JPH02209445A - Graphite dispersed self-lubricating alloy - Google Patents

Graphite dispersed self-lubricating alloy

Info

Publication number
JPH02209445A
JPH02209445A JP2893089A JP2893089A JPH02209445A JP H02209445 A JPH02209445 A JP H02209445A JP 2893089 A JP2893089 A JP 2893089A JP 2893089 A JP2893089 A JP 2893089A JP H02209445 A JPH02209445 A JP H02209445A
Authority
JP
Japan
Prior art keywords
alloy
graphite
series
self
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2893089A
Other languages
Japanese (ja)
Other versions
JP2825834B2 (en
Inventor
Kanichi Tanaka
田中 完一
Kensuke Hidaka
日高 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2893089A priority Critical patent/JP2825834B2/en
Publication of JPH02209445A publication Critical patent/JPH02209445A/en
Application granted granted Critical
Publication of JP2825834B2 publication Critical patent/JP2825834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain the self-lubricating alloy by incorporating specified amounts of B, Si, etc., into high carbon alloy of Co-Fe series, Ni-Fe series or Co-Ni-Fe series and uniformly and dispersedly crystallizing out C as graphite of a solid lubricant. CONSTITUTION:By weight, 1.0 to 5.0% C, 0.1 to 4.5% B and 0.1 to 9.0% Si or furthermore one or both of 1.0 to 15.0% Cr and 1.0 to 5.0% Cu are incorporated into Co-Fe series alloy, Ni-Fe series alloy or Co-Ni-Fe series alloy (in either case, the amt. of Fe is regulated to <=45wt.%) and the surface of a sliding member to be slid is clad by padding the powder of the alloy with a plasma arc or a laser beam. C in the alloy is uniformly and dispersedly crystallized out in the shape of graphite, which works as a solid lubricant, so that the self-lubricating alloy can be obtd.

Description

【発明の詳細な説明】 本発明は流体潤滑が不可能な各種摺動部材や高温下で使
用される各種摺動部材において、その金属母材上に、肉
盛溶接などの方法により簡単に固体潤滑性を有するグラ
ファイトを均一に分散させた肉盛層を形成させるための
グラファイト分散自己潤滑性合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for easily solidifying various sliding members for which fluid lubrication is not possible or for sliding members used at high temperatures by a method such as overlay welding on the metal base material. This invention relates to a graphite-dispersed self-lubricating alloy for forming a built-up layer in which lubricating graphite is uniformly dispersed.

〔従来の技術〕[Conventional technology]

グラファイトや二硫化モリブデンは結晶構造上異方性が
強く、特定な結晶面間や原子間でその結合力が弱く、せ
ん断によって切れやすく、このため内部すべりを起こし
、低摩擦を与えることから、固体潤滑剤として用いられ
る。特にグラファイトは1安定性にも優れていることか
ら多用されている。
Graphite and molybdenum disulfide have strong anisotropy in their crystal structures, and the bonding strength between specific crystal planes and atoms is weak, making them easy to break due to shearing, causing internal slippage and providing low friction, making them solid materials. Used as a lubricant. In particular, graphite is widely used because it has excellent monostability.

従来グラファイトを固体潤滑剤として用いる場合1)母
材表面に直接塗布するかスプレーした後乾燥させて用い
る方法、2)油や樹脂類などの中に懸濁又は分散させて
用いる方法、3)金属や油脂と混合して複合材料の形で
用いる方法がある。しかしながら1)の方法ではグラフ
ァイトを分散させた流体を部材表面に塗布(又はスプレ
ー)し、乾燥させるため手間がかかり、かつ被膜が薄い
ため長時間の潤滑効果は期待できない。2)の方法では
、潤滑油に添加して用いるため、その粒度や表面物性、
油との密度差さらには他の添加剤との共存など、グラフ
ァイトの安定した油中分散が得にくく、このためグラフ
ァイト粒子表面にあらかじめ界面活性剤の吸着膜を形成
させるなど、親油化処理をして油に濡れやすくしてやる
ことが必要である。
Conventional methods of using graphite as a solid lubricant include 1) applying it directly to the surface of the base material or spraying it and then drying it, 2) suspending or dispersing it in oil or resin, etc., 3) metal There is a method of using it in the form of a composite material by mixing it with oils and fats. However, in method 1), a fluid in which graphite is dispersed is applied (or sprayed) to the surface of the member and dried, which takes time and effort, and the film is thin, so a long-term lubrication effect cannot be expected. In method 2), since it is added to the lubricating oil, its particle size, surface properties,
Stable dispersion of graphite in oil is difficult to obtain due to density differences with oil and coexistence with other additives. Therefore, lipophilic treatment such as forming a surfactant adsorption film on the graphite particle surface in advance is difficult. It is necessary to do this to make it easier to get wet with oil.

