the same time are small because the water does not flow naturally into the gap between the upper mold and the lower mold. Therefore, the wear of the lower mold wall is not significantly improved.

一方、この鋳型壁と凝固シェルの空隙に伝熱媒体を充
填し、空隙部分の冷却を強化する方法として、伝熱媒
体として黒鉛、塩化カリウム、塩化カルシウム、塩化ナ
トリウム、ほう酸等をパウダー状あるいはそれらに菜種
油などを加えてペースト状にして空隙に供給する方法
(特開昭55−92256号公報)、さらに前記黒鉛微粒子の
混合液を粘度、熱伝導度の観点から改良を加えた、植
物油(菜種油など)に1000メッシュ以下の黒鉛微粒子を
15〜25体積%添加した混合液を空隙に供給する方法(特
開昭57−154351号公報)も別途提案されている。しか
し、これらの伝熱媒体供給法は、流動性が悪いため刻々
形状が変化する空隙の細部まで行きわたらず、十分な伝
熱媒体効果が上がらないという問題がある。
On the other hand, as a method of filling the space between the mold wall and the solidified shell with a heat transfer medium and strengthening the cooling of the space, graphite, potassium chloride, calcium chloride, sodium chloride, boric acid, etc. are used as a heat transfer medium in powder form or in a powder form. Rapeseed oil and the like and supplying it to the voids in the form of a paste (Japanese Unexamined Patent Publication (Kokai) No. 55-92256), and a vegetable oil (rapeseed oil) obtained by further improving the mixture of the graphite fine particles from the viewpoint of viscosity and thermal conductivity. Etc.) with fine graphite particles of 1000 mesh or less
A method of supplying a mixed solution having 15 to 25% by volume added to voids (Japanese Patent Laid-Open No. 57-154351) has also been separately proposed. However, these heat transfer medium supply methods have a problem in that the flowability is poor, so that the details of the voids, whose shape changes every moment, cannot be reached, and the effect of the heat transfer medium cannot be sufficiently increased.

本発明は前述の諸点に鑑みてなされたものである。す
なわち本発明は、鋳型広面側端部および挟面側下部に形
成される空隙による鋳型冷却能の低下を防止し、凝固シ
ェル形成を増進、均一化し、または潤滑の改善による鋳
型壁の甚だしい摩耗防止を目的とするものである。
The present invention has been made in view of the above points. That is, the present invention prevents the mold cooling ability from decreasing due to the voids formed at the wide end of the mold side and the lower part on the sandwiching side, promotes and uniforms the formation of a solidified shell, or prevents excessive wear of the mold wall by improving lubrication. It is intended for.

(課題を解決するための手段) 上記目的を達成するために本発明に係る連続鋳造鋳型
は、矩形断面を有する連続鋳造組立鋳型において、相対
する2対の鋳型壁のうちの何れか一方もしくは両方の鋳
型壁を鋳片鋳込方向に2段以上に分割形成すると共に、
最上流側鋳型壁を除く下流側鋳型壁を複数の冷却水ガイ
ド板で鋳片幅方向に分割構成し、対を成す下流側鋳型壁
を構成する前記夫々の冷却ガイド板を互いに接離移動可
能に構成している。
(Means for Solving the Problems) In order to achieve the above object, a continuous casting mold according to the present invention is a continuous casting assembly mold having a rectangular cross section, which comprises one or both of two opposite pairs of mold walls. While forming the mold wall in two or more steps in the slab casting direction,
The downstream mold wall excluding the most upstream mold wall is divided into a plurality of cooling water guide plates in the slab width direction, and the respective cooling guide plates constituting the pair of downstream mold walls can be moved toward and away from each other. It is composed.

またかかる構成の連続鋳造用鋳型の構成要素である対
を成す冷却水ガイド板の夫々相対する面に給水口列と排
水口列を交互に設けてこれら給水系及び排水系の圧力を
検出し、この検出値に基づいて鋳片と下流側鋳型壁間に
形成される水膜厚さ、冷却水流速を鋳片幅方向において
均一と成すべく前記対を成す夫々の冷却水ガイド板の接
離移動制御を行うこととしている。
Further, a water supply port array and a drain port array are provided alternately on opposing surfaces of a cooling water guide plate forming a pair, which is a component of a continuous casting mold having such a configuration, and the pressures of these water supply system and drainage system are detected, In order to make the water film thickness formed between the slab and the downstream mold wall based on the detected value and the cooling water flow rate uniform in the slab width direction, the contact / separation movement of the cooling water guide plates forming the pair. Control is to be performed.

