JPH03114627A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH03114627A
JPH03114627A JP25132389A JP25132389A JPH03114627A JP H03114627 A JPH03114627 A JP H03114627A JP 25132389 A JP25132389 A JP 25132389A JP 25132389 A JP25132389 A JP 25132389A JP H03114627 A JPH03114627 A JP H03114627A
Authority
JP
Japan
Prior art keywords
mold
wall
continuous casting
slab
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25132389A
Other languages
Japanese (ja)
Inventor
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25132389A priority Critical patent/JPH03114627A/en
Publication of JPH03114627A publication Critical patent/JPH03114627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable uniformly forced lubrication between a mold and a cast slab and to efficiently, stably and continuously cast the cast slab by forcibly forming the necessary curving surface on a mold wall faces of the most upstream side mold in the assemble mold. CONSTITUTION:The mold wall having a rectangular cross section is formed so as to be divided into two or more steps in casting direction of the cast slab. In the above continuous casting assemble mold, a wall face forming control device is arranged to the wall faces mutually faces in the most upstream side mold 1. This control device is constituted of a worm jack 7, hydraulic cylinder 8, fixed bolt 9 having spherical seat face 10, etc., and the curving face is formed on the mold wall face according to shrinkage deformation of solidified shell. Further, a flow rate adjusting bar (not shown in the figure) is inserted into a lubricant supplying passage 12 communicating to a slit hole 11 formed on the mold face to make supply of the lubricant suitable and uniform. Further, the wall of downstream side mold 2 is constituted of plural cooling water guide plates 17 and these plates are made as shiftable to separate/contact and inclinable to the cast slab corresponding to the deformation of cast slab so as to enable effective cooling and also facilitate discharging of the lubricant residue.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型に関し、詳しくは、該鋳型を鋳
片鋳込方向に2段以上に分割形成すると共に、各部位に
均一強制潤滑、強制直接冷却といった機能を分担させ、
これらの機能を十分かつ円滑に発揮させるようにした鋳
型構造に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a mold for continuous casting, and more specifically, the mold is divided into two or more stages in the slab casting direction, and uniform forced lubrication is applied to each part. , sharing functions such as forced direct cooling,
The present invention relates to a mold structure that allows these functions to be fully and smoothly performed.

(従来の技術) 連続鋳造用鋳型は通常600〜1200mmの長さを有
するもので鋳型内壁は高い熱伝導率を有する材料、すな
わち銅または銅合金等により構成されている。
(Prior Art) A continuous casting mold usually has a length of 600 to 1200 mm, and the inner wall of the mold is made of a material having high thermal conductivity, such as copper or a copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するに伴い凝固シェルは収縮し
、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts, creating a void between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片砥面シェルは内部の溶鋼圧力により外
側に膨出し易く鋳型壁面と比較的よく接触し易いが、鋳
型広面側端部および挟部側の下部においては空隙が顕著
に現れ易い傾向がある。
Particularly in a mold with a rectangular cross section, the slab grinding surface shell that contacts the center of the wide wall of the mold tends to bulge outward due to the internal pressure of the molten steel and comes into relatively good contact with the mold wall. There is a tendency for voids to appear conspicuously in the lower part on the side of the sandwiching part.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面縦割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレークアウト
の大きな要因となる場合が多い。これは現状連続鋳造設
備の大きな基本的問題点となっており、特に高速鋳造化
指向への最大の障害になっている。
This generation of voids significantly reduces the efficiency of heat transfer from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell. This is often a major cause of breakout due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

この鋳型壁と凝固シェルの空隙発生を防止する鋳型(装
置)および方法として、■鋳型内における鋳片の平均凝
固収縮率に相当する量だけ鋳型内壁面(平面)を経験的
に内側に傾斜さ−ヒて固定的に堅持する鋳型および方法
、■鋳型内壁に、鋳造方向に連続する少なくとも2つの
テーパー段をイ」与する、いわゆるマルチテーパー鋳型
および方法(特開昭53−125932号公報)等が提
案されている。しかしこのような鋳型壁の直線的1段ま
たは2段以上、かつ固定的に堅持された傾斜(テーパー
)付与のみでは鋳造速度、温度、鋼種等様々の要因によ
り変動する複雑な凝固収縮量に順応して凝固シェルと鋳
型内壁面とを適当な接触面圧を保ちなから当接させるこ
とは極めて困雛て、鋳型壁面下部で空隙を生じたり、逆
に凝固シェルとの断続的接触による鋳型壁の甚だしい摩
耗を生起しやすく、メツキ層の剥離の問題も多い。また
、■相対する2対の鋳型壁のうちの何れか一方もしくは
両方の鋳型壁を上下方向に2段以上分割形成するととも
に、最上段壁を除く下段壁をそれぞれ移動装置に連結し
、鋳型内方を指向して移動自在に設けた鋳型(特開昭5
6−95451号公報)も提案されている。この鋳型は
鋳片との間に適当な面圧を有する下部内面板が鋳片の収
縮量に順応して前後方向に摺動する事によって鋳片との
間の空隙発生を減少し、さらに鋳片との異常接触による
下部内壁板表面の異常摩耗を防止するように工夫したも
のである。しかし通常どおり鋳型固溶鋼表面に潤滑剤と
してモールドパウダー(CaO−3iO□CaFz−N
a20を主成分とする基材粉と炭素粉の混合物)を添加
する場合、下段鋳型壁と鋳片との隙間に自然にうまく流
入されないため、下段鋳型の冷却効果の向上、また同時
に潤滑効果の向上も小さい。したがって下部鋳型壁の摩
耗もあまり改善されない。
As a mold (equipment) and method to prevent the generation of voids between the mold wall and the solidified shell, - A mold and method that firmly holds the mold, (1) A so-called multi-taper mold and method that provides at least two continuous taper steps in the casting direction on the inner wall of the mold (Japanese Patent Application Laid-open No. 125932/1983), etc. is proposed. However, with only one or two or more straight steps of the mold wall and a fixed slope (taper), it is difficult to adapt to the complex amount of solidification shrinkage that varies depending on various factors such as casting speed, temperature, steel type, etc. It is extremely difficult to bring the solidified shell into contact with the inner wall of the mold while maintaining an appropriate contact surface pressure. It is easy to cause severe wear, and there are many problems with peeling of the plating layer. In addition, one or both of the two opposing mold walls are divided into two or more stages in the vertical direction, and each of the lower walls except the uppermost wall is connected to a moving device so that the inside of the mold can be moved. A mold that is movable in the direction of
6-95451) has also been proposed. In this mold, the lower inner plate, which has an appropriate surface pressure between the slab and the slab, slides back and forth in accordance with the amount of shrinkage of the slab, thereby reducing the generation of gaps between the slab and the slab. This is designed to prevent abnormal wear on the surface of the lower inner wall plate due to abnormal contact with the pieces. However, as usual, mold powder (CaO-3iO□CaFz-N) is used as a lubricant on the surface of the mold solid solution steel.
When adding a mixture of base material powder and carbon powder mainly composed of A20, it does not naturally flow into the gap between the lower mold wall and the slab, so it improves the cooling effect of the lower mold and at the same time improves the lubrication effect. The improvement is also small. Therefore, the wear of the lower mold wall is not significantly improved.

