JPH02192537A - Indoor absolute pressure controller device - Google Patents

Indoor absolute pressure controller device

Info

Publication number
JPH02192537A
JPH02192537A JP1009049A JP904989A JPH02192537A JP H02192537 A JPH02192537 A JP H02192537A JP 1009049 A JP1009049 A JP 1009049A JP 904989 A JP904989 A JP 904989A JP H02192537 A JPH02192537 A JP H02192537A
Authority
JP
Japan
Prior art keywords
pressure
air
fan
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1009049A
Other languages
Japanese (ja)
Other versions
JP2562364B2 (en
Inventor
Masayoshi Sakuma
正芳 佐久間
Masayuki Maeda
真之 前田
Toshihiko Yamazaki
俊彦 山崎
Koichi Matsuda
松田 弘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP1009049A priority Critical patent/JP2562364B2/en
Publication of JPH02192537A publication Critical patent/JPH02192537A/en
Application granted granted Critical
Publication of JP2562364B2 publication Critical patent/JP2562364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To facilitate a countermeasure against a sealing in a room by a method wherein either a pressurizing fan or a discharging fan is mounted in a surrounding atmosphere taking system or in an indoor air discharging system and in case of using the pressurizing fan, a set pressure is always higher than a surrounding atmosphere and in turn in case of using the dscharging fan, the set pressure is always lower than a suounding atmosphere pressure. CONSTITUTION:An amount of air supplied to an air conditioner 4 is detected by an amount of air sensor 1. A controlling part 21 having its detecting signal as a feed-back signal may control a degree of opening of an amount of air adjusting valve 3 in such a way as an amount of supplying air to the air conditioner becomes constant and at the same time it may control the number of revolution of a pressurizing fan 2. A degree of opening of a pressure adjusting valve 14 is controlled by the controller part 21 in response to a detected pressure value of an absolute pressure gauge 15 and an amount of discharged air from the chamber 6 is controlled. In case of setting a set pressure, the pressure is always set to a higher value than a varying range of a surrounding atmospheric pressure. With this setting,the air discharging fan is eliminated. In turn, if the set value is always set to a value lower than the varying range of the surrounding air pressure, resulting in that the situation becomes a state in which the pressurizing fan 2 is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は室内の絶対圧力制御装置に係り、特に、大気圧
の変動にかかわらず室内の絶対圧力を設定圧力に精密に
制御するための室内の絶対圧力制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an indoor absolute pressure control device, and particularly to an indoor absolute pressure control device for precisely controlling the indoor absolute pressure to a set pressure regardless of fluctuations in atmospheric pressure. This invention relates to an absolute pressure control device.

〔従来の技術〕[Conventional technology]

半導体を始めとした微細加工産業分野においては、精密
位置決め用装置が多く用いられており、一般に、この種
の装置には、光学的測長器が備えられている。しかし、
雰囲気の圧力、すなわち気圧が変動すると、測長空間の
屈折率が変化し、その結果、測長器の原理上から測長誤
差が生じ、精密位置決めが困難になる。したがって、光
学的測長器を用いる場合、それが設置される環境の絶対
圧力を一定に保つような制御が必要とされる。
2. Description of the Related Art Precision positioning devices are often used in the microfabrication industry including semiconductors, and generally, this type of device is equipped with an optical length measuring device. but,
When the pressure of the atmosphere, that is, the atmospheric pressure, changes, the refractive index of the length measurement space changes, and as a result, a length measurement error occurs due to the principle of the length measurement device, making precise positioning difficult. Therefore, when using an optical length measuring device, control is required to keep the absolute pressure of the environment in which it is installed constant.

第5図は従来の絶対圧力制御装置の一例を示す構成図で
ある。図に示すように、外気取入口には、その取り込み
風量を検出するための風量検出器1が設けられ、その後
段には加圧ファン2が設けられている。加圧ファン2に
は風量調節弁3が接続され、後段の空調機4への供給風
量が調節される。
FIG. 5 is a configuration diagram showing an example of a conventional absolute pressure control device. As shown in the figure, an air volume detector 1 for detecting the intake air volume is provided at the outside air intake port, and a pressurizing fan 2 is provided at its rear stage. An air volume control valve 3 is connected to the pressurizing fan 2, and the volume of air supplied to the subsequent air conditioner 4 is adjusted.

制御対象の室6の天井部には、空気濾過フィルタ5が設
けられ、この空気濾過フィルタ5に空調機4が連結され
ている。室6の側壁には室6内の空気を空調機4及び空
気濾過フィルタ5を経由して循環させるための、循環空
気口11が設けられ、その出口は空調機40入口に接続
されている。また、室6の底部には、室内の空気を外部
へ排出するだめの排出空気口12が設けられ、この排出
空気口12には排気ファン13が連結されている。
An air filtration filter 5 is provided on the ceiling of the room 6 to be controlled, and an air conditioner 4 is connected to this air filtration filter 5. A circulating air port 11 is provided on the side wall of the chamber 6 for circulating the air in the chamber 6 via the air conditioner 4 and the air filtration filter 5, and its outlet is connected to the inlet of the air conditioner 40. Furthermore, an exhaust air port 12 is provided at the bottom of the chamber 6 for discharging indoor air to the outside, and an exhaust fan 13 is connected to this exhaust air port 12.

さらに、排気ファン13には、室内圧を調節するための
圧力調節弁14が接続されている。また、室6内には室
内絶対圧力を検出するための絶対圧力計15が設置され
ている。
Further, the exhaust fan 13 is connected to a pressure regulating valve 14 for regulating indoor pressure. Furthermore, an absolute pressure gauge 15 is installed in the chamber 6 to detect the absolute pressure in the room.