また、3)の方法では部材内部にグラファイトが分散し
ているため、長時間の潤滑効果が期待できるが、グラフ
ァイトの分散性の問題や強度及び作成の難しさなどの問
題がある。
In addition, in the method 3), since graphite is dispersed inside the member, a long-term lubrication effect can be expected, but there are problems such as the dispersibility of graphite, the strength, and the difficulty of manufacturing.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明者等は摺動部にグラファイトを塗布又は油と共に
供給する方法ではなく、部材内部にグラファイトが分散
したものでしかも強度が大きく、製造も容易なものを種
々検討した結果、ある特定の合金組成においてはグラフ
ァイトが均一に晶出し、潤滑が良好で耐摩耗性、耐食性
も良好な合金組成を見出した。
Rather than applying graphite to the sliding part or supplying it with oil, the present inventors investigated various methods of dispersing graphite inside the member, which had high strength, and were easy to manufacture. We have found an alloy composition in which graphite crystallizes uniformly, provides good lubrication, and has good wear resistance and corrosion resistance.

Co、Ni 及びCo−Ni基については先に特許出願
したが、さらにこれらの基質にFeを含有させたもので
も、グラファイトの晶出が見られ、本発明合金の目的で
ある自己潤滑性が得られることが判明し、本発明を完成
した。
Patent applications were previously filed for Co, Ni, and Co-Ni groups, but crystallization of graphite was observed even when Fe was added to these substrates, making it impossible to achieve the self-lubricating property that is the purpose of the alloy of the present invention. It was found that the present invention was completed.

また本発明の合金は、肉盛溶接などの方法で肉盛層を形
成させると同時にこの肉盛層中に球状もしくは片状のグ
ラファイトを均一に分散させることも可能で作成が容易
であることも見出した。
Furthermore, the alloy of the present invention can be easily produced by forming a build-up layer using a method such as build-up welding, and at the same time, it is possible to uniformly disperse spherical or flaky graphite in this build-up layer. I found it.

〔問題を解決するための手段〕[Means to solve the problem]

即ち本発明は、重量%でC1,0〜5.0%、80.1
〜4.5X、St O,1〜9.0χを含有し、さらに
必要に応じてCr 1.O〜15.Oχ又は/およびC
u 1.0〜5.0χを含有し、残部がCo−Fe又は
Ni−Fe又はCo−Ni−Feの一種(但しFeは4
5%以下)及び不可避的不純物よりなる組成を有するこ
とを特徴とするグラファイト分散自己潤滑性合金である
That is, the present invention has C1.0 to 5.0% and 80.1% by weight.
~4.5X, StO, 1~9.0χ, and optionally Cr1. O~15. Ox or/and C
u Contains 1.0 to 5.0
5% or less) and unavoidable impurities.

〔作用〕[Effect]

次に本発明合金の成分限定理由を説明する。 Next, the reason for limiting the composition of the alloy of the present invention will be explained.

CはCo−Fe+Nt−Fe又はCo−Ni−Feを主
体とした基質中に球状又は片状のグラファイトとして晶
出し、固体潤滑剤として働き耐摩耗性の向上に寄与する
C crystallizes as spherical or flaky graphite in a matrix mainly composed of Co-Fe+Nt-Fe or Co-Ni-Fe, acts as a solid lubricant, and contributes to improving wear resistance.