本発明鋳型において、複数の冷却水ガイド板を用いて
下流側鋳型を鋳片幅方向に分割構成したのは、凝固シ
ェルが広幅面中央のみ膨らんでいるため、分割構成する
ことによって中央部と、端部の隙間を一定にするため、
広幅の冷却水ガイド板を使用した場合、熱変形による
歪が大きく、隙間の一様化が不可能なため、である。
In the mold of the present invention, the downstream mold is configured to be divided in the slab width direction by using a plurality of cooling water guide plates, because the solidified shell is expanded only at the center of the wide surface, and by dividing the central part, In order to keep the gap at the end constant,
This is because when a wide cooling water guide plate is used, distortion due to thermal deformation is large, and it is impossible to equalize the gap.

本発明における鋳型の制御方法において、鋳片幅方向
において均一と成す鋳片と下流側鋳型壁間に形成される
水膜厚さ、冷却水流速値は何等限定されるものではない
が、本発明者らの研究・実験によれば水膜厚さは0.2〜
3.0mm、冷却水の流速は6〜40m/Sの範囲に設定すれば、
下流側鋳型に高速水膜による強冷却と強制潤滑の2つの
機能を持たせることができる。
In the method of controlling a mold in the present invention, the water film thickness formed between the slab and the downstream mold wall, which is uniform in the slab width direction, and the cooling water flow velocity value are not limited at all. According to our research and experiments, the water film thickness is 0.2 ~
3.0mm, if the cooling water flow rate is set in the range of 6-40m / S,
The downstream mold can have two functions of strong cooling by a high-speed water film and forced lubrication.

(作用) 上記した構成の本発明によれば、下流側鋳型を構成す
る冷却ガイド板を夫々移動可能にしたため、鋳片と鋳型
壁間の間隔を鋳片幅方向に均一となるように制御でき
る。
(Operation) According to the present invention having the above-described configuration, since the cooling guide plates constituting the downstream mold can be respectively moved, the interval between the slab and the mold wall can be controlled to be uniform in the slab width direction. .

(実 施 例) 以下本発明を添付図面に基づいて更に具体的に説明す
る。
(Examples) Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.

第1図は本発明の一実施例を示したものであり、連続
鋳造用鋳型を上流側鋳型1と下流側鋳型2の二分割にし
た場合の組込み構造を示す。ところで、上流側鋳型1は
通常、テーパーを付与された鋳型壁、または相対する2
対の平行鋳型壁を有する。一方、下流側鋳型2は例えば
第二図(イ)に示す短冊状または同図(ロ)に示す亀甲
状に類する形状の複数の冷却水ガイド板3より構成さ
れ、それぞれ例えばシリンダ4等の移動装置にリンク8
を介して連結され、対を成す鋳型壁面が接離移動できる
ように成されている。なお、第1図中9はスプリングを
示す。
FIG. 1 shows an embodiment of the present invention, and shows an assembly structure in which a continuous casting mold is divided into an upstream mold 1 and a downstream mold 2 in two. Incidentally, the upstream mold 1 is usually provided with a tapered mold wall, or an opposed mold wall 2.
It has a pair of parallel mold walls. On the other hand, the downstream mold 2 is composed of, for example, a plurality of cooling water guide plates 3 having a shape similar to a strip shape shown in FIG. 2A or a turtle shape shown in FIG. Link to device 8
And the pair of mold walls can be moved toward and away from each other. In FIG. 1, reference numeral 9 denotes a spring.