加圧ファン2、風量調節弁3、排気ファン13及び圧力
調節弁14の各々を制御するために制御部21が設けら
れ、この制御部21は風量検出器1及び絶対圧力計15
の各出力信号を人力として制御動作を実行する。制御部
21は、CPU (中央処理装置)、プログラムを格納
したROM (’J−ド・オンリー・メモリ)、データ
などを一時的に記憶するRAM(ランダム・アクセス、
メモリ)のほか外部との接続の為のインターフェース回
路などを備えたマイクロコンピュータを用いて構成され
ている。
A control unit 21 is provided to control each of the pressurizing fan 2, the air volume control valve 3, the exhaust fan 13, and the pressure control valve 14.
Control operations are performed using each output signal as human power. The control unit 21 includes a CPU (central processing unit), a ROM ('J-only memory) that stores programs, and a RAM (random access, memory) that temporarily stores data, etc.
It is constructed using a microcomputer equipped with memory (memory) and an interface circuit for external connection.

以上の構成において、加圧ファン2によって取りこまれ
た空気は、風量調節弁3を介して空調機4へ送りこまれ
、所定の風量となるように調整されたのち、空気濾過フ
ィルタ5を介して室6へ供給される。このとき、風量検
出器1による検出値をフィードバック信号とする制御部
21によって、風量調節弁3の弁開度及び加圧ファン2
0回転数を制御し、空調機4へ供給される外気量が一定
値になるように調整する。
In the above configuration, the air taken in by the pressurizing fan 2 is sent to the air conditioner 4 via the air volume control valve 3, adjusted to a predetermined air volume, and then passed through the air filtration filter 5. It is supplied to chamber 6. At this time, the control unit 21 which uses the detected value by the air volume detector 1 as a feedback signal controls the valve opening degree of the air volume control valve 3 and the pressure fan 2.
The zero rotation speed is controlled and the amount of outside air supplied to the air conditioner 4 is adjusted to a constant value.

一方、絶対圧力計15により検出された圧力値に基づい
て、制御部21は圧力調節弁14の弁開度及び排気ファ
ン130回転数を調節し、室6から排出される空気量を
制御する。
On the other hand, based on the pressure value detected by the absolute pressure gauge 15, the control unit 21 adjusts the opening degree of the pressure regulating valve 14 and the rotation speed of the exhaust fan 130, thereby controlling the amount of air discharged from the chamber 6.

第6図は風量調節弁3及び圧力調節弁14に用いられて
いる従来の弁の弁開度に対する流量比及び弁出入ロ圧力
差の各特性を示す特性図である。
FIG. 6 is a characteristic diagram showing the characteristics of the flow rate ratio and valve inlet/outlet pressure difference with respect to the valve opening degree of conventional valves used for the air volume control valve 3 and the pressure control valve 14.

第6図において、弁開度と風量、圧力の関係に直線的な
一対一の相互関係が認められるのは、開度20〜50%
の範囲であり、20%以下の開度では、僅かな開度変化
に対し大きな風量、圧力の変化が伴う。また、60%以
上では開度を変化させた場合、風量、圧力はそれほど変
わらない。
In Figure 6, a linear one-to-one correlation is observed between the valve opening, air volume, and pressure at an opening of 20 to 50%.
When the opening degree is 20% or less, a small change in the opening degree is accompanied by a large change in air volume and pressure. Further, when the opening is 60% or more, the air volume and pressure do not change much when the opening degree is changed.

第7図は第6図に示した特性の弁を用いて絶対圧力制御
を行う場合の従来の制御例を示すフローチャートである
FIG. 7 is a flowchart showing a conventional control example when absolute pressure control is performed using a valve having the characteristics shown in FIG.

まず、室6内の設定圧力を入力しくステップ51)、つ
いで風量調節弁3及び圧力調節弁14の各弁開度を所定
開度、例えば35%に調節する(ステップ52)。そし
て、加圧ファン2及び排気ファン13を所定の回転数で
動作するように制御部21によって制御する(ステップ
53)。
First, the set pressure in the chamber 6 is input (step 51), and then the opening degrees of the air volume control valve 3 and the pressure control valve 14 are adjusted to a predetermined opening degree, for example, 35% (step 52). Then, the control unit 21 controls the pressurizing fan 2 and the exhaust fan 13 to operate at a predetermined rotation speed (step 53).

次に、風量検出器1によって外気導入量(風量)を検出
し、絶対圧力計15によって室6内の絶対圧力を検出し
くステップ54)、最初に外気導入量が制御範囲内にあ
るか否かを判定しくステップ55)、範囲内であれば続
いて絶対圧力が制御範囲内であるか否かを判定する(ス
テップ56)。
Next, the amount of outside air introduced (air amount) is detected by the airflow detector 1, and the absolute pressure inside the chamber 6 is detected by the absolute pressure gauge 15 (step 54). First, whether or not the amount of outside air introduced is within the control range If it is within the range, it is then determined whether the absolute pressure is within the control range (step 56).