一方、この鋳型壁と凝固シェルの空隙に伝熱媒体を充填
し、空隙部分の冷却を強化する方法として、■伝熱媒体
として黒鉛、塩化カリウム、塩化カルシウム、塩化ナト
リウム、はう酸等をパウダー状あるいはそれらに菜種油
などを加えてペースト状にして空隙に供給する方法(特
開昭55−92256号公報)、さらに■前記黒鉛微粒
子の混合液を粘度、熱伝導度の観点から改良を加えた、
例えば植物油(菜種油など)に1000メツシユ以下の
黒鉛微粒子を15〜25体積%添加した混合液を空隙に
供給する方法(特開昭57−154351号公報)も別
途提案されている。しかし、これらの伝熱媒体供給法は
、流動性が悪いため刻々形状が変化する空隙の細部まで
行きわたらす、十分な伝熱媒体効果が上がらないという
問題がある。
On the other hand, as a method of filling the void between the mold wall and the solidified shell with a heat transfer medium to strengthen the cooling of the void, the method is as follows: ■ Powder of graphite, potassium chloride, calcium chloride, sodium chloride, ferrous acid, etc. or by adding rapeseed oil or the like to the paste and supplying it to the voids (Japanese Unexamined Patent Publication No. 55-92256); ,
For example, a method (Japanese Unexamined Patent Publication No. 154351/1983) has been proposed in which a mixture of vegetable oil (rapeseed oil, etc.) to which 15 to 25% by volume of graphite particles of 1000 mesh or less is added is supplied to the voids. However, these heat transfer medium supply methods have a problem in that due to poor fluidity, a sufficient heat transfer medium effect cannot be achieved to reach the fine details of the gaps whose shape changes every moment.

そこで本出願人は前述の諸点に鑑みて鋳型広面側端部お
よび狭面側下部に形成される空隙による鋳型冷却能の低
下を防止し、凝固シェル形成を増進、均一化し、または
潤滑の改善により鋳型壁の甚しい摩耗防止を目的とし、
この目的を達成するために、「矩形断面を有する連続鋳
造組立鋳型において、相対する2対の鋳型壁のうちの何
れか一方もしくは両方の鋳型壁を鋳片鋳込方向に2段以
上に分割形成すると共に、最上流側鋳型壁を除く下流側
鋳型壁を複数の冷却水ガイド板で鋳片幅方向に分割構成
し、対を成す下流側鋳型壁を構成する前記夫々の冷却ガ
イド板を互いに接離移動可能に構成したことを特徴とす
る連続鋳造用鋳型」を平成1年特許願第36643号明
細書において第1に提案した。
Therefore, in view of the above-mentioned points, the present applicant has attempted to prevent the mold cooling ability from decreasing due to the voids formed at the end of the wide side of the mold and the lower part of the narrow side of the mold, to promote and make the solidified shell formation uniform, or to improve lubrication. The purpose is to prevent severe wear on the mold wall.
In order to achieve this objective, "in a continuous casting assembly mold with a rectangular cross section, one or both of the two opposing mold walls is divided into two or more stages in the slab casting direction. At the same time, the downstream mold wall excluding the most upstream mold wall is divided in the slab width direction by a plurality of cooling water guide plates, and the respective cooling guide plates constituting the pair of downstream mold walls are connected to each other. A "continuous casting mold characterized by being configured to be movable apart" was first proposed in Patent Application No. 36643 of 1999.

本出願人が第1に提案した連続鋳造用鋳型は先に述べた
目的を達成できる優れた発明であるが、その後の研究に
より最上流側鋳型の潤滑に係わる下記の問題が内在して
いることが判明した。
The continuous casting mold first proposed by the present applicant is an excellent invention that can achieve the above-mentioned purpose, but subsequent research has revealed that it has the following problems related to lubrication of the most upstream mold. There was found.

すなわち、鋳型潤滑剤として単に通常のモールド・パウ
ダーを使用した場合、その残滓が最上流側鋳型と下流側
鋳型との空間あるいは下流側鋳型間の空間に堆積するか
、または下流側鋳型の内壁に焼付くという問題が生ずる
。また鋳型潤滑剤としてオイルを使用した場合、更に別
の問題が生ずる。すなわち通常のオイル潤滑はオイル(
菜種油等)を鋳型上端から鋳型内壁に沿ってメニスカス
部に供給する方法であり、この場合メニスカス部でオイ
ルが燃焼し、燃焼時に生成される炭素が固体潤滑剤とし
て鋳型−鋳片間の潤滑作用を促す。
That is, if ordinary mold powder is simply used as a mold lubricant, its residue will accumulate in the space between the most upstream mold and the downstream mold, or in the space between the downstream molds, or on the inner wall of the downstream mold. The problem of burning occurs. Further problems arise when oil is used as a mold lubricant. In other words, normal oil lubrication is oil (
This is a method in which oil (rapeseed oil, etc.) is supplied from the upper end of the mold to the meniscus along the inner wall of the mold. In this case, the oil is burned in the meniscus, and the carbon produced during combustion acts as a solid lubricant and acts as a lubricant between the mold and the slab. encourage.

しかし広幅鋳片を高速鋳造する場合には、上記の通常の
オイル潤滑方法では鋳片幅方向の均一なオイル供給、す
なわち均一な潤滑が不可能となる。
However, when casting a wide slab at high speed, it is impossible to uniformly supply oil in the width direction of the slab, that is, to provide uniform lubrication using the above-mentioned normal oil lubrication method.

以上いずれの方法によっても問題が発生し、ブレークア
ウト等の操業トラブルが発生し易(なるという欠点が生
じてくる。
Problems occur with any of the above methods, and the drawback is that operational troubles such as breakouts are likely to occur.