第2図は下流側鋳型2壁を構成する冷却水ガイド板3
の概略を示すものであり、当該冷却水ガイド板3には給
水口5列と排水口6列を交互に設け、当該給水部と排水
部とに設けられた圧力検知器7により圧力を検出し、こ
の検出値に応じてシリンダ4により各冷却水ガイド板3
を移動できるようにしている。
FIG. 2 shows a cooling water guide plate 3 constituting the downstream mold 2 wall.
The cooling water guide plate 3 is provided with five rows of water inlets and six rows of drains alternately, and the pressure is detected by a pressure detector 7 provided in the water supply part and the drainage part. Each cooling water guide plate 3 is controlled by the cylinder 4 in accordance with the detected value.
To be able to move.

なお、上流側鋳型1方向への冷却水の吹き上げを防止
するため、冷却水ガイド板3の最上段の列は排水口とし
た方が望ましい。
In order to prevent the cooling water from being blown up in the direction of the upstream mold 1, it is preferable that the uppermost row of the cooling water guide plates 3 is a drain port.

また給水口5および排水口6の少なくともどちらか一
方を第2図(イ)に示すようにスリット状長孔とするこ
とによって、鋳片10と冷却水ガイド板3間に形成された
水膜内の冷却水の均一な流れを実現できる。
In addition, by forming at least one of the water supply port 5 and the drain port 6 as a slit-shaped long hole as shown in FIG. 2 (a), the water film formed between the slab 10 and the cooling water guide plate 3 is formed. A uniform flow of cooling water can be realized.

ところで第3図は、通常の鋳型の場合の鋳型冷却水と
鋳片表面間の総括熱伝達係数の鋳造方向分布を測定し、
図示したものである。この分布から大体において鋳型メ
ニスカスから約100〜300mm以上下方において空隙が発生
し易く、最上流側鋳型の長さは、メニスカス下100〜300
mmの長さを持たせることが有効であること、また鋳片凝
固シェル厚さの増加には平均総括熱伝達係数が1000kcal
/m2・hr・℃以上の下流側鋳型冷却能力が必要であるこ
とが判る。これを改善するために通常鋳型の冷却水増
大、また冷却水圧力の上昇等種々の試みがなされてきた
が、前記空隙の生成により限度がある。そこで本発明者
らは高速水膜の利用を思いつき、鋭意研究を重ねた結
果、鋳型を上記した如く構成し、かつ鋳型壁と鋳片間に
形成される水膜厚さを0.2〜3.0mm、冷却水の平均流速
を6〜40m/Sの範囲に設定すれば、水膜の厚さの変動を
防止して鋳型幅方向の厚み精度を確保し、強化冷却、強
制潤滑がより効果的に行えることを見出した。以下この
水膜条件につき詳細に説明する。
By the way, FIG. 3 measures the casting direction distribution of the overall heat transfer coefficient between the mold cooling water and the slab surface in the case of a normal mold,
It is illustrated. From this distribution, voids are likely to be generated below the mold meniscus by about 100 to 300 mm or more, and the length of the most upstream mold is 100 to 300 mm below the meniscus.
mm is effective, and the average overall heat transfer coefficient is 1000 kcal to increase the thickness of the solidified shell of the slab.
It can be seen that a downstream mold cooling capacity of at least / m 2 · hr · ° C is required. Various attempts have been made to improve this, such as increasing the cooling water of the mold or increasing the pressure of the cooling water. However, there is a limit due to the formation of the voids. Therefore, the present inventors came up with the use of a high-speed water film, and as a result of intensive research, configured the mold as described above, and the water film thickness formed between the mold wall and the slab was 0.2 to 3.0 mm, If the average flow velocity of the cooling water is set in the range of 6 to 40 m / S, the fluctuation of the thickness of the water film is prevented, the thickness accuracy in the mold width direction is secured, and the enhanced cooling and forced lubrication can be performed more effectively. I found that. Hereinafter, the water film conditions will be described in detail.

第2図(イ)に示す冷却水ガイド板3の給水口5から
流出した冷却水の平均流速を8m/Sに制御して、鋳造中
の平均水膜厚さと、その変動幅Δδを測定した結果
を第4図に示す。同図からも判るように、鋳造中の平均
水膜厚さが3.0mm以上および0.2mm以下となると水膜の
変動幅Δδが増加する。
The average flow velocity of the cooling water flowing out from the water supply port 5 of the cooling water guide plate 3 shown in FIG. 2 (b) is controlled to 8m / S, measured the average water layer thickness during casting, the variation width .DELTA..delta W The results obtained are shown in FIG. As can be seen from the figure, when the average water film thickness during casting becomes 3.0 mm or more and 0.2 mm or less, the fluctuation width Δδ of the water film increases.

