JPH02193835A - Sheet feed device - Google Patents

Sheet feed device

Info

Publication number
JPH02193835A
JPH02193835A JP1010379A JP1037989A JPH02193835A JP H02193835 A JPH02193835 A JP H02193835A JP 1010379 A JP1010379 A JP 1010379A JP 1037989 A JP1037989 A JP 1037989A JP H02193835 A JPH02193835 A JP H02193835A
Authority
JP
Japan
Prior art keywords
vibration
frequency
phase difference
bodies
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010379A
Other languages
Japanese (ja)
Inventor
Kenichi Kataoka
健一 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1010379A priority Critical patent/JPH02193835A/en
Publication of JPH02193835A publication Critical patent/JPH02193835A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/008Feeding articles separated from piles; Feeding articles to machines using vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)

Abstract

PURPOSE:To ensure the stable carriage of sheets without encountering the extremely small amplitude of a vibration by driving two vibration bodies for clamping and feeding the sheets using a higher frequency pertaining to one of the vibration bodies or a higher frequency. CONSTITUTION:Two groups of electrical-mechanical energy conversion element cells 3 and 4, and 7 and 8 are formed between a pair of vibration bodies 1 and 5 made of an elastic material for clamping a sheet 9, and applied with a.c. voltage having a time phase difference of 90 deg. from a voltage control oscillator 15 via 90-degree phase converters 16 and 17, and power amplifiers 18 and 19, thereby generating a progressive wave as a synthesis of two standing waves dephased lambda/4 from each other, and carrying the sheet 9. In this case, the resonance condition of the vibration bodies 1 and 5 is detected with vibration detecting piezoelectric elements 2 and 6, and AC/DCs 20 and 21, and the higher natural frequency of the vibration bodies 1 and 5 is selected with a large signal selector 22. In addition, a voltage oscillation generator 15 is so driven that a higher frequency is available via a differential amplifier 13. According to the aforesaid construction, it becomes possible to stably feed sheets at all times even regardless of a change in environmental temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、計算機、複写機、プリンターファクシミリ、
ワードプロセッサー、タイプライタ−等に装備されるシ
ート送り装置に係り、詳しくは進行性振動波を利用して
シートを送るシート送り装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to computers, copying machines, printer facsimiles,
The present invention relates to a sheet feeding device installed in word processors, typewriters, etc., and specifically relates to a sheet feeding device that feeds sheets using progressive vibration waves.

[従来の技術] 従来、進行性振動波を利用したシート送り装置としては
、例えば特開昭59−177243号がある。このシー
ト送り装置は、適度な押圧力で接する1組の弾性材料か
らなる振動体間にシートを挟持し、該各振動体に進行性
振動波を発生させることにより挟持したシートを搬送す
るようにしたものである。両振動体には、2群の圧電素
子等の電気−機械エネルギー変換素子が接着又は圧接さ
れ、各群間にはλ/4の奇数倍のづれがあるように圧電
素子が配置され、また各群内では圧電素子がλ/2のピ
ッチで且交互に逆の伸縮極性となるように配列されてい
る。そして、両振動体の各一方の圧電素子群に両振動体
の固有振動数近傍の周波数(実際には一方の振動体の固
有振動数)の交流電界を印加すると供に、両振動体の各
他方の圧電素子群にはπ/2位相器を通してπ/2だけ
位相のづれた交流電界を印加することにより、各振動体
にシートの搬送面に対して対称に進行性振動波を発生さ
せる。すなわち、振動体に進行性振動波が発生すると、
圧電素子が設けられる面と反対側の面の各点が一種の楕
円運動を行ない、両振動体の対向する面の各点がシート
搬送面に対し対称に楕円運動することにより、シートを
搬送するようになっている。
[Prior Art] Conventionally, as a sheet feeding device using progressive vibration waves, there is, for example, Japanese Patent Application Laid-Open No. 177243/1983. This sheet feeding device sandwiches a sheet between a pair of vibrating bodies made of an elastic material that are in contact with each other with an appropriate pressing force, and conveys the sandwiched sheet by generating progressive vibration waves in each vibrating body. This is what I did. Two groups of electro-mechanical energy converting elements such as piezoelectric elements are bonded or pressed to both vibrating bodies, and the piezoelectric elements are arranged so that there is a shift of an odd multiple of λ/4 between each group. Within the group, the piezoelectric elements are arranged at a pitch of λ/2 and with alternately opposite expansion and contraction polarities. Then, an alternating current electric field with a frequency near the natural frequency of both vibrators (actually, the natural frequency of one vibrator) is applied to each piezoelectric element group of both vibrators, and each of the piezoelectric elements of both vibrators is By applying an alternating current electric field with a phase difference of π/2 to the other piezoelectric element group through a π/2 phase shifter, progressive vibration waves are generated in each vibrating body symmetrically with respect to the conveying surface of the sheet. In other words, when a progressive vibration wave is generated in a vibrating body,
Each point on the surface opposite to the surface on which the piezoelectric element is provided performs a type of elliptical motion, and each point on the opposing surfaces of both vibrators moves elliptically symmetrically with respect to the sheet conveyance surface, thereby conveying the sheet. It looks like this.