外気導入量が制御範囲外の場合、風量調節弁3の弁開度
が直線的な一対一の相互関係が認められる範囲内、すな
わち20〜50%以内にあるか否かを判定(ステップ5
7)し、範囲内であれば検出値に従って風量調節弁3の
弁開度を制御(ステップ58)する。また、風景調節弁
3の弁開度が20〜50%の範囲に無い場合には、風量
調節弁の弁開度を制御することなく加圧ファン2の回転
数を制御する(ステップ59)。
If the amount of outside air introduced is outside the control range, it is determined whether the opening degree of the air volume control valve 3 is within a range where a linear one-to-one correlation is recognized, that is, within 20 to 50% (step 5
7), and if it is within the range, the valve opening of the air volume control valve 3 is controlled according to the detected value (step 58). Further, if the valve opening degree of the landscape control valve 3 is not within the range of 20 to 50%, the rotation speed of the pressurizing fan 2 is controlled without controlling the valve opening degree of the air volume control valve (step 59).

ステップ57〜59で行った制御と同様の制御は、絶対
圧力が制御範囲外の場合にも同様に実施される。すなわ
ち、風量調節弁3に代えて圧力調節弁14の弁開度の判
定をステップ60で行い、制御範囲内であればステップ
61で弁開度を制御し、制御範囲外であれば排気ファン
13の回転数を制御する(ステップ62)。
Controls similar to those performed in steps 57 to 59 are similarly performed even when the absolute pressure is outside the control range. That is, the valve opening of the pressure regulating valve 14 instead of the air volume regulating valve 3 is determined in step 60, and if it is within the control range, the valve opening is controlled in step 61, and if it is outside the control range, the exhaust fan 13 is (step 62).

以上のように、従来の絶対圧力制御方式は、風量調節弁
3及び圧力調節弁14を共に弁開度と風量、圧力との関
係に直線的な一対一の相互関係が認められる範囲内の弁
開度で制御できるように、常に加圧ファン2及び排気フ
ァン13の回転数を、制御部2Iによって制御していた
。また、空調機4への空気供給量を一定に保つために、
風量調節弁3の弁開度及び加圧ファン2の回転数を調節
する制御を制御部21で行っていた。
As described above, in the conventional absolute pressure control method, both the air volume control valve 3 and the pressure control valve 14 are controlled within a range where a linear one-to-one correlation is recognized in the relationship between the valve opening degree, air volume, and pressure. The rotation speeds of the pressurizing fan 2 and the exhaust fan 13 were always controlled by the control unit 2I so that they could be controlled by the opening degree. In addition, in order to keep the air supply amount to the air conditioner 4 constant,
The control unit 21 controls the opening degree of the air volume control valve 3 and the rotation speed of the pressurizing fan 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の室内の絶対圧力制御装置では、設定圧力
が任意に設定できるために、次のような問題が生じる。
However, in the conventional indoor absolute pressure control device, since the set pressure can be set arbitrarily, the following problems occur.

すなわち、設定圧力を例えば、I D 13mbarに
設定した場合、大気圧の1年間の変動範囲は990 m
bar 〜1030 mbar程度であり、室6内の絶
対圧力が大気圧に比べ陽圧になり、或いは除圧になる。
In other words, if the set pressure is set to, for example, ID 13 mbar, the atmospheric pressure fluctuation range in one year is 990 mbar.
bar to 1030 mbar, and the absolute pressure inside the chamber 6 becomes positive pressure compared to atmospheric pressure or becomes depressurized.

このため、陽圧と除圧の両方に対する室6のシール対策
を施す必要があった。
Therefore, it was necessary to take measures to seal the chamber 6 against both positive pressure and depressurization.

また、室6内の絶対圧力を常に大気圧より高い値(例え
ば、1035 mbar)で制御する場合、室外の圧力
、すなわち大気圧が低くなって弁開度が50%に近づく
と共に圧力調節弁14の弁開度が20%に近づく為、制
御部21は風量検出器1の回転数を上げ、もしくは排気
ファン13の回転数を下げるように制御する。ところが
、このような制御では加圧ファンや排気ファンの回転数
の変更に伴って外気導入量や室内の絶対圧力に大きな変
動(ハンチング)を生じさせ、精密な制御が出来ないと
う問題がある。
Furthermore, when the absolute pressure inside the chamber 6 is always controlled at a value higher than the atmospheric pressure (for example, 1035 mbar), the pressure outside the room, that is, the atmospheric pressure becomes low and the valve opening approaches 50%, and the pressure control valve 14 As the valve opening approaches 20%, the control unit 21 controls the airflow detector 1 to increase the rotational speed or the exhaust fan 13 to decrease the rotational speed. However, this kind of control has the problem that precise control is not possible because large fluctuations (hunting) occur in the amount of outside air introduced and the absolute indoor pressure due to changes in the rotational speed of the pressurizing fan and exhaust fan.

本発明の第1の目的は、室のシール対策を簡単にするこ
とが可能な室内の絶対圧力制御装置を提供することにあ
る。
A first object of the present invention is to provide an absolute pressure control device for a room that can simplify measures for sealing the room.

また、本発明の第2の目的は、室内の絶対圧力を精密に
制御できると共に室内への外気導入量を一定に制御する
ことのできる室内の絶対圧力制御装置を提供することに
ある。
A second object of the present invention is to provide an indoor absolute pressure control device that can precisely control the indoor absolute pressure and also control the amount of outside air introduced into the room at a constant level.