その理由として、平均水膜厚さが、0.2mm以下にな
ると、局所的な水膜切れが生じ、さらに冷却水ガイド板
3が熱変形し、水膜の変動幅Δδが大きくなったものと
推定される。また、併せて同図中に鋳造された鋳片凝固
シェルの厚さ偏差Δdを示しているが、水膜の変動幅Δ
δと同じ傾向を示しており、凝固シェルの厚さの均一化
を良好にするには平均水膜厚さを0.2〜3.0mmの範囲に
設定することが好ましい。図示省略したが、上記第4図
に示した傾向は、冷却水の流速を6〜40m/Sの範囲内で
変化させた場合も同様であった。
As the reason, it is estimated that when the average water film thickness becomes 0.2 mm or less, a local water film break occurs, the cooling water guide plate 3 is further thermally deformed, and the fluctuation width Δδ of the water film increases. Is done. In addition, the thickness deviation Δd of the cast slab solidified shell is also shown in FIG.
It shows the same tendency as δ, and it is preferable to set the average water film thickness in the range of 0.2 to 3.0 mm in order to make the thickness of the solidified shell uniform. Although not shown, the tendency shown in FIG. 4 was the same when the cooling water flow rate was changed within the range of 6 to 40 m / S.

次に、平均水膜厚さを0.5mmにして、冷却水の平均
流速を1〜100m/Sの範囲で変化させて、鋳型冷却水と鋳
型表面間の総括伝達係数を調べた結果を第5図に示す。
同図からも判るように、冷却水の平均流速が6m/S未満
であると、水膜の水温が上昇して気泡の発生を招き、冷
却能が不足する。また冷却水の平均流速が40m/S以上
になっても熱伝達係数は余り上昇せず、冷却水を大量に
流すために設備が大掛りとなるので、冷却水の平均流速
は6〜40m/Sの範囲とすることが好ましい。上記の傾
向は、水膜の平均水膜厚さを0.2〜3.0mmの範囲内で変
化させた場合も同様であった。
Next, the average water film thickness was set to 0.5 mm, and the average flow rate of the cooling water was changed in the range of 1 to 100 m / S. Shown in the figure.
As can be seen from the figure, if the average flow velocity of the cooling water is less than 6 m / S, the water temperature of the water film rises, causing bubbles to be generated, and the cooling capacity becomes insufficient. In addition, even if the average flow velocity of the cooling water is 40 m / S or more, the heat transfer coefficient does not increase so much, and the equipment becomes large to flow a large amount of the cooling water, so the average flow velocity of the cooling water is 6 to 40 m / S. It is preferable to be in the range of S. The above tendency was the same when the average film thickness of the water film was changed in the range of 0.2 to 3.0 mm.

次に本発明の効果を確認するために行った実験の結果
について説明する。
Next, the results of experiments performed to confirm the effects of the present invention will be described.

1ヒート50トンの低炭素アルミキルド鋼を、4m/minな
る鋳造条件で第1図に示す2段式連続鋳造用鋳型を供え
た連続鋳造機により、厚さ105mm、幅1050mmの鋳片を鋳
造した。この際使用した上流側鋳型の長さは350mm(メ
ニスカス下250mm)であり、下流側鋳型には第2図
(イ)に示す短冊状冷却水ガイド板(幅:100mm、長さ:5
50mm)を22個取り付けた{(鋳型広面側10個、鋳型挟面
側1個)×2}。冷却水ガイド板の給水口、排水口の詳
細は次のとおりである。
A 50-ton low-carbon aluminum killed steel was cast under a casting condition of 4 m / min using a continuous casting machine equipped with a two-stage continuous casting mold shown in FIG. 1 to produce a slab having a thickness of 105 mm and a width of 1050 mm. . The length of the upstream mold used at this time was 350 mm (250 mm below the meniscus), and the downstream mold had a strip-shaped cooling water guide plate (width: 100 mm, length: 5 mm) shown in FIG.
22 pieces (50 mm) (2 pieces on the wide side of the mold and 1 piece on the side between the molds) × 2}. Details of the water supply port and drain port of the cooling water guide plate are as follows.