そこで第2の提案として、本出願人が第1に提案した平
成1年特許願第36643号の多段方式鋳型を採用し、
それによって最上流側鋳型は鋳型鋳片間の強制潤滑、そ
の下流側鋳型は鋳片の強制直接冷却と言った特有の付加
機能を持たせ、それぞれの該機能を十分に発揮させると
共に、最上流側鋳型において使用した潤滑剤の残滓発生
とその鋳型各部への堆積・焼付きによる下流側鋳型の強
制直接冷却機能の低下、さらにそれによるブレークアウ
ト等の操業トラブルの防止を目的として、「矩形断面を
有する連続鋳造組立鋳型において、相対する2対の鋳型
壁のうち何れか一方もしくは両方の鋳型壁を鋳片鋳込方
向に2段以上に分割形成すると共に、最上流側鋳型内周
壁のメニスカス近傍の所定範囲内に複数のスリット穴を
設け、少なくともこれらスリン1へ穴に潤滑剤を供給す
る複数の潤滑剤供給通路を設けたことを特徴とする連続
鋳造用鋳型」を平成1年特許願第170641号明細書
及び図面において提案した。
Therefore, as a second proposal, we adopted the multistage mold of Patent Application No. 36643 of 1999, which was first proposed by the present applicant.
As a result, the most upstream mold has unique additional functions such as forced lubrication between the mold slabs, and the downstream mold has unique additional functions such as forced direct cooling of the slabs. In order to prevent the generation of lubricant residue used in the side mold, the accumulation and seizure of the lubricant on various parts of the mold, and the deterioration of the forced direct cooling function of the downstream mold, and the resulting operational troubles such as breakouts, In an assembly mold for continuous casting, one or both of the two pairs of opposing mold walls are divided into two or more stages in the slab casting direction, and the area near the meniscus of the inner peripheral wall of the mold on the most upstream side is divided into two or more stages in the slab casting direction. 1999 patent application No. It was proposed in the specification and drawings of No. 170641.

(発明が解決しようとする課題) 本出願人が第2に提案した連続鋳造用鋳型も先に述べた
目的を達成できる優れた発明であるが、その後のさらな
る研究により最上流側鋳型の潤滑に関してまだ改善工夫
の余地が残っていることが判明した。
(Problems to be Solved by the Invention) The second continuous casting mold proposed by the present applicant is an excellent invention that can achieve the above-mentioned purpose, but further research has revealed that the lubrication of the most upstream mold has been improved. It turns out that there is still room for improvement.

すなわち、上記の間接冷却方式の最上流側鋳型を用いて
鋳造を行う場合、溶鋼は最上流側鋳型壁内部に供給され
る冷却媒体(例えば水)により間接冷却を受け、鋳型壁
に接する部分から漸次凝固が進行し、凝固シェルの厚さ
が内部溶鋼の流体静力学的圧力に耐え得る程度まで成長
するに伴い凝固シェルは収縮し、鋳型壁と凝固シェル間
にやはり空隙が生じる。
In other words, when casting is performed using the most upstream mold of the indirect cooling method described above, molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the most upstream mold wall, and the molten steel is cooled from the part in contact with the mold wall. As the solidification progresses gradually and the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts and a void is also created between the mold wall and the solidified shell.

特に矩形断面を有する最上流鋳型においては、鋳型の広
面壁中央部に相対する鋳片凝固シェルは内部の溶鋼圧力
により外側に膨出し易く、鋳型壁面と凝固シェルの空隙
は比較的小ざいが、鋳型広面側端部および挟置側は空隙
が比較的大きく現れ易い傾向がある。
Particularly in the most upstream mold with a rectangular cross section, the solidified shell of the slab facing the center of the broad wall of the mold tends to bulge outward due to the internal molten steel pressure, and the gap between the mold wall and the solidified shell is relatively small; There is a tendency for relatively large voids to appear at the end of the wide side of the mold and on the sandwiching side.

このような空隙寸法が異なる状況下において、最上流鋳
型壁から潤滑剤を強制的に供給しようとしても、空隙が
比較的大きいところの鋳型広面側端部および挟置側に優
先的に供給されるため均一供給、結果的に均一な潤滑が
不可能になる。この傾向は高速鋳造にずればするほど顕
著になるため、第2に提案した発明においても高速鋳造
下でのブレークアウト等の操業トラブルが発生し易くな
るという欠点が生じていた。
In such situations where the gap sizes are different, even if you try to forcefully supply lubricant from the most upstream mold wall, it will be preferentially supplied to the wide end of the mold and the sandwiching side where the gap is relatively large. This makes uniform supply and, as a result, uniform lubrication impossible. Since this tendency becomes more pronounced as the casting speed increases, the second proposed invention also has the disadvantage that operational troubles such as breakouts are more likely to occur during high-speed casting.

本発明は以上の諸点に鑑みてなされたもので、本出願人
が第2に提案した多段方式鋳型を採用し、それによって
最上流側鋳型は鋳型−鋳片間の均一強制潤滑、その下流
側鋳型は鋳片の強制直接冷却といった特有の付加機能を
持たせ、それぞれの該機能を十分に発揮させると共に、
最上流側鋳型において使用した潤滑剤の残滓発生とその
鋳型各部0 への堆積・焼付きによる下流側鋳型の強制直接冷却機能
の低下、さらにそれによるブレークアウト等の操業トラ
ブルの防止を目的として提案されたものである。
The present invention has been made in view of the above points, and employs the multi-stage mold proposed secondly by the applicant, whereby the most upstream mold provides uniform forced lubrication between the mold and the slab, and the downstream side thereof The mold has unique additional functions such as forced direct cooling of the slab, and in addition to fully demonstrating each function,
Proposed with the aim of preventing the generation of residual lubricant used in the most upstream mold, the accumulation and seizure of the lubricant on various parts of the mold, which reduces the forced direct cooling function of the downstream mold, and the resulting operational troubles such as breakouts. It is what was done.

(課題を解決するだめの手段) 上記目的を達成するために、本発明に係る第1の連続鋳
造用鋳型は、矩形断面を有する連続鋳造組立鋳型におい
て、相対する2対の鋳型壁のうちの何れか一方もしくは
両方の鋳型壁を鋳片鋳込方向に2段以上に分割形成する
と共に、最上流側鋳型壁の相対する2対の鋳型壁のうぢ
の何れか一方もしくは両方の鋳型壁面に所要の彎曲面を
形成すべく強制的に変形させる鋳型壁面形状制御装置を
設けたこととしているのである。
(Means for Solving the Problem) In order to achieve the above object, a first continuous casting mold according to the present invention is provided with a continuous casting mold having a rectangular cross section. One or both mold walls are divided into two or more stages in the slab casting direction, and one or both mold wall surfaces of the two opposing mold walls of the most upstream mold wall are formed. A mold wall shape control device is provided for forcibly deforming the mold wall to form a required curved surface.