第4図はこのような進行性振動波によるシート搬送力の
発生原理を説明する概略図で、振動体l及び5によりシ
ート9を適度な押圧力で挟持し、振動体1及び5には図
に示すように進行性の曲げ振動が形成されている。この
とき、両振動体l、50表面のある質点に注目すると、
質点は一般には楕円軌道を描く運動をする。そして、振
動体1について言えば、進行性曲げ振動が図中時で示す
右方向に進む場合、表面の質点は時計回りの楕円軌跡を
描(ことになる。ここで、振動体l及び5に形成される
進行性の曲げ振動の位相差は空間的に180°になるよ
うに構成されているので、各振動体の曲げ振動はシート
側に凸の部分が常に対向するように進行する。凸部の質
点の移動方向は振動体l及び5いずれも振動の進行方向
逆方向であるので、この場合は矢印一方向にシート搬送
力が発生する。一方、凹部においては、進行方向と同方
向にシート搬送力が働(が凸部に比較して圧力が小さい
ので、シートと振動体の摩擦力は小さく、シート搬送力
も小さくなるので、シート搬送力の総和としては、曲げ
振動の進行方向とは逆方向に働くことになる。
FIG. 4 is a schematic diagram illustrating the principle of generation of sheet conveying force by such progressive vibration waves. Progressive bending vibration is formed as shown in . At this time, if we pay attention to a certain mass point on the surface of both vibrators l and 50, we get
A mass point generally moves in an elliptical orbit. Regarding the vibrating body 1, when the progressive bending vibration advances in the right direction indicated by time in the figure, the mass points on the surface draw a clockwise elliptical locus (this means that the vibrating bodies 1 and 5 Since the structure is such that the phase difference of the progressive bending vibration that is formed is spatially 180°, the bending vibration of each vibrating body progresses so that the convex portions always face each other on the sheet side. Since the direction of movement of the mass point in the part is opposite to the direction of vibration in both vibrators 1 and 5, in this case, the sheet conveying force is generated in one direction of the arrow.On the other hand, in the concave part, the sheet conveying force is generated in the same direction as the traveling direction The sheet conveying force acts (but the pressure is small compared to the convex part, so the frictional force between the sheet and the vibrating body is small, and the sheet conveying force is also small. Therefore, the total sheet conveying force is It will work in the opposite direction.

また、特開昭62−85684号においては、このよう
な進行性振動波を利用したモータが示されていて、振動
体に上記した2群の圧電素子群の他に、振動検出用圧電
素子を設け、振動検出用圧電素子の出力信号と、一方の
圧電素子群に印加する交流電圧との間の位相差が、該振
動体の共振振動時における位相差を保つように印加電圧
の周波数を制御することで、振動体を効率よ(安定に振
動させるようにしている。
In addition, Japanese Patent Application Laid-Open No. 62-85684 discloses a motor that utilizes such progressive vibration waves, and in addition to the two groups of piezoelectric elements mentioned above, a piezoelectric element for vibration detection is installed in the vibrating body. and control the frequency of the applied voltage so that the phase difference between the output signal of the piezoelectric element for vibration detection and the AC voltage applied to one piezoelectric element group maintains the phase difference during resonance vibration of the vibrating body. This allows the vibrating body to vibrate efficiently (and stably).

[発明が解決しようとする課題] ところで、このようなシート搬送装置において、駆動用
の圧電素子群に印加する交流電圧の周波数は、2つの振
動体の固有振動数のいづれか一方の固有振動数の周波数
で駆動するようにしていたので、2つの振動体の固体差
、及び温度等の環境の違い等によって、両振動体の固有
振動数が個々に独立して変化し、振動体の非線形な振動
特性の影響で、他方の振動体に対して高い固有振動数を
持つ方の振動体の振動振幅が極端に小さくなってしまう
ことがあり、効率が非常に落ちてしまう虞れがあった。
[Problems to be Solved by the Invention] Incidentally, in such a sheet conveying device, the frequency of the AC voltage applied to the piezoelectric element group for driving is equal to the natural frequency of one of the two vibrating bodies. Since it was designed to be driven by frequency, the natural frequencies of both vibrators change independently due to individual differences between the two vibrators and differences in the environment such as temperature, resulting in nonlinear vibrations of the vibrator. Due to the characteristics, the vibration amplitude of one vibrating body having a higher natural frequency than the other vibrating body may become extremely small, and there is a risk that the efficiency will drop significantly.

本発明の目的は、上記した従来の問題を解消し、2つの
振動体の固体差や温度等の環境の違いが生じても、安定
にシートの搬送を可能とするシート搬送装置を提供する
ものでる。
An object of the present invention is to solve the above-mentioned conventional problems and provide a sheet conveying device that can stably convey sheets even if there are individual differences between two vibrating bodies or differences in environment such as temperature. Out.