給水口:高さ1.5mm×幅12mm 排水口:高さ2.2mm×幅12mm 給水口および排水口の相互間隔:それぞれ2mm 給水口と排水口の横方向ピッチ:14mm 給水口列と排水口列との間隔:50mm 鋳造中、水膜の平均水膜厚さを0.5mmに維持し、冷
却水の流速を10〜15m/Sの範囲にして鋳造した。
Water inlet: 1.5mm high x 12mm wide Drain outlet: 2.2mm high x 12mm wide Spacing between water inlet and drain: 2mm Horizontal pitch between water inlet and drain: 14mm With water inlet and drain rows Interval: 50 mm During casting, the average water film thickness of the water film was maintained at 0.5 mm, and casting was performed with the cooling water flow rate in the range of 10 to 15 m / S.

その結果、鋳造速度4m/minでも凝固シェル厚さが確保
され、下流側鋳型壁の摩耗、摩擦力の上昇もなかった。
As a result, the thickness of the solidified shell was ensured even at a casting speed of 4 m / min, and there was no wear on the downstream mold wall and no increase in frictional force.

(発明の効果) 以上説明したように本発明によれば、鋳型広面側端部
および挟面側下部に形成される空隙による鋳型冷却能低
下を防止し、凝固シェル形成を増進・均一化し、さらに
潤滑の改善により鋳型壁の甚だしい摩耗防止が図られ
る。すなわち、4m/min以上の高速鋳造が安定して可能に
なる。
(Effects of the Invention) As described above, according to the present invention, it is possible to prevent the mold cooling ability from being deteriorated due to the voids formed at the end of the mold on the wide surface side and the lower portion of the sandwiched surface, and to promote and uniformize the formation of the solidified shell. The improved lubrication prevents severe wear of the mold wall. That is, high-speed casting of 4 m / min or more can be stably performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明鋳型の一実施例を示す図面、第2図は冷
却水ガイド板の説明図であり、(イ)は第1実施例を示
す正面図、(ロ)は第2実施例の要部を示す正面図、
(ハ)は断面して示す側面図、第3図は通常鋳型の鋳型
冷却水と鋳片表面間の統括熱伝達係数の鋳造方向分布を
示す図面、第4図は平均水膜厚さと水膜厚さ変動Δδ
および鋳片凝固シェルの厚さ偏差Δdとの関係図、第5
図は冷却水平均流速と、鋳型冷却水と鋳片表面間の総
括熱伝達係数との関係を示す図面である。 1は上流側鋳型、2は下流側鋳型、3は冷却水ガイド
板、4はシリンダ、5は給水口、6は排水口、7は圧力
検知器。
FIG. 1 is a drawing showing an embodiment of the mold of the present invention, FIG. 2 is an explanatory view of a cooling water guide plate, (a) is a front view showing the first embodiment, and (b) is a second embodiment. Front view showing the main part of
(C) is a cross-sectional side view, FIG. 3 is a drawing showing the distribution of the overall heat transfer coefficient between the mold cooling water and the slab surface in the casting direction, and FIG. 4 is an average water film thickness and water film. Thickness variation Δδ
FIG. 5 is a graph showing the relationship between the thickness deviation Δd of the slab solidified shell and the fifth example.
The figure shows the relationship between the average cooling water flow velocity and the overall heat transfer coefficient between the mold cooling water and the slab surface. 1 is an upstream mold, 2 is a downstream mold, 3 is a cooling water guide plate, 4 is a cylinder, 5 is a water supply port, 6 is a drain port, and 7 is a pressure detector.