C含有量が重量%で1゜0χ未満では基質のCo−re
、NiFe又はCo−Ni−Fe中に固溶し、はとんど
グラファイトとして晶出せず、5.0%以上ではCo−
Fe、 Ni−Fe又はCo−Ni−Feに対する最大
溶解度を越えるため、溶湯中に溶解しなくなる。このた
めC含有量は1゜θ〜5.0χに定めた。
If the C content is less than 1°0χ in weight%, the Co-re of the substrate
, is a solid solution in NiFe or Co-Ni-Fe, hardly crystallizes as graphite, and at 5.0% or more, Co-
Since the maximum solubility for Fe, Ni-Fe, or Co-Ni-Fe is exceeded, it no longer dissolves in the molten metal. For this reason, the C content was set at 1°θ to 5.0χ.

BはCo−Pe+ Nj−Fe又はCo−Nj−Feと
の間で金属間化合物を形成し、合金の硬さを上げる働き
がある他、合金に自溶性を与え肉盛溶接を容易にする働
きを有する。B含有量が重量%で0.1χ未満では硬さ
の向上及び自溶性が得られず、4.5%以上では硬さが
高くなりすぎ肉盛層に割れを生じるようになり好ましく
ない。また、4.5%以上になるとCo−Fe+Ni−
Fe又はCo−Ni−Feに対するCの最高溶解度が下
がり、グラファイトの晶出がほとんど見られなくなる。
B forms an intermetallic compound with Co-Pe+Nj-Fe or Co-Nj-Fe, and has the function of increasing the hardness of the alloy, as well as providing self-fluxability to the alloy and facilitating overlay welding. has. If the B content is less than 0.1 χ in weight percent, improvement in hardness and self-solubility cannot be obtained, and if it is more than 4.5%, the hardness becomes too high and cracks occur in the built-up layer, which is not preferable. Moreover, when it becomes 4.5% or more, Co-Fe+Ni-
The maximum solubility of C in Fe or Co-Ni-Fe decreases, and crystallization of graphite is hardly observed.

このためB含有量は0.1〜4.5χに定めた。Therefore, the B content was set at 0.1 to 4.5χ.

Si SiはBと同じようにCo−Fe、Ni−Pe又はCo
−Ni−Feとの間で金属間化合物を形成し、合金の硬
さを上げる働きがある他合金に自溶性を与え、肉盛溶接
を容易にする働きを有する。Si含有量が重量%で1.
0χ未満では、硬さの向上及び自溶性が得られず、9.
0%以上では硬さが高くなりすぎ、肉盛層に割れを生じ
るようになり好ましくない。また9、0%以上になると
Co−Fe+Ni−Fe又はCo−Ni−Feに対する
Cの最高溶解度が下がり、グラファイトの晶出がほとん
ど見られなくなる。このためSi含有量は1.0〜9.
0χに定めた。
Si Si, like B, can be Co-Fe, Ni-Pe or Co.
It forms an intermetallic compound with -Ni-Fe and has the function of increasing the hardness of the alloy, imparting self-fusion to other alloys, and facilitating overlay welding. Si content is 1% by weight.
If it is less than 0χ, improvement in hardness and self-solubility cannot be obtained, and 9.
If it is 0% or more, the hardness becomes too high and cracks occur in the built-up layer, which is not preferable. Moreover, when it exceeds 9.0%, the maximum solubility of C in Co--Fe+Ni--Fe or Co--Ni--Fe decreases, and crystallization of graphite is hardly observed. Therefore, the Si content is 1.0 to 9.
It was set to 0χ.

Cr Crは添加しなくても摺動部材としての特性に影響はな
いが、耐食性を必要とする場合にはCrを添加する方が
好ましい。
Cr Although the properties of the sliding member are not affected even if Cr is not added, it is preferable to add Cr when corrosion resistance is required.