[課題を解決するための手段] 本発明の目的を達成するための要旨とするところは、弾
性材料製の一対の振動体間に被搬送体のシートを挟持し
、該一対の振動体には夫々2群の電気−機械エネルギー
変換素子区画を、群内では等ピッチλ/2にて且つ電圧
印加時の伸縮の極性が交互に逆であるように、而して群
間にはλ/4の奇数倍のずれがあるように配列固着し、
該電気−機械エネルギー変換素子区画の2群間、及び双
方の振動体の各一方の電気−機械エネルギー変換素子区
画間に互いに90”の両開的位相差を有する交流電圧を
夫々印加することによって、該各振動体に上記夫々の群
によって発生された互いにλ八だけずれた2つの定在波
(波長λ)の合成として波長先の進行波をシート搬送面
に対し対称で同方向に生ぜじめ、以て双方の振動体に挟
持されるシートを進行性振動波の進行方向と逆方向に搬
送するシート送り装置において、該2つの振動体の共振
状態を夫々検出する共振状態検出手段と、該各共振状態
検出手段からの検出情報に基づき2つの該振動体の内置
有振動数の高い方の振動体の固有振動数を選択し、選択
した固有振動数又はそれ以上の周波数となるように、該
各振動体の電気−機械エネルギー変換素子区画へ上記し
た時間的位相差を有して交流電圧を印加制御する印加電
圧制御手段とを備えたことを特徴とするシート送り装置
にある。
[Means for Solving the Problems] The gist of the present invention is to sandwich a sheet of an object to be conveyed between a pair of vibrating bodies made of an elastic material, and to The electric-mechanical energy conversion element sections in each of the two groups are arranged at a constant pitch of λ/2 within the group, and with a pitch of λ/4 between the groups so that the polarity of expansion and contraction is alternately reversed when a voltage is applied. The array is fixed so that there is a deviation of an odd number of times,
By applying alternating current voltages having a bidirectional phase difference of 90'' between the two groups of the electro-mechanical energy conversion element sections and between each one of the electro-mechanical energy conversion element sections of both vibrators, respectively. , in each vibrating body, as a combination of two standing waves (wavelength λ) shifted by λ8 from each other generated by the respective groups, a traveling wave at the wavelength ahead is generated symmetrically and in the same direction with respect to the sheet conveying surface. In a sheet feeding device that conveys a sheet held between both vibrating bodies in a direction opposite to the traveling direction of progressive vibration waves, a resonance state detection means for detecting a resonance state of each of the two vibrating bodies; Based on the detection information from each of the resonance state detection means, the natural frequency of the two vibrating bodies having a higher internal frequency is selected, and the frequency is set to the selected natural frequency or higher. and applied voltage control means for controlling the application of an alternating current voltage to the electro-mechanical energy conversion element section of each vibrating body with the above-mentioned temporal phase difference.

[作 用] 上記の如く構成したシート送り装置は、常に両派動体の
うち、高い固有振動数を有する方の振動体を基準として
周波数が該基準の周波数となる振動体の固有振動数、又
はそれ以上の周波数となるように印加電圧の周波数を制
御し、振動体の振動振幅が極端に小さくなってしまう周
波数(固有振動数より低い周波数)にならないようにし
ている。
[Function] The sheet feeding device configured as described above always uses the vibrating body having a higher natural frequency as a reference among the two derived bodies, and the frequency of the vibrating body becomes the reference frequency, or The frequency of the applied voltage is controlled so that it becomes the above frequency, so that the vibration amplitude of the vibrating body does not become extremely small (a frequency lower than the natural frequency).

[実施例] 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Example] The present invention will be described in detail below based on an example shown in the drawings.

実施例1 第1図は本発明によるシート搬送装置の実施例1を示す
概略ブロック図である。
Embodiment 1 FIG. 1 is a schematic block diagram showing Embodiment 1 of a sheet conveying device according to the present invention.

1及び5は長円形状に形成された厚みのある振動体(以
下第1振動体、第2振動体と称す)で、適度な圧力にて
シート9を挟持しており、対向面と反対面には、位置的
にλ/4(えは波長)及び時間的に90°の位相がずれ
た2つの定在波を形成し、その合成によって進行性振動
波を形成するための2群の圧電素子区画3及び4.7及
び8が夫々設けられ、また振動体1及び5上に形成され
た進行性振動波の振動状態を検出するための検出用圧電
素子2及び6が夫々設けられている。なお、第1振動体
l及び第2振動体5は電気的にはグランド電位にしであ
る。
Reference numerals 1 and 5 denote thick vibrating bodies (hereinafter referred to as the first vibrating body and the second vibrating body) formed in an oval shape, which sandwich the sheet 9 with moderate pressure. , two groups of piezoelectrics are used to form two standing waves with a phase shift of λ/4 (wavelength) in position and 90° in time, and to form a progressive vibration wave by combining them. Element sections 3 and 4.7 and 8 are provided, respectively, and detection piezoelectric elements 2 and 6 for detecting the vibration state of the progressive vibration waves formed on the vibrators 1 and 5 are provided, respectively. . Note that the first vibrating body 1 and the second vibrating body 5 are electrically connected to the ground potential.