また、本発明に係る第2の連続鋳造用鋳型は、前記第1
の連続鋳造用鋳型の最上流側鋳型の内周壁の所定位置に
、複数のスリット穴を設けると共に、鋳型壁内部に少な
くともこれらスリット穴に潤滑剤を供給する複数の潤滑
剤供給通路を設け、さらにこれら潤滑剤供給通路に流量
調節用棒材を内装したこととしているのである。
In addition, the second continuous casting mold according to the present invention includes the first continuous casting mold.
A plurality of slit holes are provided at predetermined positions on the inner peripheral wall of the most upstream mold of the continuous casting mold, and a plurality of lubricant supply passages are provided inside the mold wall for supplying lubricant to at least these slit holes, and These lubricant supply passages are equipped with rods for flow rate adjustment.

更に、本発明に係る第3の連続鋳造用鋳型は、前記第1
又は第2の連続鋳造用鋳型の最上流側鋳型を除く下流側
鋳型壁を、複数の冷却水ガイド板で鋳片幅方向に分割構
成し、対を成す下流側鋳型壁を構成する前記夫々の冷却
水ガイド板を鋳片に対して互いに接離移動可能および傾
斜可能に構成したこととしているのである。
Furthermore, a third continuous casting mold according to the present invention is provided with the first continuous casting mold.
Alternatively, the downstream mold wall of the second continuous casting mold, excluding the most upstream mold, is divided in the slab width direction by a plurality of cooling water guide plates, and each of the above-mentioned downstream mold walls forming a pair of downstream mold walls is constructed. The cooling water guide plates are configured to be movable toward and away from the slab and to be tiltable.

(作  用) 本発明において、最上流側鋳型に鋳型−鋳片間の均一強
制潤滑、また最上流側鋳型を除く下流側鋳型に鋳片の強
制直接冷却と言った特有の付加機能を分担させたのは、
下記の理由による。
(Function) In the present invention, the most upstream mold has the unique additional functions of uniform forced lubrication between the mold and the slab, and the downstream molds other than the most upstream mold have the unique additional functions of forced direct cooling of the slab. It was,
Due to the following reasons.

(1)最上流側鋳型に関して、オイルまたはオイルと黒
鉛粒の混合液を潤滑剤とし、それを鋳型鋳片間に強制注
入したのは、下記の理由による。
(1) Regarding the most upstream mold, oil or a mixture of oil and graphite particles was used as a lubricant and it was forcibly injected between the mold slabs for the following reason.

すなわち、通常のモールドパウダーによる潤滑の際はそ
の残滓が発生し、その残滓の鋳型各部への堆積・焼付き
により、下流側鋳型の強制直接冷却機能の不均一や低下
を引き起こすため、残滓が固体潤滑剤としての機能を持
つ炭素であるところのオイルまたはオイルと黒鉛粒の混
合液を潤滑剤として使用することが望ましい。
In other words, when lubricating with normal mold powder, residue is generated, and the residue accumulates and seizes on various parts of the mold, causing unevenness and deterioration of the forced direct cooling function of the downstream mold. It is preferable to use oil, which is carbon with a lubricant function, or a mixture of oil and graphite particles as the lubricant.

従って、最上流側鋳型内周壁のメニスカス近傍の所定の
範囲内に、複数のスリット穴を設置し、これらスリット
穴に潤滑剤を低流量安定供給するため、潤滑剤供給通路
を複数個設けただけの前記第2の提案の方法(平成1年
特許願第170641号)では広幅鋳片の幅方向均一潤
滑および幅方向と厚み方向との均一潤滑は困難で、特に
高速鋳造下では不可能に近いため、本発明では、第2の
提案に加えて、最上流側鋳型の相対する2対の鋳型壁の
うちの何れか一方もしくは両方の鋳型壁面を強制変形さ
せ、所要の彎曲面を形成させる鋳型壁面形状制御装置を
設けた。
Therefore, in order to stably supply lubricant at a low flow rate to these slit holes by installing multiple slit holes within a predetermined range near the meniscus of the inner peripheral wall of the mold on the most upstream side, multiple lubricant supply passages were provided. In the second proposed method (1999 Patent Application No. 170641), uniform lubrication in the width direction and uniform lubrication in the width direction and thickness direction of a wide slab is difficult, and it is nearly impossible, especially under high-speed casting. Therefore, in addition to the second proposal, the present invention provides a mold that forcibly deforms the mold wall surface of one or both of the two opposing mold walls of the most upstream mold to form a required curved surface. A wall shape control device was installed.

この最上流側鋳型壁面の強制変形は少なくとも、■鋼種
による凝固収縮量、■鋳造速度に応した抜熱量変化で生
じる凝固収縮量、■鋳型冷却条件に応じた凝固収縮量、
を考慮して、鋳型3 広面壁、挟置壁を彎曲面として制御するものであり、こ
の強制変形により凝固シェルと最上流側鋳型内壁面との
空隙に関して、−1−下左右のどの位置においてもほぼ
同一にさせることが可能となる。その壁面形状は凝固シ
ェルの収縮変形状況と対応させるため、鋳型広面壁では
幅方向外側に凸な彎曲面を、また鋳型挟間壁では鋳造方
向内側に凸な彎曲面を形成させるのが一般的である。な
お、鋳型壁の各位置における前記空隙生成状況は、鋳型
内壁を構成する銅板または銅合金板の内部または背部に
取り付りた熱雷対による温度検知または潤滑剤供給タン
クに取り付けた圧力計による圧力検知で間接的に把握で
き、それによって鋳型広面壁、挟置壁をその内側に夫々
取り付けたところのハックアップ・フレーム背面に少な
くとも1箇所設けた前後駆動装置を作動させ、当該鋳型
壁の彎曲度を鋳造中随時変更すれば、より効果的に均一
潤滑が可能となる。
This forced deformation of the mold wall on the most upstream side is caused by at least: (1) the amount of solidification shrinkage depending on the steel type; (2) the amount of solidification shrinkage caused by changes in the amount of heat removed depending on the casting speed; (2) the amount of solidification shrinkage depending on the mold cooling conditions;
In consideration of the above, the mold 3 wide wall and sandwiching wall are controlled as curved surfaces, and this forced deformation causes the gap between the solidified shell and the inner wall surface of the mold on the most upstream side to be It is also possible to make them almost the same. In order to match the shape of the wall surface with the state of shrinkage and deformation of the solidified shell, it is common to form a curved surface that is convex outward in the width direction on the wide wall of the mold, and a curved surface that is convex inward in the casting direction on the wall between the molds. be. The above-mentioned void formation status at each position on the mold wall can be determined by temperature detection using a thermocouple attached to the inside or back of the copper plate or copper alloy plate constituting the inner wall of the mold, or by a pressure gauge attached to the lubricant supply tank. This can be indirectly detected by pressure detection, and the curvature of the mold wall is thereby actuated by a front-rear drive device installed at least in one place on the back of the hack-up frame where the mold wide wall and clamping wall are respectively installed on the inside. By changing the degree at any time during casting, more effective and uniform lubrication can be achieved.