〔課題を解決するための手段〕[Means to solve the problem]

上記の第1の目的を達成するために、本発明は、第1の
調節弁を介して供給された外気を圧力制御対象室内へ供
給する空調機と、前記室内からの排出空気量を調整する
第2の調節弁と、前記室内の圧力を検出する圧力計と、
前記圧力計の検出出力及び設定圧力に基づいて前記第1
の調節弁及び第2の調節弁の弁開度を制御する制御部と
を備えた室内の絶対圧力制御装置において、外気取込系
に設置される加圧ファンまたは室内空気排出系に設置さ
れる排気ファンの少なくとも一方を設置すると共に、前
記加圧ファンを設置した場合には前記設定圧力を常時大
気圧より高くし、前記排気ファンを設けた場合には前記
設定圧力を常時大気圧より低くすることを特徴とする。
In order to achieve the above first object, the present invention provides an air conditioner that supplies outside air supplied through a first control valve into a pressure-controlled room, and adjusts the amount of air discharged from the room. a second control valve; a pressure gauge that detects the pressure inside the chamber;
the first pressure based on the detected output of the pressure gauge and the set pressure;
An indoor absolute pressure control device comprising a control valve and a control unit that controls the valve opening of the second control valve, which is installed in a pressurizing fan installed in an outside air intake system or in an indoor air exhaust system. At least one of the exhaust fans is installed, and when the pressurizing fan is installed, the set pressure is always higher than atmospheric pressure, and when the exhaust fan is installed, the set pressure is always lower than atmospheric pressure. It is characterized by

また、上記の第2の目的を達成するために、本発明は、
第1の調節弁を介して供給された外気を圧力制御対象室
内へ供給する空調機と、前記室内からの排出空気量を調
整する第2の調節弁と、外気取込系または室内空気排出
系に設置されたファンと、前記室内の圧力を検出する圧
力計と、前記圧力計の検出出力及び設定圧力に基づいて
前記第1の調節弁及び第2の調節弁の弁開度を制御する
制御部とを備えた室内の絶対圧力制御装置において、大
気圧を検出する大気圧センサを設け、該大気圧センサに
よる大気圧と設定圧力との差圧に基づいて前記ファンの
回転数を一定にしたまま前記第1の調節弁及び第2の調
節弁の弁開度を制御することを特徴とする。
Moreover, in order to achieve the above second objective, the present invention
An air conditioner that supplies outside air supplied through a first control valve into a pressure-controlled room, a second control valve that adjusts the amount of air discharged from the room, and an outside air intake system or an indoor air exhaust system. a fan installed in the room, a pressure gauge that detects the pressure in the room, and control that controls the valve opening degrees of the first control valve and the second control valve based on the detected output of the pressure gauge and the set pressure. In the indoor absolute pressure control device, an atmospheric pressure sensor for detecting atmospheric pressure is provided, and the rotation speed of the fan is kept constant based on the differential pressure between the atmospheric pressure measured by the atmospheric pressure sensor and a set pressure. The valve opening degree of the first control valve and the second control valve is controlled simultaneously.

〔作用〕[Effect]

上記手段によれば、設定圧力を大気圧より常に高くし、
或いは低くすることにより、圧力制御対象室内には陽圧
または除圧の一方のみが生じる状態1ごなる。従って、
一方の圧力に対するシール対策のみを得えばよい。また
、これにより、加圧ファン又は排気ファンの一方を設定
圧力に応じて設けるのみでよく、ローコストに設備を構
成することができる。
According to the above means, the set pressure is always higher than atmospheric pressure,
Alternatively, by lowering the pressure, a state 1 is created in which only either positive pressure or depressurization occurs in the chamber to be controlled. Therefore,
It is only necessary to obtain a sealing measure against one pressure. Furthermore, it is only necessary to provide either a pressurizing fan or an exhaust fan depending on the set pressure, and the equipment can be configured at low cost.

また、大気圧センサで検出した大気圧と設定圧力との差
圧に基づいて第1の調節弁及び第2の調節弁の弁開度が
制御され、ファンの回転数は一定のままにされる。この
ように回転数を一定にすることにより、回転変化に起因
する風量及び室内圧に急激な変化を生じることが無く、
精密な制御が可能になる。
Furthermore, the valve openings of the first and second control valves are controlled based on the differential pressure between the atmospheric pressure and the set pressure detected by the atmospheric pressure sensor, and the rotation speed of the fan remains constant. . By keeping the rotation speed constant in this way, sudden changes in air volume and indoor pressure due to changes in rotation will not occur.
Precise control becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明による室内の絶対圧力制御装置の一実施
例を示す構成図である。第1図においては、第5図と同
一であるものには同一の符号を用いたので、以下におい
ては重複する説明は省略する 本実施例が第5図の構成と異なるところは、排気ファン
13を除去したことにある。
FIG. 1 is a block diagram showing an embodiment of an indoor absolute pressure control device according to the present invention. In FIG. 1, the same reference numerals are used for the same components as in FIG. This is due to the removal of the .

このような構成において、風量検出器1から第1の調節
弁としての風量調節弁3を介して空調機4に供給される
外気量は、風量検出器1によって検出され、この検出信
号をフィードバック信号とする制御部21は、空調機4
への供給量が一定風量となるように風量調節弁3の弁開
度を制御すると共に、加圧ファン2の回転数を制御する
。また、室6内の絶対圧力は、絶対圧力計15の圧力検
出値に基づいて制御部21が第2の調節弁としての圧力
調節弁14の弁開度を制御し、室6からの排気量を制御
することにより行われる。
In such a configuration, the amount of outside air supplied from the air volume detector 1 to the air conditioner 4 via the air volume control valve 3 as the first control valve is detected by the air volume detector 1, and this detection signal is used as a feedback signal. The control unit 21 that controls the air conditioner 4
The opening degree of the air volume control valve 3 is controlled so that the amount of air supplied to the fan 2 is constant, and the rotation speed of the pressurizing fan 2 is controlled. Further, the absolute pressure in the chamber 6 is determined by the control unit 21 controlling the valve opening degree of the pressure regulating valve 14 as a second regulating valve based on the pressure detection value of the absolute pressure gauge 15, and controlling the exhaust amount from the chamber 6. This is done by controlling the