lOは第1位相差検出器で、第1検出用圧電素子2から
の信号と、第1振動体1の一方の圧電素子区画4に印加
する交流電圧の駆動信号とが入力されてその位相差を検
出する。11は第2位相差検出器で、第2検出用圧電素
子6からの信号と、第2振動体5の一方の圧電素子区画
8に印加する交流電圧の駆動信号が入力されてその位相
差を検出する。12は第1位相差検出器10で検出した
位相差信号と、第2位相差検出器11で検出した位相差
信号とが入力される小信号セレクタで、入力される位相
差の絶対値を比較して、小さい方の位相差信号を出力す
る。13は小信号セレクタ12から出力される位相差信
号と、駆動周波数設定回路(不図示)からの駆動周波数
設定信号との差を出力する差動増幅器、14は差動増幅
器13の出力信号を増幅及び積分するためのローパスフ
ィルタ(L、P、F ) 、15は圧電素子区画3.4
及び7.8に印加する交流電圧の周波数をローパスフィ
ルタ14の出力信号に応じて変化させるための電圧制御
発振器(V、C,O)である。16及び17は圧電素子
区画3と4に印加する交流電圧間の位相差及び、圧電素
子区画7と8に印加する交流電圧間の位相差を、移送方
向切換手段(不図示)からの移送方向切換信号がロー(
Low )の時には90°、またハイ(High)の時
には一90°夫々電圧制御発振器15の出力信号の位相
に対してずらした信号を発生させるための第1の90”
移相器及び第2の90°移相器である。 1g及び19
は、電圧制御発振器15の出力信号を増幅して圧電素子
区画4及び8に、また第1.第2の90°移相器16.
17の出力信号を増幅して夫々圧電素子区画3及び7に
印加するだめのパワーアンプである。
IO is a first phase difference detector, into which the signal from the first detection piezoelectric element 2 and the drive signal of the AC voltage applied to one piezoelectric element section 4 of the first vibrating body 1 are input, and the phase difference is detected. Detect. Reference numeral 11 denotes a second phase difference detector, which receives the signal from the second detection piezoelectric element 6 and the drive signal of the AC voltage applied to one piezoelectric element section 8 of the second vibrating body 5, and detects the phase difference. To detect. 12 is a small signal selector into which the phase difference signal detected by the first phase difference detector 10 and the phase difference signal detected by the second phase difference detector 11 are input, and the absolute value of the input phase difference is compared. Then, the smaller phase difference signal is output. 13 is a differential amplifier that outputs the difference between the phase difference signal output from the small signal selector 12 and the drive frequency setting signal from the drive frequency setting circuit (not shown); 14 is a differential amplifier that amplifies the output signal of the differential amplifier 13; and a low-pass filter (L, P, F) for integration, 15 is the piezoelectric element section 3.4
and 7.8 is a voltage controlled oscillator (V, C, O) for changing the frequency of the alternating current voltage applied according to the output signal of the low-pass filter 14. 16 and 17 change the phase difference between the AC voltages applied to the piezoelectric element sections 3 and 4 and the phase difference between the AC voltages applied to the piezoelectric element sections 7 and 8 in the transfer direction from the transfer direction switching means (not shown). The switching signal is low (
A first 90" signal for generating a signal shifted by 90 degrees when the output signal is low and by 90 degrees when the output signal is high.
a phase shifter and a second 90° phase shifter. 1g and 19
amplifies the output signal of the voltage controlled oscillator 15 and supplies it to the piezoelectric sections 4 and 8 and the first . Second 90° phase shifter 16.
This is a power amplifier for amplifying the output signal of 17 and applying it to piezoelectric element sections 3 and 7, respectively.

以上が本実施例の構造であるが、その動作を第2図に示
す図表を参照して説明する。
The structure of this embodiment has been described above, and its operation will be explained with reference to the diagram shown in FIG.

第2図は圧電素子区画3.4及び7.8に印加する交流
電圧の周波数と、振動検出用圧電素子2と6によって検
出される振動体1と5の振動振幅、及び圧電素子区画4
,8に印加する交流電圧と圧電素子区画4,8に交流電
圧を印加することによって発生する定在波の腹の位置で
、且つ圧電素子区画3.7によって発生する定在波の節
の位置となる位置を中心にして夫々設けられた振動検出
用圧電素子2.6によって検出される振動体1ど5の振
動検出信号との間の位相差の関係で、Fro及びF2゜
は振動体1及び5の固有振動数である。
Figure 2 shows the frequency of the AC voltage applied to the piezoelectric element sections 3.4 and 7.8, the vibration amplitude of the vibrating bodies 1 and 5 detected by the vibration detection piezoelectric elements 2 and 6, and the piezoelectric element section 4.
, 8 and the position of the antinode of the standing wave generated by applying the AC voltage to the piezoelectric element sections 4 and 8, and the position of the node of the standing wave generated by the piezoelectric element section 3.7. Fro and F2° are determined by the relationship between the phase difference between the vibration detection signals of the vibrating bodies 1 and 5 detected by the vibration detecting piezoelectric elements 2.6, which are respectively provided around the position of . and a natural frequency of 5.

このように構成されたシート搬送装置における振動体1
及び5の振動特性には、一般に軟性バネの振動特性にお
いてみられる振動の跳躍現象が現われる。
Vibrating body 1 in the sheet conveying device configured in this way
In the vibration characteristics of and 5, a vibration jump phenomenon that is generally observed in the vibration characteristics of a soft spring appears.