Crは合金の耐食性を向上させる働きを有し、Cr含有
量が重量%で1.0χ未満ではこの働きがほとんど見ら
れず、15.0χ以上になるとCとの間で炭化物を形成
するようになり、グラファイトの晶出量が低下し自己潤
滑性が得られなくなる。また炭化物の形成にともない肉
盛層の割れ感受性が高(なる。このためCr含有量は1
.0〜15.0χに定めた。
Cr has the function of improving the corrosion resistance of the alloy, and this function is hardly seen when the Cr content is less than 1.0χ in weight%, and when it exceeds 15.0χ, it starts to form carbides with C. As a result, the amount of graphite crystallized decreases, making it impossible to obtain self-lubricating properties. In addition, with the formation of carbides, the susceptibility to cracking of the built-up layer becomes high.For this reason, the Cr content is
.. It was set at 0 to 15.0χ.

Cu Cuは添加しなくても摺動部材としての特性に影響はな
いが、耐食性を要求される場合にはCrと同じ<Cuを
添加する方が好ましい。また、CrとCuを複合して添
加すればより好ましい。
Cu Although the properties of the sliding member are not affected even if Cu is not added, it is preferable to add <Cu, which is the same as Cr, when corrosion resistance is required. Further, it is more preferable to add Cr and Cu in combination.

CuはCrと同じように合金の耐食性を向上させる働き
を有するが、Cu含有量が重量%で1.0χ未満ではこ
の働きがほとんどみられず、5.0%以上になると肉盛
溶接待偏析を起こし、肉盛層に割れを誘発する恐れがあ
る。
Cu, like Cr, has the function of improving the corrosion resistance of the alloy, but this function is hardly seen when the Cu content is less than 1.0χ in weight percent, and when it exceeds 5.0%, segregation during overlay welding occurs. This may cause cracks in the overlay layer.

なお、CrとCuを複合して添加する場合はそれぞれの
下限及び上限を添加すればよい。
Note that when adding Cr and Cu in combination, the lower and upper limits of each may be added.

Co、Ni、Fe Co、Ni+Feは本合金において基質となるもので、
Co−Fe、Ni−Fe、Co−Ni−Feの組合せで
用いられる。
Co, Ni, Fe Co, Ni+Fe are the substrates in this alloy,
It is used in combination of Co-Fe, Ni-Fe, and Co-Ni-Fe.

Co、 Ni+ Feの内FeはCo、Ni と同族元
素であり、しかもCo、Niに比べ安価なため、経済性
の面からCo、Niの代替元素としてできるだけ多く配
合することが望ましい。但し、Fe含有量が重量%で4
5χを越えると、FeがCとの間で炭化物を形成するよ
うになり、グラファイトの晶出がほとんど見られなくな
り、自己潤滑性が得られなくなる。
Of Co, Ni+Fe, Fe is a homologous element to Co and Ni, and is cheaper than Co and Ni, so it is desirable to mix as much as possible as a substitute element for Co and Ni from the economic point of view. However, if the Fe content is 4% by weight,
If it exceeds 5χ, Fe will start to form carbides with C, crystallization of graphite will hardly be observed, and self-lubricating properties will not be obtained.

また、耐食性も劣化する傾向が出て好ましくない。Further, corrosion resistance tends to deteriorate, which is not preferable.

このためFe含有量は上限を45Xと定めた。For this reason, the upper limit of the Fe content was set at 45X.

Co−Ni−Feの組合せで用いる場合のCo−Niに
ついては、Coに対するNiの比率が高くなるとグラフ
ァイトの晶出量が若干減少する傾向がある。しかしなが
らいずれの比率におても、本発明合金の目的である自己
潤滑性を得るためのグラファイトの晶出は見られる。こ
れはCoとNiが同族元素でかつ全率固溶体を形成する
ためと考えられる。
Regarding Co--Ni when used in a Co--Ni--Fe combination, as the ratio of Ni to Co increases, the amount of graphite crystallized tends to decrease slightly. However, at any ratio, crystallization of graphite is observed in order to obtain the self-lubricating property that is the objective of the alloy of the present invention. This is considered to be because Co and Ni are homologous elements and form a complete solid solution.