そして、設定圧力の設定に際しては、常に大気圧の変動
範囲(990mbar〜1030 mbar)より高い
値に設定する。この設定により、室6内の絶対圧力は常
に大気圧より高くなるため、陽圧に対するシール対策の
みを行えば良いことになる。しかも、排気ファンが不要
になるため、設備コストも安くすることができる。上記
のように制御するときのフローチャートを第8図に示す
。なお、第8図において第7図と対応する部分には同一
符号を付した。
When setting the set pressure, it is always set to a value higher than the atmospheric pressure fluctuation range (990 mbar to 1030 mbar). With this setting, the absolute pressure inside the chamber 6 is always higher than the atmospheric pressure, so it is only necessary to take measures for sealing against positive pressure. Furthermore, since an exhaust fan is not required, equipment costs can be reduced. A flowchart for controlling as described above is shown in FIG. In FIG. 8, parts corresponding to those in FIG. 7 are given the same reference numerals.

なお、設定圧力の設定は、上記とは逆に、常に大気圧の
変動範囲(990mbar 〜1030 mbar)よ
り低い値、例えば、985 mbarに設定することも
できる。この場合の構成は、第5図から加圧ファン2を
除去したものとなる。
Note that, contrary to the above, the set pressure can also be always set to a value lower than the atmospheric pressure fluctuation range (990 mbar to 1030 mbar), for example, 985 mbar. In this case, the configuration is the same as that in FIG. 5 with the pressurizing fan 2 removed.

第2図は本発明による室内の絶対圧力制御装置の他の実
施例を示す構成図である。
FIG. 2 is a block diagram showing another embodiment of the indoor absolute pressure control device according to the present invention.

本実施例が前記実施例と異なるところは、第1図の構成
に対し、室6が設置されている場所の大気圧(外気圧)
を検出する大気圧センサ16を付加したことにある。他
の構成については同一であるので同一符号を付して説明
を省略する。
This embodiment differs from the previous embodiment in that the atmospheric pressure (outside pressure) at the location where the chamber 6 is installed is different from the configuration shown in FIG.
The reason is that an atmospheric pressure sensor 16 is added to detect the atmospheric pressure. Since the other configurations are the same, the same reference numerals are given and the explanation will be omitted.

第2図の実施例の処理は第4図に示すフローチャートの
内容でなされるが、その前に第3図を用いて風量調節弁
3及び圧力調節弁14の弁開度について説明する。
The processing of the embodiment shown in FIG. 2 is carried out according to the contents of the flowchart shown in FIG. 4, but before that, the valve opening degrees of the air volume control valve 3 and the pressure control valve 14 will be explained using FIG. 3.

第3図は、外気取り込み風量に対する室内絶対圧力と大
気圧との間の差圧ΔPと、この差圧ΔPに対する風量調
節弁3の弁開度(破線)及び圧力調節弁14の弁開度(
実線)との関係を示す特性図である。室6内の絶対圧力
を常に大気圧より高い圧力に制御する場合には、大気圧
の1年間の変動範囲は、990mbar 〜1030m
barであり、設定圧力を1035mbarとすること
により、常に大気圧より高い圧力で室6内の絶対圧力を
制御することができる。この設定圧力と大気圧との差圧
は、5〜45mbarであり、この差圧に入るように風
量調節弁3及び圧力調節弁14の弁開度を確保すれば本
発明の目的は達成される。
FIG. 3 shows the differential pressure ΔP between the indoor absolute pressure and atmospheric pressure with respect to the outside air intake air volume, the valve opening degree of the air volume control valve 3 (dashed line) and the valve opening degree of the pressure control valve 14 (dotted line) with respect to this differential pressure ΔP.
FIG. When the absolute pressure in the chamber 6 is always controlled to a pressure higher than atmospheric pressure, the range of atmospheric pressure fluctuation per year is 990 mbar to 1030 mbar.
By setting the set pressure to 1035 mbar, the absolute pressure inside the chamber 6 can be controlled at a pressure higher than atmospheric pressure at all times. The differential pressure between this set pressure and the atmospheric pressure is 5 to 45 mbar, and the object of the present invention can be achieved by ensuring the valve openings of the air volume control valve 3 and the pressure control valve 14 so as to fall within this differential pressure. .

次に、第2図の実施例の動作を第4図のフロチャートを
用いて説明する。
Next, the operation of the embodiment shown in FIG. 2 will be explained using the flowchart shown in FIG.