振動体lの振動特性を例として跳躍現象を説明すると、
圧電素子区画4に印加する交流電圧の振幅を一定とした
場合、該交流電圧の周波数を低い方から徐々に高くして
いくと、F 10付近の周波数においては、A点からB
点へと振動振幅が大きくなり、この時該交流電圧に対す
る振動検出用圧電素子2の出力信号の位相差は1点から
5点に移り、更に該周波数を高くすると、振動振幅はB
点から0点へと跳躍し、該位相差も5点からに点へ跳躍
する。また、交流電圧の周波数を高い方から低い方へ徐
々に下げてい(と、Flil付近の周波数においては、
0点からD点へと振動振幅が小さ(なり、位相差はに点
からL点へ移り、更に周波数を下げると、振動振幅はD
点からA点へと跳躍し、位相差もL点から1点へ跳躍す
る。
To explain the jumping phenomenon using the vibration characteristics of the vibrating body l as an example,
When the amplitude of the AC voltage applied to the piezoelectric element section 4 is constant, if the frequency of the AC voltage is gradually increased from a low level, at a frequency around F10, from point A to point B.
At this time, the phase difference of the output signal of the vibration detection piezoelectric element 2 with respect to the AC voltage shifts from 1 point to 5 points, and when the frequency is further increased, the vibration amplitude becomes B.
It jumps from point to 0 point, and the phase difference also jumps from point 5 to point. In addition, the frequency of the AC voltage is gradually lowered from high to low (at frequencies near Flil,
As the vibration amplitude becomes smaller (becomes) from point 0 to point D, the phase difference moves from point 2 to point L, and when the frequency is further lowered, the vibration amplitude becomes D
It jumps from point to point A, and the phase difference also jumps from point L to point 1.

ここで、圧電素子区画3.4及び7,8(こ印加してい
る周波数が初期状態においてFl。であったとすると、
第2図より振動体lの振動状態は大きく、振動体5の振
動状態は非常に小さい。このとき、第1位相差検出器1
oと第2位相差検出器11の出力信号の大きさを比較す
ると、第2図の位相差の特性より、振動体5の位相遅れ
量の方が小さいので、第2位相差検出器11の出力信号
の大きさの方が小さくなり、小信号セレクタ13の出力
は、第2位相差検出器11の出力信号となる。ここで、
駆動周波数設定信号を共振時における第1位相差検出器
10及び第2位相差検出器11の出力信号、すなわち位
相遅れが90°の時の第1位相差検出器10及び第2位
相差検出器11の出力信号と同じ値の信号とすると、差
動増幅器13によって第2位相検出器11の出力信号か
ら位相差−90°を示す信号を引いた差信号を出力する
。この差信号は正の信号となるので、ローパスフィルタ
14の出力信号は徐々に増加し、電圧制御発振器15を
介して第1の90゛移送器16及び第2の909移送器
17から出力される出力信号の周波数は高い方へ移って
行き、第2図より振動体5の位相差は、M点、N点を通
って0点に達する。ここで、0点は固有振動数Fanよ
り高い周波数であるので、さらに駆動回路は、以下に述
べる動作を行なう。
Here, if the frequency applied to the piezoelectric element sections 3.4, 7, and 8 is Fl in the initial state,
From FIG. 2, the vibration state of the vibrating body 1 is large, and the vibration state of the vibrating body 5 is very small. At this time, the first phase difference detector 1
Comparing the magnitude of the output signal of the second phase difference detector 11 with the magnitude of the output signal of the second phase difference detector 11, the amount of phase delay of the vibrating body 5 is smaller than the phase difference characteristics shown in FIG. The magnitude of the output signal becomes smaller, and the output of the small signal selector 13 becomes the output signal of the second phase difference detector 11. here,
The drive frequency setting signal is the output signal of the first phase difference detector 10 and the second phase difference detector 11 at the time of resonance, that is, the first phase difference detector 10 and the second phase difference detector when the phase delay is 90°. 11, the differential amplifier 13 outputs a difference signal obtained by subtracting a signal indicating a phase difference of -90° from the output signal of the second phase detector 11. Since this difference signal becomes a positive signal, the output signal of the low-pass filter 14 gradually increases and is outputted from the first 90° transfer device 16 and the second 909 transfer device 17 via the voltage controlled oscillator 15. The frequency of the output signal shifts to a higher level, and as can be seen from FIG. 2, the phase difference of the vibrating body 5 passes through points M and N and reaches 0 point. Here, since the 0 point is a frequency higher than the natural frequency Fan, the drive circuit further performs the operation described below.

第2図より0点の周波数においても0点までの動作と同
様に、小信号セレクタ12の出力信号は、第2位相差検
出器11の出力信号である0点での位相差を示す信号と
なり、差動増幅器13からは0点の位相差を示す信号か
ら位相差−90゜を示す信号を引いた差信号が出力され
る。この差信号は負となるので、ローパスフィルタ14
の出力信号は徐々に減少し、電圧制御発振器15を介し
て第1の90°移相器16及び第2の90°移相器17
から出力される出力信号の周波数は低くなって行き、印
加電圧の周波数がF2゜どなるように制御される。
From FIG. 2, even at the frequency of the 0 point, the output signal of the small signal selector 12 becomes a signal indicating the phase difference at the 0 point, which is the output signal of the second phase difference detector 11, in the same way as the operation up to the 0 point. , the differential amplifier 13 outputs a difference signal obtained by subtracting a signal indicating a phase difference of -90° from a signal indicating a phase difference at 0 point. Since this difference signal is negative, the low-pass filter 14
The output signal of gradually decreases and passes through the voltage controlled oscillator 15 to the first 90° phase shifter 16 and the second 90° phase shifter 17.
The frequency of the output signal output from the converter becomes lower, and the frequency of the applied voltage is controlled to be F2°.

また、駆動中に振動体1と振動体5の振動特性が環境の
変化等の影響で入れかわっても、同様の動作によって、
振動体1及び5の固有振動数のうち高い方の固有振動数
となるように第1の90°移相器16及び第2の90゛
移相器17がら出力される出力信号の周波数が制御され
る。
Furthermore, even if the vibration characteristics of the vibrating body 1 and the vibrating body 5 change due to changes in the environment during driving, the same operation will ensure that the
The frequency of the output signal output from the first 90° phase shifter 16 and the second 90° phase shifter 17 is controlled so that the natural frequency is the higher one of the natural frequencies of the vibrators 1 and 5. be done.

なお本実施例は、振動検出用圧電素子を設けて振動体の
振動状態を検出するようにしているが、圧電素子区画4
.8に印加する電圧と流入する電流との位相差や、電流
量等と周波数との関係を予め測定しておけば、同様にし
て高い共振周波数を有する方の振動体の共振周波数以上
の周波数に制御できる。
In this embodiment, a piezoelectric element for vibration detection is provided to detect the vibration state of the vibrating body, but the piezoelectric element section 4
.. If you measure in advance the phase difference between the voltage applied to 8 and the current flowing in, and the relationship between the amount of current and the frequency, you can similarly adjust the frequency to be higher than the resonant frequency of the vibrating body that has a higher resonant frequency. Can be controlled.

実施例2 上記した実施例1は駆動用圧電素子区画に印加する電圧
に対する振動体の振動の移送遅れ量に注目して、該振動
体の固有振動数を検知して制御するようにしたが、本実
施例は振動体の振動振幅に着目して、2つの振動体1及
び5の振動振幅のうち大きい方の振幅が規定の振幅とな
るように印加電圧の周波数を変化させるようにしたもの
で、第3図に本実施例による駆動回路を示す。
Embodiment 2 In Embodiment 1 described above, the natural frequency of the vibrating body is detected and controlled by focusing on the amount of delay in transferring the vibration of the vibrating body with respect to the voltage applied to the driving piezoelectric element section. In this embodiment, focusing on the vibration amplitude of the vibrating body, the frequency of the applied voltage is changed so that the larger of the vibration amplitudes of the two vibrating bodies 1 and 5 becomes a specified amplitude. , FIG. 3 shows a drive circuit according to this embodiment.

実施例1と異なるところは1位相差検出器に代えて、振
動検出用圧電素子2.6の出力電圧の振幅を検出するた
めの第1 AC−DC変換器(AC/DC) 20、第
2 AC−DC変換器(AC/DC) 21を設け、ま
た小信号セレクタに代えて、第1゜第2 AC−DC変
換器20.21の出力電圧のうち大きい方の信号を出力
する大信号セレクタ22を設けた点で、他は同じ構成と
している。
The difference from the first embodiment is that instead of using a phase difference detector, there is a first AC-DC converter (AC/DC) 20 and a second AC-DC converter (AC/DC) for detecting the amplitude of the output voltage of the vibration detection piezoelectric element 2.6. An AC-DC converter (AC/DC) 21 is provided, and instead of the small signal selector, there is a large signal selector that outputs the larger signal of the output voltages of the first and second AC-DC converters 20 and 21. 22, the other configurations are the same.

本実施例の動作を第2図を参照しながら以下に説明する
The operation of this embodiment will be explained below with reference to FIG.

電圧制御発振器15の出力信号の周波数を高い方から下
げてい(と、振動体1及び5の振動振幅は増加して行(
。このとき、振動体lの振動振幅に対して振動体5の振
動振幅が大きいので、大信号セレクタ22の出力は、振
動体5の振動振幅に対する電圧となり、駆動周波数設定
信号に対応する振動振幅となるように、電圧制御発振器
15の出力信号の周波数が制御される。
As the frequency of the output signal of the voltage controlled oscillator 15 is lowered from the highest (and the vibration amplitudes of the vibrators 1 and 5 are increased) (
. At this time, since the vibration amplitude of the vibrating body 5 is larger than the vibration amplitude of the vibrating body 1, the output of the large signal selector 22 becomes a voltage corresponding to the vibration amplitude of the vibrating body 5, and the vibration amplitude corresponding to the drive frequency setting signal. The frequency of the output signal of the voltage controlled oscillator 15 is controlled so that.

ここで、もし振動体5の振幅が駆動周波数設定信号に対
応する振幅より小さくなったとすると、差動増幅器13
の出力は負となり、ローパスフィルタ14の出力電圧が
減少して行き、電圧制御発振器15の出力信号の周波数
が下がり、その結果振動体5の振幅が増加して行き、駆
動周波数設定信号に対応する振幅となる。すなわち、高
い共振周波数を有する方の振動体の共振周波数以上の周
波数に制御されることになる。
Here, if the amplitude of the vibrating body 5 becomes smaller than the amplitude corresponding to the drive frequency setting signal, the differential amplifier 13
The output becomes negative, the output voltage of the low-pass filter 14 decreases, the frequency of the output signal of the voltage controlled oscillator 15 decreases, and as a result, the amplitude of the vibrating body 5 increases, corresponding to the drive frequency setting signal. It becomes the amplitude. In other words, the frequency is controlled to be higher than the resonant frequency of the vibrating body having a higher resonant frequency.

[発明の効果] 以上説明してきたように、本発明によれば、シートを挟
持して送る2つの振動体の固有振動数のうち、高い方の
周波数又はそれ以上の周波数で駆動するので、振動振幅
が極端に小さくなることがなくなり、環境温度の変化が
生じても常に安定してシートを送ることができる。
[Effects of the Invention] As explained above, according to the present invention, the two vibrating bodies that sandwich and feed the sheet are driven at the higher frequency or higher frequency among the natural frequencies of the two vibrating bodies, so that the vibration is reduced. The amplitude does not become extremely small, and sheets can always be fed stably even when environmental temperature changes.

また、両派動体の振動振幅が比較的大きくとれる、すな
わち片方の振動振幅が極端に小さ(ならないので、駆動
用圧電素子等の電気−機械エネルギー変換素子に印加す
る交流電圧を小さくできるため、電源や圧電素子等のコ
ストを低減できる。
In addition, since the vibration amplitudes of both derivatives can be relatively large, that is, the vibration amplitude of one side is not extremely small, the AC voltage applied to the electric-mechanical energy converting element such as the drive piezoelectric element can be reduced, so the power supply and The cost of piezoelectric elements etc. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるシート送り装置の実施例1の概略
ブロック図、第2図は振動体の振動特性図、第3図は実
施例2の概略ブロック図、第4図はシート送り装置の動
作原理を説明するための図である。 l 。 2゜ 3゜ 9 : 10゜ 12: 13: 14: 15: 16゜ 20゜ 22= 5:振動体 6:振動検出用圧電素子 4.7.8:圧電素子区画 シート 11:位相検出器 小信号セレクタ 差動増幅器 ローパスフィルタ 電圧制御発振器 17:90″移相器 21 : AC−DC変換器 大信号変換器 第2図 周 波 数 錦4図 =)
Fig. 1 is a schematic block diagram of Embodiment 1 of a sheet feeding device according to the present invention, Fig. 2 is a vibration characteristic diagram of a vibrating body, Fig. 3 is a schematic block diagram of Embodiment 2, and Fig. 4 is a schematic block diagram of a sheet feeding device according to the present invention. FIG. 3 is a diagram for explaining the principle of operation. l. 2゜3゜9: 10゜12: 13: 14: 15: 16゜20゜22 = 5: Vibrating body 6: Piezoelectric element for vibration detection 4.7.8: Piezoelectric element partition sheet 11: Phase detector small signal Selector Differential amplifier Low pass filter Voltage controlled oscillator 17: 90'' Phase shifter 21: AC-DC converter Large signal converter Fig. 2 Frequency brochure Fig. 4 =)

Claims (1)

【特許請求の範囲】 弾性材料製の一対の振動体間に被搬送体の シートを挾持し、該一対の振動体には夫々2群の電気−
機械エネルギー変換素子区画を、群内では等ピッチλ/
2にて且つ電圧印加時の伸縮の極性が交互に逆であるよ
うに、而して群間にはλ/4の奇数倍のずれがあるよう
に配列固着し、該電気−機械エネルギー変換素子区画の
2群間、及び双方の振動体の各一方の電気−機械エネル
ギー変換素子区画間に互いに90゜の時間的位相差を有
する交流電圧を夫々印加することによって、該各振動体
に上記夫々の群によって発生された互いにλ/4だけず
れた2つの定在波(波長λ)の合成として波長λの進行
波をシート搬送面に対し対称で同方向に生ぜじめ、以て
双方の振動体に挟持されるシートを進行性振動波の進行
方向と逆方向に搬送するシート送り装置において、 該2つの振動体の共振状態を夫々検出する共振状態検出
手段と、該各共振状態検出手段からの検出情報に基づき
2つの該振動体の内固有振動数の高い方の振動体の固有
振動数を選択し、選択した固有振動数又はそれ以上の周
波数となるように、該各振動体の電気−機械エネルギー
変換素子区画へ上記した時間的位相差を有して交流電圧
を印加制御する印加電圧制御手段とを備えたことを特徴
とするシート送り装置。
[Claims] A sheet of an object to be conveyed is sandwiched between a pair of vibrating bodies made of an elastic material, and each of the pair of vibrating bodies is provided with two groups of electric currents.
The mechanical energy conversion element sections are arranged at equal pitch λ/ within the group.
2, the electro-mechanical energy conversion elements are arranged and fixed so that the polarities of expansion and contraction are alternately reversed when a voltage is applied, and there is a shift of an odd multiple of λ/4 between the groups. By applying alternating current voltages having a temporal phase difference of 90° between the two groups of sections and between the electro-mechanical energy conversion element sections of each one of both vibrating bodies, each of the vibrating bodies is A traveling wave of wavelength λ is generated as a composite of two standing waves (wavelength λ) that are shifted by λ/4 from each other and generated by the group of . In a sheet feeding device that conveys a sheet held between bodies in a direction opposite to the traveling direction of progressive vibration waves, a resonant state detecting means for detecting a resonant state of each of the two vibrating bodies, and a resonant state detecting means for each of the resonant state detecting means. Based on the detected information, select the natural frequency of the vibrating body with a higher natural frequency among the two vibrating bodies, and adjust the electricity of each vibrating body so that the frequency is equal to or higher than the selected natural frequency. - Applied voltage control means for controlling application of an alternating voltage to the mechanical energy conversion element section with the above-mentioned temporal phase difference.
JP1010379A 1989-01-19 1989-01-19 Sheet feed device Pending JPH02193835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010379A JPH02193835A (en) 1989-01-19 1989-01-19 Sheet feed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010379A JPH02193835A (en) 1989-01-19 1989-01-19 Sheet feed device

Publications (1)

Publication Number Publication Date
JPH02193835A true JPH02193835A (en) 1990-07-31

Family

ID=11748499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010379A Pending JPH02193835A (en) 1989-01-19 1989-01-19 Sheet feed device

Country Status (1)

Country Link
JP (1) JPH02193835A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273876A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Driving method of supersonic motor
US5348287A (en) * 1991-10-29 1994-09-20 Canon Kabushiki Kaisha Sheet feeding apparatus using a vibration wave to convey sheets
JP2007049881A (en) * 2005-08-12 2007-02-22 Konica Minolta Opto Inc Drive device
JP2008160913A (en) * 2006-12-21 2008-07-10 Olympus Corp Ultrasonic motor
JP2014135888A (en) * 2014-03-20 2014-07-24 Canon Inc Device and method of driving vibration type actuator
JP2018186679A (en) * 2017-04-27 2018-11-22 セイコーエプソン株式会社 Control apparatus for vibration actuator, method for controlling vibration actuator, robot, electronic component conveying apparatus, printer, projector, and vibration device
JP2019193340A (en) * 2018-04-19 2019-10-31 シンフォニアテクノロジー株式会社 Control device for vibration system and work transfer device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273876A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Driving method of supersonic motor
US5348287A (en) * 1991-10-29 1994-09-20 Canon Kabushiki Kaisha Sheet feeding apparatus using a vibration wave to convey sheets
JP2007049881A (en) * 2005-08-12 2007-02-22 Konica Minolta Opto Inc Drive device
JP2008160913A (en) * 2006-12-21 2008-07-10 Olympus Corp Ultrasonic motor
JP2014135888A (en) * 2014-03-20 2014-07-24 Canon Inc Device and method of driving vibration type actuator
JP2018186679A (en) * 2017-04-27 2018-11-22 セイコーエプソン株式会社 Control apparatus for vibration actuator, method for controlling vibration actuator, robot, electronic component conveying apparatus, printer, projector, and vibration device
JP2019193340A (en) * 2018-04-19 2019-10-31 シンフォニアテクノロジー株式会社 Control device for vibration system and work transfer device

Similar Documents

Publication Publication Date Title
US6806620B1 (en) Piezoelectric drive excited by longitudinal and flexural waves
US7005776B1 (en) Ultrasonic motor and electronic apparatus equipped with ultrasonic motor
JPH02193835A (en) Sheet feed device
JP2705820B2 (en) Vibration wave motor device
EP0635930B1 (en) Ultrasonic motor and ultrasonic wave conveying device
JP2604862B2 (en) Vibration wave drive
EP0539950B1 (en) Sheet feeding apparatus
EP0718899A2 (en) Vibration actuator
JPH02193836A (en) Sheet feed device
JP2001157473A (en) Vibrator with electromechanical energy converter as vibration source, oscillating wave driver with vibrator as drive source, apparatus having oscillating wave driver and conveyor with vibrator as conveying source
US6700305B2 (en) Actuator using a piezoelectric element
JPS61221584A (en) Drive circuit of vibration wave motor
JPH072022B2 (en) Ultrasonic motor driving method
JPH0336129A (en) Sheet feeding device
JPH02225246A (en) Sheet sending device
JP2636280B2 (en) Driving method of ultrasonic motor
JPH07213078A (en) Ultrasonic motor
JPH02225247A (en) Sheet feeding device
JPH01177881A (en) Vibrator for ultrasonic motor
JPH0226282A (en) Ultrasonic motor
JPH01110070A (en) Driving method for supersonic motor
JPH0714275B2 (en) Vibration wave motor device
JPH08140376A (en) Driver employing ultrasonic motor
JPH03256946A (en) Sheet feed device
JPS63125100A (en) Ultrasonic oscillator