〔実施例〕〔Example〕

次に本発明の合金を実施例により比較例と対比しながら
具体的に説明する。
Next, the alloy of the present invention will be specifically explained using examples and comparing with comparative examples.

アトマイズ法により、それぞれ第1表に示される成分組
成をもつ本発明の合金及び比較例合金を粉末化(粒子径
105〜177μm)L、これをプラズマ粉末肉盛装置
を用い、5S−41母材上に約2.5mmの厚みに肉盛
を行った。こうして肉盛した試験片を所定の大きさに切
断し、肉盛層表面を耐水研磨紙及びパフ研磨により研磨
し、ピンカース硬さ計で肉盛層の硬さを測定後、摩耗試
験に供した。摩耗試験は第2図に示すように、肉盛した
試験片を固定側、白銑製リングを回転側にして行った。
The alloy of the present invention and the comparative alloy, each having the composition shown in Table 1, are powdered (particle size 105 to 177 μm) by the atomization method, and then processed into a 5S-41 base material using a plasma powder overlay device. Overlay was applied on top to a thickness of about 2.5 mm. The overlaid test piece was cut into a predetermined size, the surface of the overlay layer was polished using waterproof abrasive paper and puff polishing, the hardness of the overlay layer was measured using a Pinkers hardness meter, and then subjected to an abrasion test. . As shown in FIG. 2, the wear test was conducted with the overlaid test piece on the stationary side and the white pig iron ring on the rotating side.

第2表にこの摩耗試験条件を示す。Table 2 shows the conditions for this wear test.

第2表 腐食試験は、それぞれ第1表に示される成分組成をもつ
本発明の合金及び比較例の合金をアルゴン気流中で溶解
しシェル鋳型に鋳造後、10mm X 10mm X 
10n+mに切断したものを試験片とし、5χH2S0
4(沸騰中)に6時間浸漬し、その時の腐食減量を測定
した。
The corrosion test in Table 2 was conducted by melting the alloy of the present invention and the alloy of the comparative example, each having the composition shown in Table 1, in an argon stream and casting it into a shell mold of 10 mm x 10 mm x
A specimen cut into 10n+m is used as a test piece, and 5χH2S0
4 (while boiling) for 6 hours, and the corrosion loss at that time was measured.

第1表は、この摩耗試験・肉盛試験及び肉盛層の測定結
果を示したものである。
Table 1 shows the results of the wear test, build-up test, and measurement of the build-up layer.

また、第1図は摩耗試験の結果得られた試験片及び相手
材(リング)の摩耗減量を図示したものである。第3図
は、本発明の合金No、 2及びN096における肉盛
層断面のX線写真で、組織かられかるように、合金基質
中にグラファイトが均一に分散していることがわかる。
Moreover, FIG. 1 illustrates the abrasion loss of the test piece and the mating material (ring) obtained as a result of the abrasion test. FIG. 3 is an X-ray photograph of the cross section of the built-up layer of alloys No. 2 and No. 096 of the present invention, and it can be seen from the structure that graphite is uniformly dispersed in the alloy matrix.

第1表、第1図に示すように、本発明の合金は比較例の
合金に比べ摩耗が少な(、かつ相手の摩耗も少ない。こ
うしたことから、無潤滑の状態において良好な潤滑性を
示していることがわかる。
As shown in Table 1 and Figure 1, the alloy of the present invention has less wear (and less wear on its counterpart) than the comparative alloys.For these reasons, it exhibits good lubricity in non-lubricated conditions. You can see that

〔発明の効果〕〔Effect of the invention〕

本発明によるグラファイト分散自己潤滑性合金は、金属
母材にプラズマアークやレーザービームなどの熱源によ
り肉盛すると同時に、その肉盛層中に球状及び片状グラ
ファイトを均一に分散させようとするもので、こうして
形成した肉盛層は、比較例の合金に比べて耐摩耗性に優
れ、かつグラファイトが肉盛層全体にわたり均一に分散
しているため、グラファイトを塗布(またはスプレー)
した場合に比べ長時間潤滑効果が得られる。
The graphite-dispersed self-lubricating alloy according to the present invention aims to uniformly disperse spherical and flaky graphite in the overlay layer while overlaying the metal base material with a heat source such as a plasma arc or laser beam. The build-up layer thus formed has superior wear resistance compared to the comparative example alloy, and the graphite is evenly distributed throughout the build-up layer, so graphite can be applied (or sprayed).
The lubrication effect can be obtained for a long time compared to the case where the

なお、上記実施例では、本発明の合金を金属母材上に粉
末肉盛して用いたが、これを鋳物として用いても肉盛同
様、優れた特性を示す。
In the above examples, the alloy of the present invention was used as a powder overlay on a metal base material, but even when used as a casting, it exhibits excellent properties like overlay.

上述のように、本発明の合金は、流体潤滑が不可能な各
種摺動部材に使用することで、潤滑の効果が得られると
ともに、装置の小型集約化に寄与する。
As described above, by using the alloy of the present invention in various sliding members for which fluid lubrication is not possible, a lubrication effect can be obtained, and it also contributes to miniaturization of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、摩耗試験後の試験片及び相手材の摩耗減量、
第2図は摩耗試験概略図、第3図は本発明の合金Nα2
及びNo、 6における肉盛層断面のX線写真で1−A
、1−Bは合金No、 2で、2−A、2−Bは合金N
o、 6である。また、Aは反射電子像でBはCKαの
特性XvA像である。
Figure 1 shows the abrasion loss of the test piece and the mating material after the abrasion test.
Figure 2 is a schematic diagram of the wear test, Figure 3 is the alloy Nα2 of the present invention.
and No. 1-A in the X-ray photograph of the cross section of the built-up layer in 6.
, 1-B is alloy No. 2, 2-A and 2-B are alloy N
o, 6. Further, A is a backscattered electron image, and B is a characteristic XvA image of CKα.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC1.0〜5.0%、B0.1〜4.5
%、Si0.1〜9.0%を含有し、残部がCo−Fe
又はNi−Fe又はCo−Ni−Feの一種(但しFe
は45%以下)及び不可避的不純物よりなる組成を有す
ることを特徴とするグラファイト分散自己潤滑性合金。
(1) C1.0-5.0%, B0.1-4.5 in weight%
%, Si0.1-9.0%, the balance being Co-Fe
or a type of Ni-Fe or Co-Ni-Fe (however, Fe
45% or less) and unavoidable impurities.
(2)重量%でC1.0〜5.0%、B0.1〜4.5
%、Si0.1〜9.0%を含有し、さらにCr1.0
〜15.0%を含有し、残部がCo−Fe又はNi−F
e又はCo−Ni−Feの一種(但しFeは45%以下
)及び不可避的不純物よりなる組成を有することを特徴
とするグラファイト分散自己潤滑性合金。
(2) C1.0-5.0%, B0.1-4.5 in weight%
%, contains 0.1 to 9.0% of Si, and further contains 1.0% of Cr.
~15.0%, with the remainder being Co-Fe or Ni-F
1. A graphite-dispersed self-lubricating alloy characterized by having a composition consisting of a type of e or Co-Ni-Fe (however, Fe is 45% or less) and inevitable impurities.
(3)重量%でC1.0〜5.0%、B0.1〜4.5
%、Si0.1〜9.0%を含有し、さらにCu1.0
〜5.0%を含有し、残部がCo−Fe又はNi−Fe
又はCo−Ni−Feの一種(但しFeは45%以下)
及び不可避的不純物よりなる組成を有することを特徴と
するグラファイト分散自己潤滑性合金。
(3) C1.0-5.0%, B0.1-4.5 in weight%
%, Si0.1-9.0%, and Cu1.0
~5.0%, with the remainder being Co-Fe or Ni-Fe
Or a type of Co-Ni-Fe (however, Fe is 45% or less)
A graphite-dispersed self-lubricating alloy characterized by having a composition comprising: and inevitable impurities.
(4)重量%でC1.0〜5.0%、B0.1〜4.5
%、Si0.1〜9.0%を含有し、さらにCr1.0
〜15.0%とCu1.0〜5.0%を含有し、残部が
Co−Fe又はNi−Fe又はCo−Ni−Feの一種
(但しFeは45%以下)及び不可避的不純物よりなる
組成を有することを特徴とするグラファイト分散自己潤
滑性合金。
(4) C1.0-5.0%, B0.1-4.5 in weight%
%, contains 0.1 to 9.0% of Si, and further contains 1.0% of Cr.
~15.0% and Cu1.0~5.0%, with the remainder consisting of Co-Fe, Ni-Fe, or a type of Co-Ni-Fe (however, Fe is 45% or less) and inevitable impurities. A graphite-dispersed self-lubricating alloy characterized by having.
JP2893089A 1989-02-08 1989-02-08 Graphite dispersed self-lubricating alloy Expired - Fee Related JP2825834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2893089A JP2825834B2 (en) 1989-02-08 1989-02-08 Graphite dispersed self-lubricating alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2893089A JP2825834B2 (en) 1989-02-08 1989-02-08 Graphite dispersed self-lubricating alloy