さらに本発明においては、最上流側鋳型に関4 し第2の本発明を提案した。これもより効果的に均一潤
滑を可能とすることを狙ったものである。すなわち本発
明では最上流側鋳型内周壁のほぼ全域にわたる所定の範
囲内に、複数のスリット穴を設けると共に、鋳型壁内部
に少なくともこれらスリット穴に潤滑剤を供給する通路
を設け、さらにその供給通路に流量調節用棒祠を内装し
た。これは最上流側鋳型のさらなる均一潤滑の円滑な発
揮を狙ったのである。
Furthermore, in the present invention, a second invention has been proposed regarding the most upstream mold. This also aims to enable more effective uniform lubrication. That is, in the present invention, a plurality of slit holes are provided within a predetermined range covering almost the entire area of the inner circumferential wall of the mold on the most upstream side, and a passage for supplying lubricant to at least these slit holes is provided inside the mold wall. A rod shrine for flow rate adjustment was installed inside. This was aimed at achieving even smoother lubrication of the mold on the most upstream side.

(2)下流側鋳型に関して、複数の冷却水ガイド板を用
いて下流側鋳型を鋳片幅方向に分割構成したのは、■凝
固シェルが広幅面中央のみ膨らんでいるため、分割構成
することによって中央部と、端部の隙間を一定にするた
め、■広幅の冷却水ガイド板を使用した場合、熱変形に
よる歪が太き(、隙間の一様化が不可能なため、である
(2) Regarding the downstream mold, the reason why the downstream mold is divided in the slab width direction using multiple cooling water guide plates is because the solidified shell bulges only in the center of the wide side. In order to keep the gap between the center and the edges constant, ■ If a wide cooling water guide plate is used, the distortion due to thermal deformation will be large (because it is impossible to make the gap uniform).

さらに、■複数の冷却水ガイド板を用いたため、たとえ
最上流側鋳型においてオイル燃焼時の残滓である炭素が
多量に発生しても、高速水膜を利用しているので、冷却
水ガイド板間の間隙等へ容易に流出させることが可能な
ため、でもある。
In addition, ■ Since multiple cooling water guide plates are used, even if a large amount of carbon, which is a residue from oil combustion, is generated in the most upstream mold, a high-speed water film is used, so the gap between the cooling water guide plates is This is also because it can easily flow out into gaps, etc.

上記した構成の本発明によれば、最上流側鋳型において
、その残滓が固体潤滑機能を持つオイルまたはオイルと
黒鉛粒の混合液の均一強制供給を可能にしたため、最上
流側鋳型の均一潤滑機能を飛躍的に増すとともに、下流
側鋳型の高速水膜による鋳片の強制直接冷却機能を円滑
に発揮させるはか(残滓の鋳型各部への堆積、焼付きが
ないため、水膜流の流れが乱されないため)、潤滑剤の
残滓の鋳型各部への堆積、焼付き等によるブレークアラ
1〜等の操業トラブルを極端に減少することが可能とな
る。
According to the present invention having the above-described structure, it is possible to uniformly force supply oil whose residue has a solid lubrication function or a mixed liquid of oil and graphite particles to the most upstream mold, so that the most upstream mold has a uniform lubrication function. At the same time, it is possible to smoothly perform the forced direct cooling function of the slab by the high-speed water film of the downstream mold. Therefore, it is possible to extremely reduce operational troubles such as breakage due to lubricant residue deposits on various parts of the mold, seizure, etc.

(実 施 例) 以下本発明を添付図面に基づいて更に具体的に説明する
(Example) The present invention will be described in more detail below based on the accompanying drawings.

第1図は本発明の一実施例を示したものであり、連続鋳
造用鋳型を上流側鋳型1と下流側鋳型2の分割にした場
合の組込み構造を示す。
FIG. 1 shows an embodiment of the present invention, and shows an assembly structure in which a continuous casting mold is divided into an upstream mold 1 and a downstream mold 2.

ところで、上流側鋳型1は、通常テーパーを付与された
鋳型壁、または相対する2対の平行鋳型壁を有するので
はなく、鋳造中に鋳片凝固シェルと鋳型壁間の空隙寸法
をより均一にすることを可能にするために、相対する2
対の鋳型壁を強制変形させ、所要の彎曲面を形成させる
ような機能を有しており、当該鋳型壁と鋳片3間におけ
る特にメニスカス4近傍の潤滑に機能する鋳型である。
Incidentally, the upstream mold 1 does not normally have a tapered mold wall or two pairs of opposing parallel mold walls, but has a structure that makes the gap size between the slab solidified shell and the mold wall more uniform during casting. In order to be able to
This mold has a function of forcibly deforming the paired mold walls to form a required curved surface, and functions to lubricate the area between the mold wall and the slab 3, especially in the vicinity of the meniscus 4.

第2図を用いて、上流側鋳型1を構成する挟部壁の強制
変形装置について説明する。
A device for forcibly deforming the sandwich wall constituting the upstream mold 1 will be described with reference to FIG.

挟置側鋳型銅板5はバックアップ・フレーム6によって
支持されており、このバックアップ・フレーム6は、上
端、中心、下端の3箇所が荷重点となっていて、それぞ
れにおいてウオームジヤツキ7、油圧シリンダ8、およ
び固定ポルト9が取付けられている。油圧シリンダ8は
、鋳込中にあっては、温度検知、圧力検知した値からそ
の駆動量が予め求めた実験式により制御される。
The clamping side mold copper plate 5 is supported by a backup frame 6, and this backup frame 6 has three load points: the upper end, the center, and the lower end, and a worm jack 7, a hydraulic cylinder 8, and a A fixed port 9 is attached. During casting, the hydraulic cylinder 8 is controlled by an experimental formula whose driving amount is determined in advance from the detected temperature and pressure values.

次に、上記強制変形装置による彎曲面形成機構を説明す
る。
Next, a curved surface forming mechanism using the above-mentioned forced deformation device will be explained.

7 上流側鋳型の挟置側銅板5とバンクアップ・フレー6に
よって構成された挟部側鋳型に、通常のテーパ量変更用
ウオームジヤツキ7を取り付け、鋳込初期のイニシャル
テーパー量はこのウオームジヤツキ7によって設定され
る。
7 A normal worm jack 7 for changing the taper amount is attached to the nip side mold which is composed of the nip side copper plate 5 and the bank-up fly 6 of the upstream mold, and the initial taper amount at the initial stage of casting is set by this worm jack 7. be done.