フロントページの続き (56)参考文献 特開 昭47−16331(JP,A) 特開 昭63−26246(JP,A) 特公 昭46−39222(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B22D 11/04 B22D 11/124Continuation of front page (56) References JP-A-47-16331 (JP, A) JP-A-63-26246 (JP, A) JP-B-46-3922 (JP, B1) (58) Fields investigated (Int) .Cl. 6 , DB name) B22D 11/04 B22D 11/124

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】矩形断面を有する連続鋳造組立鋳型におい
て、相対する2対の鋳型壁のうちの何れか一方もしくは
両方の鋳型壁を鋳片鋳込方向に2段以上に分割形成する
と共に、最上流側鋳型壁を除く下流側鋳型壁を複数の冷
却水ガイド板で鋳片幅方向に分割構成し、対を成す下流
側鋳型壁を構成する前記夫々の冷却ガイド板を互いに接
離移動可能に構成したことを特徴とする連続鋳造用鋳
型。
In a continuous casting assembly mold having a rectangular cross section, one or both of two opposing mold walls are formed in two or more steps in a slab casting direction. The downstream mold wall excluding the upstream mold wall is divided into a plurality of cooling water guide plates in the slab width direction, and the respective cooling guide plates constituting the pair of downstream mold walls can be moved toward and away from each other. A mold for continuous casting, characterized in that it is constituted.
【請求項2】請求項1記載の連続鋳造用鋳型を構成する
対を成す冷却水ガイド板の夫々相対する面に給水口列と
排水口列を交互に設けてこれら給水系及び排水系の圧力
を検出し、この検出値に基づいて鋳片と下流側鋳型壁間
に形成される水膜厚さ、冷却水流速を鋳片幅方向におい
て均一と成すべく前記対を成す夫々の冷却水ガイド板の
接離移動制御を行うことを特徴とする連続鋳造用鋳型の
制御方法。
2. A cooling water guide plate comprising a pair of cooling water guide plates constituting a continuous casting mold according to claim 1. , And based on the detected value, the water film thickness formed between the slab and the downstream mold wall, and the respective cooling water guide plates forming the pair to make the cooling water flow velocity uniform in the slab width direction. A method for controlling a casting mold for continuous casting, comprising:
JP3664389A 1989-02-16 1989-02-16 Continuous casting mold and control method thereof Expired - Lifetime JP2808633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3664389A JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3664389A JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Publications (2)

Publication Number Publication Date
JPH02217138A JPH02217138A (en) 1990-08-29
JP2808633B2 true JP2808633B2 (en) 1998-10-08

Family

ID=12475529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3664389A Expired - Lifetime JP2808633B2 (en) 1989-02-16 1989-02-16 Continuous casting mold and control method thereof

Country Status (1)

Country Link
JP (1) JP2808633B2 (en)

Also Published As

Publication number Publication date
JPH02217138A (en) 1990-08-29

Similar Documents

Publication Publication Date Title
KR100357356B1 (en) Twin belt casting method and device
US4865115A (en) Pouring device for dual-roll type continuous casting machines
JP2683725B2 (en) Liquid cooled surface plate mold for continuous casting of continuous cast material from molten steel in slab shape
US6315030B1 (en) High speed continuous casting device and relative method
JP2808633B2 (en) Continuous casting mold and control method thereof
EP0191586B1 (en) Electromagnetic levitation casting
US4635703A (en) Cooling pad for use in a continuous casting apparatus for the production of cast sheets
JP3089608B2 (en) Continuous casting method of beam blank
CA2420232A1 (en) Chilled continuous casting mould for casting metal
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
EP0735931B1 (en) Method and apparatus for twin belt casting
JPH04294843A (en) Method for controlling mold for continuous casting
JPH0366448A (en) Mold for continuous casting
CA1217314A (en) Tapered mold liner facing
US5095970A (en) Continuous-casting mold for vertically casting metal strip
JPS63101056A (en) Method and apparatus for producing rapidly cooled metal strip
JPH0464775B2 (en)
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JPH0270358A (en) Mold for continuous casting
JPH08206786A (en) Mold for continuous casting
JPH0335849A (en) Mold for continuous casting and lubricating method thereof
JPH03114627A (en) Mold for continuous casting
CA1234673A (en) Cooling pad for use in a continuous casting apparatus for the production of cast sheets
JP2845706B2 (en) Molding equipment for continuous casting equipment
JP3373313B2 (en) Mold for continuous billet casting