まず、制御部21によって、風量調節弁3の弁開度を直
線的な一対一の相互関係が認められる範囲の下限値、す
なわち20%にし、圧力調節弁14の弁開度を直線的な
一対一の相互関係が認められる範囲の上限値、すなわち
50%にしくステップ41)、加圧ファン2を適正な回
転数(一定値)で運転する(ステップ42)。次に、絶
対圧力計15による絶対圧力検出値及び大気圧センサ1
6による大気圧を取り込み(ステップ43)、その値が
制御範囲内にあるか否かを判定しくステップ44)、制
御範囲内にあれば、ステップ43に戻って以降の処理を
繰り返す。一方、制御範囲外であれば、検出した大気圧
と設定圧力値との差圧ΔPを計算しくステップ45)、
ΔPが所定値、例えば20111barを越えているか
否かを判定しくステップ46)、ΔP>20mbarで
あれば圧力調節弁14の弁開度を固定し、設定圧力が得
られるように制御部21によって風量調節弁3の弁開度
を制御する(ステップ47)。ここで、ΔPと比較され
る所定値は、大気圧の変動範囲(990mbar〜10
30mbar)と設定圧力(1035mbar)との差
圧(5〜45mbar)が採り得る範囲内の値を用いれ
ばよく、差圧が採り得る範囲内の中央値(上記の例では
25mbar)が最も好ましい。
First, the control unit 21 sets the valve opening of the air volume control valve 3 to the lower limit value of the range in which a linear one-to-one correlation is recognized, that is, 20%, and the valve opening of the pressure regulation valve 14 is set to a linear one-to-one correlation. The upper limit of the range in which the correlation is recognized is set to 50% (step 41), and the pressurizing fan 2 is operated at an appropriate rotation speed (constant value) (step 42). Next, the absolute pressure detected by the absolute pressure gauge 15 and the atmospheric pressure sensor 1
6 is taken in (step 43), and it is determined whether the value is within the control range (step 44). If it is within the control range, the process returns to step 43 and the subsequent processes are repeated. On the other hand, if it is outside the control range, calculate the differential pressure ΔP between the detected atmospheric pressure and the set pressure value (step 45),
It is determined whether ΔP exceeds a predetermined value, for example, 20111 bar (step 46). If ΔP>20 mbar, the valve opening of the pressure regulating valve 14 is fixed, and the air volume is adjusted by the control unit 21 so that the set pressure is obtained. The valve opening degree of the control valve 3 is controlled (step 47). Here, the predetermined value to be compared with ΔP is the atmospheric pressure fluctuation range (990 mbar to 10 mbar).
30 mbar) and the set pressure (1035 mbar) may be used within the range of the differential pressure (5 to 45 mbar), and the median value within the range of the differential pressure (25 mbar in the above example) is most preferable.

一方、20mbar≧ΔPの場合には、風量調節弁3の
弁開度を固定し、設定圧力が得られるように制御部21
によって圧力調節弁14の弁開度を制御する(ステップ
48)。ステップ44、ステップ47及びステップ48
の処理が終了した後は、ステップ43に戻っ°て以降の
処理を繰り返し実行する。
On the other hand, in the case of 20 mbar≧ΔP, the valve opening degree of the air volume control valve 3 is fixed, and the control unit 21
The opening degree of the pressure regulating valve 14 is controlled by (step 48). Step 44, Step 47 and Step 48
After completing the process, the process returns to step 43 and the subsequent processes are repeated.

以上の構成により、従来、加圧ファン2の回転数の変更
に伴って急激な風量、圧力変化が生じていたのに対し、
本発明では、第3図に示す斜線枠内の狭い制御領域で室
6内の絶対圧力を制御できるようになる。
With the above configuration, whereas in the past, sudden changes in air volume and pressure occurred due to changes in the rotation speed of the pressurizing fan 2,
According to the present invention, the absolute pressure inside the chamber 6 can be controlled within a narrow control area within the hatched frame shown in FIG.

なお、第2図の実施例では、設定圧力を常に大気圧より
高くなるように設定したが、逆に、設定圧力が大気圧よ
り低くなるように設定してもよい。
In the embodiment shown in FIG. 2, the set pressure is always set higher than atmospheric pressure, but conversely, the set pressure may be set lower than atmospheric pressure.

例えば、設定圧力を985mbarに設定することが可
能であり、この場合には第5図に示した排気ファン13
はそのまま用い、加圧ファン2を除去すればよい。この
ときの制御のフローチャートを第9図に示す。なお、第
9図において第4図と対応する部分には同一符号を付し
、相違点のみ説明する。ステップ41では、風量調節弁
の開度を直線的な一対一の相互関係が認められる上限値
(50%)に設定し、圧力調節弁の開度を下限値(20
%)に設定する。また、ステップ46では差圧ΔPと差
圧が採り得る範囲内(5〜45mbar)の中央値また
はその付近の値と比較する。
For example, it is possible to set the set pressure to 985 mbar, in which case the exhaust fan 13 shown in FIG.
may be used as is, and the pressurizing fan 2 may be removed. A flowchart of control at this time is shown in FIG. In FIG. 9, parts corresponding to those in FIG. 4 are given the same reference numerals, and only the differences will be explained. In step 41, the opening degree of the air volume control valve is set to the upper limit value (50%) at which a linear one-to-one correlation is recognized, and the opening degree of the pressure control valve is set to the lower limit value (20%).
%). Further, in step 46, the differential pressure ΔP is compared with a median value within a possible range (5 to 45 mbar) of the differential pressure or a value near it.

なお、上記各実施例では、加圧ファンまたは排気ファン
を用いる例について説明したが、加圧ファン2及び排気
ファン13を共に設置したまま、設定圧力に応じて一方
のみを運転するようにしてもよい。
In each of the above embodiments, an example in which a pressure fan or an exhaust fan is used has been described, but it is also possible to leave both the pressure fan 2 and the exhaust fan 13 installed and operate only one of them depending on the set pressure. good.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の通り構成されているので、次に記載する
効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

請求項1の発明においては、加圧ファン又は排気ファン
を外気取込系又は室内空気の排出系に設置すると共に、
加圧ファンを用いた場合には設定圧力を常時大気圧より
高(し、排気ファンを用いた場合には設定圧力を常時大
気圧より低くするようにしたので、室のシール対策が容
易になると共に、加圧ファン又は排気ファンの一方を不
要にできるのでコストダウンが可能になる。
In the invention of claim 1, a pressurizing fan or an exhaust fan is installed in an outside air intake system or an indoor air exhaust system, and
When using a pressurizing fan, the set pressure is always higher than atmospheric pressure (but when using an exhaust fan, the set pressure is always lower than atmospheric pressure, making it easier to seal the room. At the same time, since either the pressurizing fan or the exhaust fan can be made unnecessary, costs can be reduced.

請求項2の発明においては、大気圧を検出する大気圧セ
ンサを設けこの大気圧センサによる大気圧値と設定圧力
値との差圧に基づいてファンの回転数を固定したまま第
1の調節弁及び第2の調節弁の弁開度を制御するように
したので、加圧)、アンや排気ファンの回転数の変化に
起因する風量、絶対圧力の急激な変動を防止することが
でき、精密な制御が可能になる。
In the invention of claim 2, an atmospheric pressure sensor for detecting atmospheric pressure is provided, and the first control valve is operated while the rotational speed of the fan is fixed based on the differential pressure between the atmospheric pressure value detected by the atmospheric pressure sensor and the set pressure value. Since the valve opening degree of the second control valve is controlled, it is possible to prevent sudden fluctuations in the air volume and absolute pressure caused by changes in the rotation speed of the pressurization fan and exhaust fan. control becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による室内の絶対圧力制御装置の一実施
例を示す構成図、第2図は本発明による室内の絶対圧力
制御装置の他の実施例を示す構成図、第3図は差圧ΔP
と該差圧ΔPに対する風量調節弁及び圧力調節弁の弁開
度との関係を示す特性図、第4図は第2図の実施例の動
作を説明するフローチャート、第5図は従来の絶対圧力
制御装置の一例を示す構成図、第6図は風量調節弁及び
圧力調節弁の弁開度に対する流量比及び弁出入ロ圧力差
の各特性を示す特性図、第7図は第6図に示した特性の
弁を用いて所定圧力を任意にして絶対圧力制御を行う場
合の制御例を示すフローチャート、第8図は加圧ファン
を用いて設定圧力を大気圧より高くした場合の制御例を
示すフローチャート、第9図は第6図に示した特性の弁
を用いて所定圧力を大気圧力より低くして絶対圧力制御
を行う場合の制御例を示すフローチャートである。 1・・・風量検出器、 2・・・加圧ファン、 3・・・風量調節弁、 4・・・空調機、 6・・・室、 13・・・排気ファン、 14・・・圧力調節弁、 15・・・絶対圧力計、 16・・・大気圧センサ、 21・・・制御部。
Fig. 1 is a block diagram showing one embodiment of the indoor absolute pressure control device according to the present invention, Fig. 2 is a block diagram showing another embodiment of the indoor absolute pressure control device according to the present invention, and Fig. 3 shows the difference. Pressure ΔP
FIG. 4 is a flowchart explaining the operation of the embodiment shown in FIG. 2, and FIG. A configuration diagram showing an example of a control device, Fig. 6 is a characteristic diagram showing the characteristics of the flow rate ratio and valve inlet/outlet pressure difference with respect to the valve opening of the air volume control valve and pressure control valve, and Fig. 7 is shown in Fig. 6. A flowchart showing an example of control when absolute pressure control is performed by setting a predetermined pressure arbitrarily using a valve with characteristics similar to that shown in FIG. Flowchart FIG. 9 is a flowchart showing an example of control when absolute pressure control is performed by lowering a predetermined pressure below atmospheric pressure using a valve having the characteristics shown in FIG. 6. DESCRIPTION OF SYMBOLS 1... Air volume detector, 2... Pressure fan, 3... Air volume control valve, 4... Air conditioner, 6... Room, 13... Exhaust fan, 14... Pressure adjustment Valve, 15...Absolute pressure gauge, 16...Atmospheric pressure sensor, 21...Control unit.

Claims (2)

【特許請求の範囲】[Claims] (1)第1の調節弁を介して供給された外気を圧力制御
対象室内へ供給する空調機と、前記室内からの排出空気
量を調整する第2の調節弁と、前記室内の圧力を検出す
る圧力計と、前記圧力計の検出出力及び設定圧力に基づ
いて前記第1の調節弁及び第2の調節弁の弁開度を制御
する制御部とを備えた室内の絶対圧力制御装置において
、外気取込系に設置される加圧ファンまたは室内空気排
出系に設置される排気ファンの少なくとも一方を設置す
ると共に、前記加圧ファンを設置した場合には前記設定
圧力を常時大気圧より高くし、前記排気ファンを設けた
場合には前記設定圧力を常時大気圧より低くすることを
特徴とする室内の絶対圧力制御装置。
(1) An air conditioner that supplies outside air supplied through a first control valve into a pressure-controlled room, a second control valve that adjusts the amount of air discharged from the room, and detects the pressure in the room. An indoor absolute pressure control device comprising: a pressure gauge; and a control unit that controls valve opening degrees of the first regulating valve and the second regulating valve based on the detected output and set pressure of the pressure gauge, At least one of a pressurizing fan installed in the outside air intake system or an exhaust fan installed in the indoor air exhaust system is installed, and when the pressurizing fan is installed, the set pressure is always higher than atmospheric pressure. . An indoor absolute pressure control device, characterized in that when the exhaust fan is provided, the set pressure is always lower than atmospheric pressure.
(2)第1の調節弁を介して供給された外気を圧力制御
対象室内へ供給する空調機と、前記室内からの排出空気
量を調整する第2の調節弁と、外気取込系または室内空
気排出系に設置されたファンと、前記室内の圧力を検出
する圧力計と、前記圧力計の検出出力及び設定圧力に基
づいて前記第1の調節弁及び第2の調節弁の弁開度を制
御する制御部とを備えた室内の絶対圧力制御装置におい
て、大気圧を検出する大気圧センサを設け、該大気圧セ
ンサによる大気圧と設定圧力との差圧に基づいて前記フ
ァンの回転数を一定にしたまま前記第1の調節弁及び第
2の調節弁の弁開度を制御することを特徴とする室内の
絶対圧力制御装置。
(2) An air conditioner that supplies outside air supplied via a first control valve into a pressure-controlled room, a second control valve that adjusts the amount of air discharged from the room, and an outside air intake system or an indoor a fan installed in an air exhaust system, a pressure gauge that detects the pressure in the room, and a valve opening degree of the first control valve and the second control valve based on the detected output of the pressure gauge and the set pressure. In the indoor absolute pressure control device, the indoor absolute pressure control device includes an atmospheric pressure sensor that detects atmospheric pressure, and the rotation speed of the fan is determined based on the differential pressure between the atmospheric pressure and a set pressure measured by the atmospheric pressure sensor. An indoor absolute pressure control device, characterized in that the valve openings of the first control valve and the second control valve are controlled while being kept constant.
JP1009049A 1989-01-18 1989-01-18 Absolute pressure control device in the room Expired - Fee Related JP2562364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009049A JP2562364B2 (en) 1989-01-18 1989-01-18 Absolute pressure control device in the room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009049A JP2562364B2 (en) 1989-01-18 1989-01-18 Absolute pressure control device in the room

Publications (2)

Publication Number Publication Date
JPH02192537A true JPH02192537A (en) 1990-07-30
JP2562364B2 JP2562364B2 (en) 1996-12-11

Family

ID=11709784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009049A Expired - Fee Related JP2562364B2 (en) 1989-01-18 1989-01-18 Absolute pressure control device in the room

Country Status (1)

Country Link
JP (1) JP2562364B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021019A (en) * 1995-10-06 2000-02-01 Seagate Technology, Inc. Flex circuit disc snubber
JP2012149817A (en) * 2011-01-19 2012-08-09 Nippon Spindle Mfg Co Ltd Temperature control device
JP2019124388A (en) * 2018-01-15 2019-07-25 株式会社光商事 Cleaned air introduction system and clean housing installation using the same
CN114061089A (en) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 Air conditioner control method, air conditioner, electronic device and storage medium
CN115512677A (en) * 2022-08-16 2022-12-23 广州精益运输制冷设备有限公司 Noise-reduction air distribution device for rail train air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468035A (en) * 1977-11-09 1979-05-31 Kanebo Ltd Method of controlling indoor pressure in air conditioning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468035A (en) * 1977-11-09 1979-05-31 Kanebo Ltd Method of controlling indoor pressure in air conditioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021019A (en) * 1995-10-06 2000-02-01 Seagate Technology, Inc. Flex circuit disc snubber
JP2012149817A (en) * 2011-01-19 2012-08-09 Nippon Spindle Mfg Co Ltd Temperature control device
JP2019124388A (en) * 2018-01-15 2019-07-25 株式会社光商事 Cleaned air introduction system and clean housing installation using the same
CN114061089A (en) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 Air conditioner control method, air conditioner, electronic device and storage medium
CN115512677A (en) * 2022-08-16 2022-12-23 广州精益运输制冷设备有限公司 Noise-reduction air distribution device for rail train air conditioner
CN115512677B (en) * 2022-08-16 2023-10-10 广州精益运输制冷设备有限公司 Noise-reducing and wind-distributing device for air conditioner of rail train

Also Published As

Publication number Publication date
JP2562364B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
KR100348853B1 (en) Method for detecting plugging of pressure flow-rate controller and sensor used therefor
US5947680A (en) Turbomachinery with variable-angle fluid guiding vanes
JP4102564B2 (en) Improved pressure flow controller
JP2011008804A (en) System for regulating pressure in vacuum chamber, and vacuum pumping unit equipped with the same
EP1853855B1 (en) Ventilation control system and method for a computer room
CN110576419B (en) Safety workbench with controlled circulating air flow and method for operating the same
EP3500757B1 (en) A method for controlling the outlet temperature of an oil injected compressor or vacuum pump and oil injected compressor or vacuum pump implementing such method
CN101470447A (en) Transmission cavity pressure control system and method
US4255089A (en) Method of controlling series fans driving a variable load
CN109458355A (en) The surge controlling method of compressor and the surge control system of compressor
JPH02192537A (en) Indoor absolute pressure controller device
US4705066A (en) Space static pressure control
KR101715069B1 (en) Exhaust system for semiconductor device manufaccturing equipment
JPH0581809B2 (en)
KR20210029360A (en) Air volume control system of fan filter unit and control/defect prediction method for fan filter unit
CN112665148B (en) Indoor pressure monitoring method and device, controller and air conditioner
JPH08159530A (en) Total heat exchanger
JPH01277149A (en) Controller for absolute pressure in room
JP2826409B2 (en) Dry etching equipment
JPH0198848A (en) Air conditioning and ventilation facility for controlling indoor atmospheric pressure
JP2006226625A (en) Clean room air conditioning facility, and abnormality detection method for clean room
JPH03102133A (en) Duct air conditioning system
JP3410083B2 (en) Air conditioning control method and air conditioning control system
JP7235625B2 (en) Hypoxic environment warning system and hypoxic environment forming device
JP4884707B2 (en) Control device for fluid transfer system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees