JPH02198649A - Separation of oxide superconducting ceramics - Google Patents

Separation of oxide superconducting ceramics

Info

Publication number
JPH02198649A
JPH02198649A JP1017502A JP1750289A JPH02198649A JP H02198649 A JPH02198649 A JP H02198649A JP 1017502 A JP1017502 A JP 1017502A JP 1750289 A JP1750289 A JP 1750289A JP H02198649 A JPH02198649 A JP H02198649A
Authority
JP
Japan
Prior art keywords
magnet
superconductor
superconducting ceramics
separation
superconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017502A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
豊 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1017502A priority Critical patent/JPH02198649A/en
Publication of JPH02198649A publication Critical patent/JPH02198649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate and recover a superconductor and nonsuperconductor by bringing a magnet near to the inside of a mixture which is composed of the superconductor and nonsuperconductor cooled to the critical temp. or below and hanging and separating only the superconductor under a magnet by a suspension effect. CONSTITUTION:The magnet 1 is brought near to the inside of the mixture which is composed of the superconductor 5 and the nonsuperconductor 4 cooled to the critical temp. or below and only the superconductor 5 is hung and separated under the magnet 1 by the suspension effect. As a result, the superconductor and the nonsuperconductor are efficiently separated and recovered as compared to the conventional case of utilizing a Meissner effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導セラミックスの分離方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for separating oxide superconducting ceramics.

(従来技術) 酸化物超電導セラミックスの分離方法の一つとして、マ
イスナー効果と呼ばれる反磁性を利用した分離方法が提
案されている。しかしこの分離方法では反磁性による反
発力、あるいは浮上刃がそれ程大きくないため、非超電
導体との分離が難しく、しかも反発する方向を正確に制
御できないため、超電導体の回収率が低かった。
(Prior Art) As one method for separating oxide superconducting ceramics, a separation method using diamagnetic property called the Meissner effect has been proposed. However, with this separation method, it is difficult to separate the superconductors from non-superconductors due to the repulsive force due to diamagnetic properties or because the levitation blade is not very large, and the direction of repulsion cannot be precisely controlled, resulting in a low recovery rate of superconductors.

(発明により解決しようとする課題) 酸化物超電導セラミックスの分離方法において、超電導
体と非超電導体をサスペンション効果を利用して簡便に
分離する方法を提供しようとするものである。
(Problems to be Solved by the Invention) In a method for separating oxide superconducting ceramics, it is an object of the present invention to provide a method for easily separating superconductors and non-superconductors by utilizing a suspension effect.

(発明による課題の解決手段) 臨界温度以下に冷却した超電導体と非超電導体の混合物
中に磁石を接近させ、サスペンション効果により超電導
体のみを磁石下に吊り下げ分離することを特徴とする。
(Means for solving the problems by the invention) A magnet is brought close to a mixture of a superconductor and a non-superconductor cooled below a critical temperature, and only the superconductor is suspended and separated under the magnet by a suspension effect.

又、磁石を回転する永久磁石又は永久磁石を連結したベ
ルトコンベヤにすることによって連続的回収を可能にし
た。
Continuous collection was also made possible by using a rotating permanent magnet or a belt conveyor in which permanent magnets were connected.

さらに又、磁石を永久磁石を連結したベルトコンベヤに
して連続的に回収可能にした。
Furthermore, the magnets can be continuously collected by using a belt conveyor connected to permanent magnets.

(実施例) 第1図(a)、第1図(b)に基いて説明する。第1図
(a)は分離回収前の状態である。永久磁石又は電磁石
(単に磁石という)1を冷却媒体2により、臨界温度以
下まで冷却された超電導体と非超電導体の混った酸化物
セラミックス3中に接近させたのち磁石1を取り出すと
、サスペンション効果により超電導セラミック5は磁石
下に吊り下ってくるので、第1図(b)に示すように非
超電導セラミックス4と超電導セラミックス5とに分離
することができる。なお第1図(b)で6は磁石1によ
って吊下げられて回収された超電導セラミックスである
。このとき超電導セラミックス体の温度が臨界温度以上
になるとサスペンション効果が失われるので、分離作業
は臨界温度以下で行なう必要がある。
(Example) An explanation will be given based on FIG. 1(a) and FIG. 1(b). FIG. 1(a) shows the state before separation and collection. When a permanent magnet or an electromagnet (simply referred to as a magnet) 1 is brought close to an oxide ceramic 3 containing a mixture of superconductors and non-superconductors cooled to below the critical temperature by a cooling medium 2, and the magnet 1 is taken out, a suspension is created. As a result of this effect, the superconducting ceramic 5 hangs below the magnet, so that it can be separated into the non-superconducting ceramic 4 and the superconducting ceramic 5 as shown in FIG. 1(b). In FIG. 1(b), 6 is a superconducting ceramic suspended by the magnet 1 and collected. At this time, if the temperature of the superconducting ceramic body exceeds the critical temperature, the suspension effect will be lost, so the separation operation must be performed at a temperature below the critical temperature.

第2図は分離を連続的に行なう方法を示し、磁石として
回転永久磁石を使用した分離例を示す。
FIG. 2 shows a method of performing separation continuously, and shows an example of separation using a rotating permanent magnet as the magnet.

これは永久磁石7を冷却媒体2により臨界温度以下に冷
却された超電導体と非超電導体の混った酸化物セラミッ
クス3中で回転させる。するとサスペンション効果によ
り磁石7に吊り下った超電導セラミックス5を磁石7の
回転に従って分離するものである。この場合冷却媒体2
と臨界温度との温度差と、磁石7の回転速度を考慮し、
磁石下に吊り下った超電導セラミックス5の温度が回転
する磁石7の直上を通過したところで臨界温度を越える
ことが必要である。すなわち回転する磁石7に従って磁
石7の直上に達した超電導セラミックス5は、そこで臨
界温度を越え常電導状態に戻るため、重力によって落下
し図に示すごとく容器8内に回収される。
This rotates a permanent magnet 7 in an oxide ceramic 3 containing a mixture of superconductors and non-superconductors cooled to below a critical temperature by a cooling medium 2. Then, the suspension effect causes the superconducting ceramics 5 suspended from the magnet 7 to be separated as the magnet 7 rotates. In this case cooling medium 2
Considering the temperature difference between and the critical temperature and the rotation speed of the magnet 7,
It is necessary that the temperature of the superconducting ceramic 5 suspended below the magnet exceeds a critical temperature when it passes directly above the rotating magnet 7. That is, the superconducting ceramic 5 that follows the rotating magnet 7 and reaches just above the magnet 7 exceeds a critical temperature and returns to a normal conductive state, so that it falls due to gravity and is collected into a container 8 as shown in the figure.

第3図は磁石を連結したベルトコンベヤ方式による分離
例を示す。これは永久磁石をベルトコンベヤ状に連結し
たものを用い、第2図の例と同様、臨界温度以下に冷却
された超電導体と非超電導体の混った酸化物セラミック
3をサスペンション効果により分離するものである。こ
の場合も冷却媒体2と臨界温度との温度差およびベルト
コンベヤ9の移動速度を考慮してベルトコンベヤの最高
点を過ぎた付近で臨界温度以上になることが望まれる。
FIG. 3 shows an example of separation using a belt conveyor system in which magnets are connected. This uses permanent magnets connected like a belt conveyor, and as in the example shown in Figure 2, the oxide ceramic 3, which is a mixture of superconductors and non-superconductors cooled below the critical temperature, is separated by the suspension effect. It is something. In this case as well, taking into account the temperature difference between the cooling medium 2 and the critical temperature and the moving speed of the belt conveyor 9, it is desired that the temperature reaches or exceeds the critical temperature near the highest point of the belt conveyor.

図に示すように、ベルトコンベヤをlO〜60゜程度傾
けることにより、ベルトコンベヤ9の最高点を過ぎた付
近で常電導状態に戻った超電導セラミックス5は重力に
より落下し、容器10に容易に回収することができる。
As shown in the figure, by tilting the belt conveyor by about 10 to 60 degrees, the superconducting ceramics 5 that have returned to a normal conductive state near the highest point of the belt conveyor 9 fall due to gravity and can be easily collected into a container 10. can do.

(効果) 臨界温度以下に冷却した超電導体と非超電導体の混合物
中に磁石を接近し、サスペンション効果により超電導体
のみを磁石下に吊り下げ分離するようにした。
(Effect) A magnet was brought close to a mixture of superconductors and non-superconductors cooled below the critical temperature, and only the superconductors were suspended and separated under the magnet due to the suspension effect.

このようにサスペンション効果を利用したので、従来の
マイスナー効果を利用した場合に比べ、効率的に分離回
収することが可能となった。
By utilizing the suspension effect in this way, it has become possible to separate and recover more efficiently than when using the conventional Meissner effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の第1実施例を示す。 第2図は同じく第2実施例を示す。 第3図は同じく第3実施例を示す。 図において; 1 磁石       2 冷却媒体 3 酸化物セラミックス 4 非超電導セラミックス 5 超電導セラミックス 6 分離回収された超電導セラミックス7 永久磁石 
   8 容器 9 ′m石を連結したベルトコンベヤ 10  容器 以上 出願人 住友重機械工業株式会社 復代理人 弁理士 大 橋   勇 第 図 (G) 第2図 第3図
FIG. 1 shows a first embodiment of the method of the invention. FIG. 2 also shows a second embodiment. FIG. 3 also shows a third embodiment. In the figure: 1 magnet 2 cooling medium 3 oxide ceramics 4 non-superconducting ceramics 5 superconducting ceramics 6 separated and collected superconducting ceramics 7 permanent magnet
8 Containers 9 Belt conveyor 10 connected with 9'm stones Applicant: Sumitomo Heavy Industries, Ltd. Sub-agent Patent attorney Isamu Ohashi Figure (G) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)臨界温度以下に冷却した超電導体と非超電導体の混
合物中に磁石を接近させ、サスペンション効果により超
電導体のみを磁石下に吊り下げ分離することを特徴とす
る酸化物超電導セラミックスの分離方法。 2)磁石を回転する永久磁石にして連続的回収を可能に
したことを特徴とする請求項1)記載の酸化物超電導セ
ラミックスの分離方法。 3)磁石を永久磁石を連結したベルトコンベヤにして連
続的に回収可能にしたことを特徴とする請求項1)記載
の酸化物超電導セラミックスの分離方法。
[Claims] 1) An oxide characterized in that a magnet is brought close to a mixture of a superconductor and a non-superconductor cooled below a critical temperature, and only the superconductor is suspended and separated under the magnet by a suspension effect. Separation method for superconducting ceramics. 2) The method for separating oxide superconducting ceramics according to claim 1, characterized in that the magnet is a rotating permanent magnet to enable continuous recovery. 3) The method for separating oxide superconducting ceramics according to claim 1, characterized in that the magnet is a belt conveyor connected with permanent magnets to enable continuous collection.
JP1017502A 1989-01-30 1989-01-30 Separation of oxide superconducting ceramics Pending JPH02198649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017502A JPH02198649A (en) 1989-01-30 1989-01-30 Separation of oxide superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017502A JPH02198649A (en) 1989-01-30 1989-01-30 Separation of oxide superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH02198649A true JPH02198649A (en) 1990-08-07

Family

ID=11945763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017502A Pending JPH02198649A (en) 1989-01-30 1989-01-30 Separation of oxide superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH02198649A (en)

Similar Documents

Publication Publication Date Title
US5126317A (en) Bearing system employing a superconductor element
Jayawant Electromagnetic suspension and levitation
US5049540A (en) Method and means for separating and classifying superconductive particles
US4668383A (en) Magnetic separator
CN1171864A (en) Bearing design for flywheel energy storage using high-temp superconductor
JPH02198649A (en) Separation of oxide superconducting ceramics
US5919737A (en) Method of separating a superconducting fraction from a mixture
Herget Metallurgical Methods for the Production of Rare-Earth--Transition-Metal Permanent Magnet Materials
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
JPH01215358A (en) Method for selecting particulate superconducting material
JPS6415158A (en) Separator for high-temperature superconductor
Litwin et al. Phenotypic heterogeneity for cells bearing surface immunoglobulin in human lymphoid lines
HU et al. PREPARATION AND CHARACTERIZATION OF BULK YBa₂Cu₂O, SUPERCONDUCTORS
JPS63315159A (en) Method for sorting superconductive body
Esaka et al. Growth direction of cellular and dendritic interface
JP3511094B2 (en) Magnetic separation method and magnetic separation device
JPH0191682A (en) Superconducting rotary machine
JPH0220280A (en) Separating and purifying method using superconductor hybrid
JPH01258753A (en) Method and device for selecting superconducting particles
HORIE et al. Recovery of Abrasives from Wasted Slurry by Superconducting High Gradient Magnet Separation
Danchuk et al. On the dynamics of alkali-halide lattice vibrations in the vicinity of impurity molecular ions.
Blunt et al. Magnetic separation of superconductors
Collier Ceramic Advances Seen Revolutionizing Magnets
Savas Modification of Binary Eutectics by a Third Element
Zinov'ev et al. Anomalies of the Kinetic and Thermal Properties of Metals of the Titanium Subgroup in Solid and Liquid States