なお第2図に示す連続鋳造用上流側鋳型1は、鋳込幅が
固定されているため、挟部壁下部支持点部は固定ポルト
9と球面座10によって支持されている。したがって、
鋳込中幅替を実施する場合は、固定ポルト9に代えてウ
オームジヤツキ7を取付けることによって可能である。
Since the upstream mold 1 for continuous casting shown in FIG. 2 has a fixed casting width, the lower support point of the sandwich wall is supported by the fixed port 9 and the spherical seat 10. therefore,
When changing the width during casting, it can be done by attaching a worm jack 7 in place of the fixed port 9.

次に、鋳込みが開始してからは、凝固シェルの収縮プロ
フィールに対応させて、均一厚みの空隙を生成させるべ
く、油圧シリンダ8のロッドを出動作させて鋳型挟面支
持ハックアップ・フレーム6に荷重を加え、挟部壁を鋳
造方向内側に凸な彎曲面に強制変形させるわけである。
Next, after the casting starts, the rod of the hydraulic cylinder 8 is moved out to create a gap of uniform thickness in accordance with the contraction profile of the solidified shell, and the rod of the hydraulic cylinder 8 is moved to the hack-up frame 6 that supports the mold sandwich surface. By applying a load, the sandwich wall is forcibly deformed into a curved surface that is convex inward in the casting direction.

なお広面側鋳型壁の強制変形装置についても、その方法
は、はぼ同様であるため省略する。
Note that the method for the device for forcibly deforming the mold wall on the wide side mold wall is also omitted because it is almost the same.

さらに当該上流側鋳型1は、第3図に示すよう8 に、その内周壁面の例えば、メニスカス4の上方を除く
、はぼ内面全域内に複数のスリット穴11を設し」、こ
れらスリット穴11に潤滑剤供給通路12を設け、さら
にその潤滑剤供給通路12に背面側から流量調節用棒材
13を挿入し、当該スリット穴11から潤滑材を均一に
強制的に供給できるように構成されている。
Furthermore, as shown in FIG. 3, the upstream mold 1 is provided with a plurality of slit holes 11 in its inner circumferential wall surface, for example, within the entire inner surface area excluding the upper part of the meniscus 4. A lubricant supply passage 12 is provided in the lubricant supply passage 11, and a flow rate adjustment rod 13 is inserted into the lubricant supply passage 12 from the back side, so that the lubricant can be uniformly and forcibly supplied from the slit hole 11. ing.

ところで、前記スリット穴11のサイズ、設置ピンチ等
は特に限定されるものではないが、鋳型内壁全周に関し
て均一に潤滑剤の消費を確保して、潤滑を十分に行わせ
るためには、例えばスリット穴11のサイズは1 mm
φ、幅方向のピッチは20mm、鋳造方向のピッチは1
0mm程度で、メニスカス4下方の鋳片3と鋳型内壁と
が相対する範囲内に設けるのが望ましい。
By the way, the size of the slit hole 11, the installation pinch, etc. are not particularly limited, but in order to ensure uniform lubricant consumption and sufficient lubrication around the entire circumference of the inner wall of the mold, for example, the slit hole 11 should be The size of hole 11 is 1 mm
φ, pitch in width direction is 20mm, pitch in casting direction is 1
It is desirable to provide the thickness of about 0 mm within the range where the slab 3 below the meniscus 4 and the inner wall of the mold face each other.

また、当該上流側鋳型1のスリット穴11から鋳型と鋳
片間の間隙に圧入される潤滑剤の供給圧力としては、静
鉄圧に相当する圧力で供給すれば、特に鋳造初期におけ
る溶鋼14の差し込みを防止できる。
Furthermore, if the supply pressure of the lubricant that is press-fitted into the gap between the mold and the slab from the slit hole 11 of the upstream mold 1 is equivalent to the static iron pressure, it is possible to Can prevent insertion.

■ 更に、メニスカス4は場面変動(数mm程度)によって
上下することから、」1記スリット穴110)設置位置
は、メニスカス(平均位置)の直下5mm以下から最上
流側鋳型下端までを最小範囲として潤滑剤を供給すれば
、より確実に均一潤滑が可能となる。なお、メニスカス
近傍には従来方式のオイルプレートにより、上方から鋳
型壁面に沿って、供給するごとも併用可能である。
■Furthermore, since the meniscus 4 moves up and down depending on the situation (on the order of several mm), the minimum range for the installation position of the slit hole 110 in item 1 is from 5 mm or less directly below the meniscus (average position) to the bottom end of the mold on the most upstream side. By supplying lubricant, uniform lubrication can be achieved more reliably. It is also possible to use a conventional oil plate near the meniscus to supply oil from above along the mold wall surface.

さらに、第3図に示したように」1流側鋳型1のスリッ
ト穴11に潤滑剤を供給する手段としては、前記所定位
置に設けた複数のスリット穴11に連通ずる潤滑剤供給
タンク15を上流側鋳型内またはその背後に設け、均圧
化することにより、潤滑剤供給通路12を介して、スリ
ット穴11から均等に潤滑剤を排出させるこ七が可能と
なる。
Furthermore, as shown in FIG. 3, as means for supplying lubricant to the slit holes 11 of the first-stream mold 1, a lubricant supply tank 15 is provided which communicates with the plurality of slit holes 11 provided at the predetermined positions. By providing the lubricant in or behind the upstream mold and equalizing the pressure, it becomes possible to uniformly discharge the lubricant from the slit hole 11 via the lubricant supply passage 12.

この時、この潤滑剤供給タンク14の圧力を検知し、か
つ、広面側と挟部側の鋳型銅板16.5の背面の温度を
検知することにより、間接的に潤滑不良部を知り、その
潤滑不良部に他の部位に比べて積極的に潤滑剤を排出さ
せること4)可能と0 なる。この一方法として、潤滑剤供給通路12に流量調
節用棒材13を内装し、それを各スリット穴毎に独立に
前後動させる方法を用いた。
At this time, by detecting the pressure of this lubricant supply tank 14 and the temperature on the back side of the mold copper plate 16.5 on the wide side and the sandwich side, the lubrication failure area can be indirectly known and the lubrication 4) It becomes possible to discharge lubricant more actively to the defective part than to other parts. As one method for this, a method was used in which a flow rate adjusting rod 13 was installed inside the lubricant supply passage 12 and the rod 13 was moved back and forth independently for each slit hole.

なお、本発明に係わる潤滑剤としては、残滓による鋳型
各部への焼付き、堆積が少ないオイル(菜種油、エステ
ルなど)、またオイルと黒鉛粒の混合液が適当である。
Suitable lubricants for the present invention include oils (rapeseed oil, esters, etc.) that are less likely to cause residues to seize and accumulate on various parts of the mold, and mixtures of oil and graphite particles.

一方、下流側鋳型2ば例えば第4図(イ)に示す短冊状
、または同図(ロ)に示す亀甲状に類する形状の複数の
冷却水ガイド板17より構成され、それぞれは例えばシ
リンダ18等の移動装置にリンク19を介して連結され
、対を成す鋳型壁面が接離移動できるように成されてい
る。なお、第1図中20はスプリングを示す。
On the other hand, the downstream mold 2 is composed of a plurality of cooling water guide plates 17 each having a rectangular shape as shown in FIG. 4(A) or a tortoiseshell shape as shown in FIG. It is connected to a moving device via a link 19 so that the pair of mold wall surfaces can move toward and away from each other. Note that 20 in FIG. 1 indicates a spring.

第4図は下流側鋳型2壁を構成する冷却水ガイド板17
の概略を示すものであり、当該冷却水ガイド板17には
給水口21列と排水口22列を交互に設は当該給水部と
排水部とに設けられた圧力検知器23により圧力を検出
し、この検出値に応してシリンダ18により各冷却水ガ
イド板17を1 移動できるようにしている。
Figure 4 shows the cooling water guide plate 17 that constitutes the downstream mold 2 wall.
The cooling water guide plate 17 is provided with 21 rows of water supply ports and 22 rows of drain ports alternately, and the pressure is detected by pressure detectors 23 provided in the water supply section and the drainage section. , each cooling water guide plate 17 can be moved by one position by the cylinder 18 in accordance with this detected value.

なお、上流側鋳型1の方向への下流側鋳型からの冷却水
吹き上げ防止とそれQこよるブレークアウト等の操業I
・ラブルを防止するため、冷却水ガイド板17の最上段
の列は排水口22列とした方が望ましい。
In addition, operation I to prevent cooling water from blowing up from the downstream mold in the direction of the upstream mold 1 and to prevent breakouts caused by it.
- To prevent trouble, it is preferable that the top row of the cooling water guide plate 17 has 22 rows of drain ports.

また給水口21および排水口22の少なくともどぢらか
一方を第4図(イ)に示すようにスリット状長孔とする
ことによって、鋳片3と冷却水ガイド板17間に形成さ
れた水膜内の冷却水の均一な流れを実現できる。
Furthermore, by forming at least one of the water supply port 21 and the drain port 22 into a slit-like elongated hole as shown in FIG. Uniform flow of cooling water within the membrane can be achieved.

なお第3図中、24はOリング、25は銅板冷却水通路
、26は銅板冷却水タンクを示す。
In FIG. 3, 24 is an O-ring, 25 is a copper plate cooling water passage, and 26 is a copper plate cooling water tank.

次に本発明の効果を確認するために行った実験の結果に
ついて説明する。
Next, the results of experiments conducted to confirm the effects of the present invention will be explained.

1ヒート50トンの低炭素アルミキルド鋼を4〜10m
/minなる鋳造条件で、第1図に示す2段式連続鋳造
鋳型を備えた連続鋳造機により、厚さ1105n+、幅
1050mmの鋳片を製造した。
4 to 10 m of low carbon aluminum killed steel weighing 50 tons per heat
A slab having a thickness of 1105n+ and a width of 1050mm was manufactured using a continuous casting machine equipped with a two-stage continuous casting mold shown in FIG. 1 under casting conditions of /min.

この際使用した上流側鋳型の長さは550 mm (メ
2 ニスカスよりT側の長さ450mm)て広匍壁、挟置j
(〆の強制変形装置付きてあり、下流側鋳型には第4図
(イ)Q、=示ず短冊状カイF板(幅:]000mmJ
(シさ:550mm)を22個取り付illた。
The length of the upstream mold used at this time was 550 mm (length 450 mm on the T side from the 2nd niscus), with a wide wall and a sandwiched wall.
(It is equipped with a forced deformation device at the end, and the downstream mold has a rectangular chi F plate (width: ]000mmJ).
(Width: 550mm) 22 pieces were installed.

なお、上流側鋳型のスリンi・穴の詳細を以下4.Z示
ず。
The details of the sulin i and holes in the upstream mold are shown in 4. below. Z not shown.

〔」−流側鋳型のスリ・)t・穴の詳細]スリン1−穴
の設置位iv:メニスカス下5 mmから下端まで全域 スリット穴ザイス:1mmφ 幅力向20mmピンチ、鋳込み 向10+++mピッチ しかして鋳造中、スリット穴から鋳型内周壁の単位長さ
(1cm)あたり1 、5c、c/m i nの菜種油
を供給して鋳造した。
[Details of slits,) T, and holes in the downstream mold] Surin 1 - Hole installation position iv: Full area slit hole size from 5 mm below the meniscus to the bottom edge: 1 mm φ Width 20 mm pinch in the force direction, 10 +++ m pitch in the casting direction During casting, rapeseed oil was supplied through the slit holes at a rate of 1.5 c/min per unit length (1 cm) of the inner circumferential wall of the mold.

次に冷却水ガイド板の給水口及び排水[1の詳細を以下
に示す。
Next, details of the water supply port and drainage [1] of the cooling water guide plate are shown below.

(冷却水ガイド板の給水r]、排水口の詳細)給水1−
1=高さ1..5mmx幅12mm排水「」:高さ2.
2mmx幅1.2 mm3 給水[−1および排水「1の相−tl−間隔:それぞれ
2mm給水[−1列と琲水口列との間隔+50mmしか
して鋳造中、水膜の平均水11り厚yTを0.5mmに
維持し、冷却水の流速をlO〜]、5m/secの範囲
にして鋳造した。
(Water supply r of cooling water guide plate], details of drain port) Water supply 1-
1=height 1. .. 5mm x width 12mm drainage "": height 2.
2 mm x Width 1.2 mm3 Water supply [-1 and drainage "1 phase - tl- spacing: 2 mm each Water supply [-1 spacing between the row of water holes and the water outlet row + 50 mm During casting, the average water thickness of the water film 11 thickness yT was maintained at 0.5 mm, and the cooling water flow rate was set in the range of 10 to 5 m/sec.

第5図に操業I・ラフルの一指標としてブレークアウト
の発生状況を示す。高速鋳造になる程、強制変形装置を
付けた本発明鋳型と従来鋳型との差は顕著になり、鋳造
速度が4 m/min以−h c、二なると、ブレーク
アウト発生率は従来方法の1/40以下に減少し7た。
Figure 5 shows the occurrence of breakouts as an indicator of operation I/Rahul. The difference between the mold of the present invention equipped with a forced deformation device and the conventional mold becomes more pronounced as the casting speed becomes higher.When the casting speed is 4 m/min or more, the breakout incidence rate is 1 of that of the conventional method. /40 or less to 7.

(発明の効果) 以上説明したように本発明によれば、I−流側鋳型での
均一・潤滑性の改善、下流側鋳型での鋳片強冷却化が図
られ、その結果、これらの相乗効果によって4 m/m
in以上の高速鋳造が安定して可能になる。
(Effects of the Invention) As explained above, according to the present invention, the uniformity and lubricity in the I-flow side mold are improved, and the slab is strongly cooled in the downstream mold, and as a result, these synergistic effects are achieved. 4 m/m depending on the effect
Stable high-speed casting of in or more is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋳型の一実施例を断面して示す正面図、
第2図は上流側鋳型の挟面側鋳型強制変4 形装置の説明図、第3図は上流側鋳型に設+、Jたスリ
ット穴の位置を示す図面で、(イ)は要部平面図、(L
−1)は要部正面図、(ハ)は要部側面Iり1、第4図
は冷却水ガイド板の説明図で、(イ)は第1実施例を示
す要部正面図、(ロ)は第2実施例を示す要部正面図、
(ハ)は断面して示す側面図、第5図は実験結果図であ
る。 1は上流側鋳型、2は下df側鋳型、7はウオームジヤ
ツキ、8は油圧シリンダ、9は固定ホルト、10は球面
座、11はスリット穴、12は潤滑剤供給通路、13ば
流量調節用棒月、17は冷却水ガイド板、18はシリン
ダ、19はリンク、20はスプリング。 5 第3図 第 図
FIG. 1 is a front view showing a cross section of an embodiment of the mold of the present invention;
Figure 2 is an explanatory diagram of the mold forced deformation device on the side surface of the upstream mold, Figure 3 is a drawing showing the positions of the slit holes installed in the upstream mold, and (a) is a plane view of the main part. Figure, (L
-1) is a front view of the main part, (C) is a side view of the main part, Figure 4 is an explanatory diagram of the cooling water guide plate, (A) is a front view of the main part showing the first embodiment, and (B) is a front view of the main part. ) is a front view of main parts showing the second embodiment,
(C) is a cross-sectional side view, and FIG. 5 is a diagram showing the experimental results. 1 is an upstream mold, 2 is a lower DF side mold, 7 is a worm jack, 8 is a hydraulic cylinder, 9 is a fixing bolt, 10 is a spherical seat, 11 is a slit hole, 12 is a lubricant supply passage, 13 is a flow rate adjustment rod 17 is a cooling water guide plate, 18 is a cylinder, 19 is a link, and 20 is a spring. 5 Figure 3 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)矩形断面を有する連続鋳造組立鋳型において、相
対する2対の鋳型壁のうちの何れか一方もしくは両方の
鋳型壁を鋳片鋳込方向に2段以上に分割形成すると共に
、最上流側鋳型壁の相対する2対の鋳型壁のうちの何れ
か一方もしくは両方の鋳型壁面に所要の彎曲面を形成す
べく強制的に変形させる鋳型壁面形状制御装置を設けた
ことを特徴とする連続鋳造用鋳型。
(1) In a continuous casting assembly mold having a rectangular cross section, one or both of the two opposing mold walls are divided into two or more stages in the slab casting direction, and the most upstream side Continuous casting characterized by being provided with a mold wall shape control device that forcibly deforms the mold wall surface of one or both of two pairs of opposing mold walls to form a required curved surface. mold for
(2)請求項1記載の連続鋳造用鋳型の最上流側鋳型の
内周壁の所定位置に、複数のスリット穴を設けると共に
、鋳型壁内部に少なくともこれらスリット穴に潤滑剤を
供給する複数の潤滑剤供給通路を設け、さらにこれら潤
滑剤供給通路に流量調節用棒材を内装したことを特徴と
する連続鋳造用鋳型。
(2) A plurality of slit holes are provided at predetermined positions on the inner circumferential wall of the most upstream mold of the continuous casting mold according to claim 1, and a plurality of lubrication holes are provided inside the mold wall for supplying lubricant to at least these slit holes. A mold for continuous casting, characterized in that lubricant supply passages are provided, and a flow rate adjusting rod is installed inside these lubricant supply passages.
(3)請求項1又は2記載の連続鋳造用鋳型の最上流側
鋳型を除く下流側鋳型壁を、複数の冷却水ガイド板で鋳
片幅方向に分割構成し、対を成す下流側鋳型壁を構成す
る前記夫々の冷却水ガイド板を鋳片に対して互いに接離
移動可能および傾斜可能に構成したことを特徴とする連
続鋳造用鋳型。
(3) The downstream side mold wall of the continuous casting mold according to claim 1 or 2, excluding the most upstream side mold, is divided in the slab width direction by a plurality of cooling water guide plates, and the downstream side mold walls form a pair. A mold for continuous casting, characterized in that each of the cooling water guide plates constituting the mold is configured to be movable toward and away from the slab and tiltable relative to the slab.
JP25132389A 1989-09-27 1989-09-27 Mold for continuous casting Pending JPH03114627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25132389A JPH03114627A (en) 1989-09-27 1989-09-27 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25132389A JPH03114627A (en) 1989-09-27 1989-09-27 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH03114627A true JPH03114627A (en) 1991-05-15

Family

ID=17221110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25132389A Pending JPH03114627A (en) 1989-09-27 1989-09-27 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH03114627A (en)

Similar Documents

Publication Publication Date Title
KR100357356B1 (en) Twin belt casting method and device
US5467810A (en) Continuous metal casting mold
CA2707123C (en) Twin-belt casting machine and method for continuous slab casting
US6315030B1 (en) High speed continuous casting device and relative method
JP2995519B2 (en) Light reduction of continuous cast strand
EP2411171B1 (en) Adjustable side dam for continuous casting apparatus
JPH03114627A (en) Mold for continuous casting
US4694888A (en) Electromagnetic levitation casting
JP3930761B2 (en) Tube type continuous casting mold
CA2771202A1 (en) Casting mold
EP2411172B1 (en) Continuous casting apparatus for casting strip of variable width
JPH0335850A (en) Mold for continuous casting
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JPH0366448A (en) Mold for continuous casting
JP2808633B2 (en) Continuous casting mold and control method thereof
JPH0335849A (en) Mold for continuous casting and lubricating method thereof
JPH038863B2 (en)
JPH08206786A (en) Mold for continuous casting
JPH0464775B2 (en)
KR20130137775A (en) Segment assembly of continuous casting apparatus
US3598174A (en) Continuous casting installations
JPH0259144A (en) Method for cooling mold for continuous casting
WO2023199280A1 (en) Mold for continuous casting of metal strands
JPH0246950A (en) Method for continuously casting strip
JPH03110043A (en) Vertical type continuous casting apparatus for metal