Publications (2)

Publication Number Publication Date
JPH02209445A true JPH02209445A (en) 1990-08-20
JP2825834B2 JP2825834B2 (en) 1998-11-18

Family

ID=12262119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2893089A Expired - Fee Related JP2825834B2 (en) 1989-02-08 1989-02-08 Graphite dispersed self-lubricating alloy

Country Status (1)

Country Link
JP (1) JP2825834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524513A (en) * 2004-02-16 2007-08-30 ケビン、フランシス、ドルマン Hardfacing alloy iron material
JP2011058080A (en) * 2009-09-14 2011-03-24 Sanyo Special Steel Co Ltd Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF
EP2487269A1 (en) * 2011-02-09 2012-08-15 Kugler Bimetal SA Method for preparing an antifriction alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524513A (en) * 2004-02-16 2007-08-30 ケビン、フランシス、ドルマン Hardfacing alloy iron material
JP2011058080A (en) * 2009-09-14 2011-03-24 Sanyo Special Steel Co Ltd Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF
EP2487269A1 (en) * 2011-02-09 2012-08-15 Kugler Bimetal SA Method for preparing an antifriction alloy

Also Published As

Publication number Publication date
JP2825834B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
KR101265391B1 (en) Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
US4334926A (en) Bearing material
KR101374493B1 (en) Wear resistant lead free alloy bushing and method of making
EP3135780B1 (en) Copper alloy manufacturing method and copper alloy
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
Chaudhury et al. Wear and friction behavior of spray formed and stir cast Al–2Mg–11TiO2 composites
KR910003442B1 (en) Sintered self-lubricating bearing and process for its manufacture
JPH04320494A (en) Self-lubricating material and its preparation
WO2023190873A1 (en) Sliding material
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
JPH02209445A (en) Graphite dispersed self-lubricating alloy
JP2002309303A (en) Metal particle composition for manufacturing alloy
JPH02209444A (en) Graphite dispersed co-ni base self-lubricating alloy
Hanada et al. Processing and characterization of cluster diamond dispersed Al–Si–Cu–Mg composite
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
Li et al. Microstructure and tribological behaviors of diffusion bonded powder sintered Cu–Sn based alloys
JPS58164785A (en) Wear resistant composite powder for spraying
JPS6086237A (en) Cu-alloy for slide member
JP2735848B2 (en) Graphite dispersed Co-based alloy
JPS62260031A (en) Wear-resistant high permeability alloy
JP2778965B2 (en) Graphite dispersed Ni-based alloy
Sun et al. Enhancing the tribological performance of Cu-WS2 composites with Ag-shell/Cu-core structure
JP5253962B2 (en) Method for producing wear-resistant lining layer and composite cylinder
JPH02274802A (en) Joining sintered friction material
JPS63282221A (en) Manufacture of composite sintered material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees