JP2012149817A - Temperature control device - Google Patents

Temperature control device Download PDF

Info

Publication number
JP2012149817A
JP2012149817A JP2011008596A JP2011008596A JP2012149817A JP 2012149817 A JP2012149817 A JP 2012149817A JP 2011008596 A JP2011008596 A JP 2011008596A JP 2011008596 A JP2011008596 A JP 2011008596A JP 2012149817 A JP2012149817 A JP 2012149817A
Authority
JP
Japan
Prior art keywords
booth
pressure
air
temperature
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008596A
Other languages
Japanese (ja)
Other versions
JP5600857B2 (en
Inventor
Kenji Izumi
憲司 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2011008596A priority Critical patent/JP5600857B2/en
Publication of JP2012149817A publication Critical patent/JP2012149817A/en
Application granted granted Critical
Publication of JP5600857B2 publication Critical patent/JP5600857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature control device that can achieve energy saving while suppressing degradation of measurement accuracy by preventing variation of pressure in a booth arranged with a precision apparatus.SOLUTION: In the temperature control device E including a control means 3 to control of operation of a temperature control means 2 to control temperature by supplying air P for temperature control into a booth 1 arranged with a precision apparatus F, a pressure detection means 9 to detect pressure Kin the booth 1 is arranged in the booth 1; the temperature control means 2 includes a blast means 4 to feed the air P for temperature control into the booth 1; the control means 3 operates the blast means 4 to feed the air P for temperature control into the booth 1 and sets the pressure Kin the booth 1 at pressure larger than the atmospheric pressure K, causes the pressure detection means 9 to detect reference pressure Kbeing the pressure Kin the booth 1 at operation start time t1 of the precision apparatus F or before the operation start, and controls the operation of the blast means 4 to keep the pressure Kin the booth 1 at the reference pressure Kfrom the operation start time t1 of the precision apparatus F to the operation stop t2 thereof.

Description

本発明は、精密機器が配設されたブース内に、温調用空気を供給してブース内を温調する温調手段と、温調手段の運転を制御する制御手段とを備えた温調装置に関する。   The present invention relates to a temperature control apparatus including temperature control means for supplying temperature adjustment air to a booth in which precision equipment is disposed to control the temperature inside the booth, and control means for controlling the operation of the temperature control means. About.

上記温調装置として、温調された空気をブース内に送り込んで、当該ブース内を温調するとともに、当該空気の送り込みにより、ブース内の圧力をブースの外部の圧力よりも高圧(陽圧)とする温調装置が提案されている(例えば、特許文献1参照)。具体的には、かかる温調装置では、ブースの上方から温調された空気を送り込むことにより、ブース内において上下方向にエアーカーテンを形成し、このエアーカーテンを介して内側には高圧(陽圧)の領域が形成され、外側には内側よりも低圧な領域が形成される。
これにより、微細な塵や雑菌等がエアーカーテンの外側(ブースの外部)から内側に侵入することを防止でき、ブース内のエアーカーテンの内側にクリーンな作業環境を形成することができるとされる。
As the above temperature control device, temperature-controlled air is sent into the booth to control the temperature inside the booth, and the pressure inside the booth is higher than the pressure outside the booth (positive pressure) by sending the air. Has been proposed (for example, see Patent Document 1). Specifically, in such a temperature control device, air that has been temperature-controlled is sent from above the booth to form an air curtain in the vertical direction within the booth. ) Region and a lower pressure region than the inside is formed on the outside.
Thereby, it can be said that fine dust, germs and the like can enter the inside from the outside of the air curtain (the outside of the booth) and can form a clean working environment inside the air curtain inside the booth. .

一方で、上記のようなブースにおいて、両端が開口されトンネル形に形成された塗装ブースが提案されている(例えば、特許文献2参照)。かかる塗装ブースは、塗装ブース内に給気ファンによって清浄空気を供給すると同時に、塗装ブース内から排気ファンによって塗料ミスト等を含む汚染空気を排出するように構成されている。そして、塗装ブース内の気圧を圧力センサで検出し、その検出した気圧と外気圧とを比較して両者の差値を求め、その差値に応じて塗装ブース内を一定の陽圧に保つように排気ファンの排気量を可変制御する給排気制御方法が採用されている。
これにより、塗装ブース内に外部空気が流入することがなく、塗装ブース内で塗装される被塗物の塗膜に塵埃等が付着して塗装品質を損なう虞がないとされる。
すなわち、これら特許文献1及び2では、ブース内をブースの外部の外気圧(大気圧)よりも高圧(陽圧)にして、ブース内に外部からの空気が侵入しないように構成されている。
On the other hand, in the booth as described above, a painting booth having both ends opened and formed in a tunnel shape has been proposed (for example, see Patent Document 2). Such a painting booth is configured to supply clean air to the painting booth by an air supply fan and simultaneously discharge contaminated air including paint mist from the painting booth by an exhaust fan. Then, the pressure inside the painting booth is detected by a pressure sensor, and the detected atmospheric pressure is compared with the outside air pressure to obtain a difference value between the two, and the inside of the painting booth is maintained at a constant positive pressure according to the difference value. In addition, an air supply / exhaust control method for variably controlling the exhaust amount of the exhaust fan is employed.
As a result, external air does not flow into the painting booth, and there is no possibility that dust or the like adheres to the coating film of the object to be painted in the painting booth and impairs the painting quality.
That is, these Patent Documents 1 and 2 are configured such that the inside of the booth is set to a pressure (positive pressure) higher than the outside air pressure (atmospheric pressure) outside the booth so that air from the outside does not enter the booth.

特開昭62−168551号公報Japanese Patent Laid-Open No. 62-168551 特開平3−178368号公報Japanese Patent Laid-Open No. 3-178368

ここで、ブース内に電子顕微鏡等の精密機器を配設した場合、この精密機器による各種作業は、ブース内の圧力変動等の影響により、その測定精度や運転状態が悪影響を受ける場合がある。例えば、ブース内に電子顕微鏡を配設した場合において、電子顕微鏡のケースにより形成される測定空間内(真空状態)に測定対象の試料を設置する際には、ケースの開口部にシール部材を介してフランジ蓋体を締結具により固定し、上記試料がフランジ蓋体から測定空間内に延出された測定台上に載置される。この場合、測定空間の外側、すなわち、ブース内の圧力が変動すると、例えば、フランジ蓋体及び測定台が僅かに移動して測定対象の試料も移動することがあり、測定精度が低下する虞がある。
従って、特許文献1の温調装置では、ブース内の圧力を外部の圧力よりも陽圧にするが、ブースの外部の圧力は大気圧となっている。ここで、ブース内の圧力を大気圧に対して所定圧だけ高い陽圧状態を保とうとすると、通常、大気圧は天候等により変動するため、ブース内の圧力も当該大気圧の変動に応じて変動するので、ブース内に配設された電子顕微鏡等を作動させた場合には、測定精度が低下する虞がある。
Here, when a precision instrument such as an electron microscope is disposed in the booth, various operations by the precision instrument may be adversely affected by the measurement accuracy and operating state due to the influence of pressure fluctuations in the booth. For example, when an electron microscope is provided in a booth, when a sample to be measured is placed in a measurement space (vacuum state) formed by the case of the electron microscope, a seal member is interposed in the opening of the case. The flange lid is fixed by a fastener, and the sample is placed on a measurement table extended from the flange lid into the measurement space. In this case, if the pressure outside the measurement space, that is, the pressure in the booth fluctuates, for example, the flange lid and the measurement table may slightly move and the sample to be measured may also move, which may reduce the measurement accuracy. is there.
Therefore, in the temperature control apparatus of Patent Document 1, the pressure inside the booth is set to a positive pressure rather than the external pressure, but the pressure outside the booth is atmospheric pressure. Here, if the pressure inside the booth is kept at a positive pressure state that is higher than the atmospheric pressure by a predetermined pressure, the atmospheric pressure usually fluctuates due to the weather etc., so the pressure inside the booth also depends on the fluctuation of the atmospheric pressure. Since it fluctuates, when an electron microscope or the like disposed in the booth is operated, there is a risk that the measurement accuracy may decrease.

一方で、特許文献2の塗装ブースでは、ブース内を一定の陽圧に維持するため、ブース内の圧力はある程度安定すると考えられる。しかしながら、ブース内の圧力を常時検出し、当該検出された圧力と外気圧との差値を導出して、排気ファンによる排気量を常に制御してブース内を一定の陽圧に維持する必要があり、エネルギーの無駄を生じるという問題がある。   On the other hand, in the painting booth of Patent Document 2, since the inside of the booth is maintained at a constant positive pressure, the pressure in the booth is considered to be stabilized to some extent. However, it is necessary to constantly detect the pressure in the booth, derive the difference value between the detected pressure and the external pressure, and always control the exhaust amount by the exhaust fan to maintain a constant positive pressure in the booth. There is a problem that waste of energy occurs.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、精密機器が配設されたブース内の圧力の変動を防止して測定精度の低下を抑制しつつ、省エネをも実現できる温調装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to realize energy saving while preventing a fluctuation in pressure in a booth in which a precision instrument is disposed and suppressing a decrease in measurement accuracy. The object is to provide a temperature control device.

上記目的を達成するための本発明に係る温調装置は、精密機器が配設されたブース内に、温調用空気を供給して前記ブース内を温調する温調手段と、前記温調手段の運転を制御する制御手段とを備えた温調装置であって、その特徴構成は、
前記ブース内の圧力を検出する圧力検出手段を前記ブース内に備え、
前記温調手段が、温調された前記温調用空気を前記ブース内に送り込む送風手段を備え、
前記制御手段が、前記送風手段を運転させて前記ブース内に前記温調用空気を送り込んで、前記ブース内の圧力を大気圧よりも大きな圧力にするとともに、
前記制御手段が、前記精密機器の運転開始時又は運転開始前に前記圧力検出手段により前記ブース内の圧力である基準圧力を検出させ、前記送風手段の運転を制御して、前記精密機器の運転開始時から運転停止までの間、前記ブース内の圧力を前記基準圧力に維持する点にある。
In order to achieve the above object, a temperature control apparatus according to the present invention includes a temperature control means for supplying temperature control air to a booth in which precision equipment is disposed, and for controlling the temperature of the booth, and the temperature control means. And a temperature control device comprising a control means for controlling the operation of
Pressure detection means for detecting the pressure in the booth is provided in the booth,
The temperature adjusting means includes air blowing means for sending the temperature-controlled air into the booth.
The control means operates the air blowing means to send the temperature adjustment air into the booth to make the pressure in the booth larger than atmospheric pressure,
The control means detects the reference pressure, which is the pressure in the booth, by the pressure detection means at the start of operation of the precision instrument or before the start of operation, controls the operation of the blower means, and operates the precision instrument. The point is that the pressure in the booth is maintained at the reference pressure from the start to the shutdown.

上記特徴構成によれば、制御手段により送風手段の運転が制御され、精密機器の運転開始時から運転停止までの間、ブース内の圧力が精密機器の運転開始時又は運転開始前の圧力である基準圧力に維持されるので、ブース内は大気圧よりも大きな圧力(陽圧)で、しかも、均一な圧力となり、精密機器の運転を安定させ測定精度の低下を抑制しつつ、省エネを図ることができる。
説明を加えると、制御手段が、温調された温調用空気をブース内に送り込む送風手段を運転させて、ブース内に温調用空気を送り込むことで、ブース内の圧力はブースの外部の圧力である大気圧よりも大きな圧力(陽圧)となる。そして、制御手段が、精密機器の運転開始時又は運転開始前にブース内の圧力である基準圧力(陽圧)を圧力検出手段により検出させ、送風手段の運転を制御することで、精密機器の運転開始から運転停止までの間だけブース内の圧力を上記基準圧力に維持する。すなわち、ブース内の圧力は常に陽圧に維持されるが、精密機器の運転開始から運転停止までの時間だけ均一な圧力に維持される。
これにより、精密機器の運転時には、ブース内の圧力を陽圧で、しかも均一な圧力に維持することができるので、精密機器の運転を安定させ測定精度の低下を抑制することができる。また、均一に維持されるブース内の圧力は精密機器の運転開始時又は運転開始前の基準圧力であるので、当該基準圧力が単に維持されるように送風手段の運転を行うだけで(送風手段の出力の増減の幅が小さな状態の運転で)、ブース内の圧力を所望の均一の圧力に容易に維持することができる。さらに、精密機器の運転時のみブース内の圧力を均一に維持するだけでよいので、精密機器の運転時以外にはブース内を均一な圧力にするために出力を増減させて送風手段を運転させる必要がなくなり(単に一定の出力で運転すればよくなり)、省エネを図ることができる。また、圧力検出手段によるブース内の圧力検出も、精密機器の運転開始時又は運転開始前及び運転時だけでよく、圧力の監視負担も軽減する。なお、このような構成としても、温調手段により温調された温調用空気がブース内に送り込まれることによりブース内を所望の温度に温調でき、また、当該温調用空気が送り込まれてブース内が陽圧とされることにより、ブースの外部からブース内に塵埃等が侵入することを防止することができる。
According to the above characteristic configuration, the operation of the air blowing means is controlled by the control means, and the pressure in the booth is the pressure at the time of starting the operation of the precision equipment or before the start of the operation from the start of the operation of the precision equipment to the stop of the operation. Since it is maintained at the reference pressure, the booth is at a pressure (positive pressure) greater than atmospheric pressure, and it becomes a uniform pressure, which stabilizes the operation of precision instruments and suppresses the decrease in measurement accuracy while saving energy. Can do.
In addition, the control means operates the air blowing means that sends the temperature-controlled air into the booth, and sends the temperature-control air into the booth, so that the pressure inside the booth is the pressure outside the booth. The pressure (positive pressure) is greater than a certain atmospheric pressure. And the control means detects the reference pressure (positive pressure) that is the pressure in the booth at the start of the operation of the precision instrument or before the operation is started by the pressure detection means, and controls the operation of the blower means. The pressure in the booth is maintained at the reference pressure only from the start to the stop of operation. That is, the pressure in the booth is always maintained at a positive pressure, but is maintained at a uniform pressure only for the time from the start of operation of the precision instrument to the stop of operation.
Thereby, when the precision instrument is operated, the pressure in the booth can be maintained at a positive pressure and a uniform pressure, so that the precision instrument can be operated stably and a decrease in measurement accuracy can be suppressed. In addition, since the pressure in the booth that is maintained uniformly is the reference pressure at the start of the operation of the precision instrument or before the start of the operation, it is only necessary to operate the blowing means so that the reference pressure is maintained (the blowing means). In the state where the output increase / decrease is small), the pressure in the booth can be easily maintained at a desired uniform pressure. Furthermore, since it is only necessary to maintain the pressure in the booth uniformly only during the operation of the precision equipment, the air blowing means is operated by increasing or decreasing the output in order to obtain a uniform pressure in the booth except during the operation of the precision equipment. This eliminates the need (it only needs to be operated at a constant output) and can save energy. Further, the pressure in the booth can be detected by the pressure detecting means only at the start of operation of the precision instrument or before the start of the operation and at the time of operation, thereby reducing the pressure monitoring burden. Even in such a configuration, the temperature adjustment air temperature-adjusted by the temperature adjustment means is sent into the booth, so that the temperature inside the booth can be adjusted to a desired temperature, and the temperature adjustment air is supplied to the booth. By making the inside a positive pressure, it is possible to prevent dust and the like from entering the booth from the outside of the booth.

本発明に係る温調装置の更なる特徴構成は、前記精密機器が電子顕微鏡であり、前記電子顕微鏡が、内部に測定空間を形成するケースと、前記ケースに形成された開口部にシール部材を介して締結具により固定されたフランジ蓋体と、前記フランジ蓋体から前記測定空間内に延出された測定台とを備え、前記測定台上に測定対象の試料が載置されるように構成されている点にある。   The temperature control apparatus according to the present invention is further characterized in that the precision instrument is an electron microscope, the electron microscope includes a case in which a measurement space is formed, and a seal member in an opening formed in the case. A flange lid fixed by a fastener and a measurement table extended from the flange lid into the measurement space, and a sample to be measured is placed on the measurement table It is in the point.

上記特徴構成によれば、ブースの内部空間と、当該ブースの内部空間に配設された電子顕微鏡のケースにより区画される測定空間とを連通する開口部が、シール部材を介して締結具で固定されたフランジ蓋体により閉塞されているので、フランジ蓋体から延出する測定台に載置される試料を開口部を介して容易に交換できるが、仮に、ブース内の圧力変動等が発生すると、当該電子顕微鏡ではシール部材が伸縮して、フランジ蓋体から延出する測定台が移動する虞がある。しかしながら、当該構成の電子顕微鏡を採用したとしても、上述のとおり、電子顕微鏡の運転時にはブース内の圧力が均一に維持されているので、シール部材を介して固定されたフランジ蓋体及び測定台上に載置された測定対象の試料が移動してしまうことがなく、電子顕微鏡の測定精度の低下を防止することができる。   According to the above characteristic configuration, the opening that communicates the internal space of the booth and the measurement space defined by the case of the electron microscope disposed in the internal space of the booth is fixed by the fastener via the seal member. Since it is closed by the flange lid body, the sample placed on the measurement stand extending from the flange lid body can be easily replaced through the opening, but if there is pressure fluctuation in the booth, etc. In the electron microscope, there is a possibility that the measuring member extending from the flange lid moves due to expansion and contraction of the seal member. However, even if the electron microscope having the above configuration is adopted, as described above, the pressure in the booth is maintained uniformly during the operation of the electron microscope, so that the flange lid and the measurement table fixed via the seal member are used. The sample to be measured placed on is not moved, and the measurement accuracy of the electron microscope can be prevented from being lowered.

本発明に係る温調装置の更なる特徴構成は、前記温調手段が、前記温調用空気を冷却する冷却手段及び加熱する加熱手段と、前記温調用空気を、前記冷却手段、前記加熱手段、前記送風手段、前記ブース、前記冷却手段の順に循環通風させる温調用空気循環路と、前記ブースの外部の空気を前記温調用空気循環路における前記冷却手段の上流側と前記ブースの下流側との間に導入可能な外部空気導入路と、前記外部空気導入路に配設され、前記ブースの外部から導入される空気の量を調整可能な流量調整手段とを備える点にある。   The temperature control device according to the present invention is further characterized in that the temperature control means includes: a cooling means for cooling the temperature adjustment air; a heating means for heating; the temperature adjustment air; the cooling means; the heating means; A temperature adjustment air circulation path that circulates and ventilates the blower means, the booth, and the cooling means in this order, and an air outside the booth between the upstream side of the cooling means and the downstream side of the booth in the temperature adjustment air circulation path An external air introduction path that can be introduced in between, and a flow rate adjusting means that is disposed in the external air introduction path and that can adjust the amount of air introduced from the outside of the booth.

上記特徴構成によれば、温調用空気循環路を循環通風する温調用空気の流量(ブース内に供給される温調用空気の量)は、当該温調空気循環路に配設された送風手段の運転状態を制御することで調整できることに加え、外部空気導入路に配設された流量調整手段の作動状態を制御することで調整することができる。これにより、ブース内の圧力をより確実に陽圧で、しかも均一な圧力(基準圧力)に維持することができる。
また、温調手段は、温調用空気を冷却する冷却手段及び加熱する加熱手段を備えるので、温調用空気を精度よく温調でき、さらに、外部空気導入路から導入されるブースの外部の空気は、温調用空気循環路における冷却手段の上流側とブースの下流側との間に導入され温調用空気と合流し、冷却手段及び加熱手段にて温調された上でブース内に送り込まれるため、当該空気が外部から導入されてもブース内の温調の精度が低下することはない。
According to the above characteristic configuration, the flow rate of the temperature adjustment air circulating through the temperature adjustment air circulation path (the amount of the temperature adjustment air supplied into the booth) is determined by the air blowing means disposed in the temperature adjustment air circulation path. In addition to being able to be adjusted by controlling the operating state, it can be adjusted by controlling the operating state of the flow rate adjusting means disposed in the external air introduction path. Thereby, the pressure in a booth can be more reliably maintained at a positive pressure and a uniform pressure (reference pressure).
Further, the temperature adjustment means includes a cooling means for cooling the temperature adjustment air and a heating means for heating, so that the temperature adjustment air can be accurately adjusted, and the air outside the booth introduced from the external air introduction path is The temperature adjustment air circulation path is introduced between the upstream side of the cooling means and the downstream side of the booth, merges with the temperature adjustment air, and is sent to the booth after the temperature is adjusted by the cooling means and the heating means. Even if the air is introduced from the outside, the accuracy of temperature control in the booth does not deteriorate.

温調装置を備えた温調システムの概略構成図Schematic configuration diagram of a temperature control system equipped with a temperature control device 温調装置を備えた温調システムの温調系の概略構成図Schematic configuration diagram of temperature control system of temperature control system with temperature control device ブース内の圧力及びブースの外部の圧力(大気圧)の時間的変動を示す概念図Conceptual diagram showing the temporal variation of the pressure inside the booth and the pressure outside the booth (atmospheric pressure)

本発明に係る温調装置Eを備えた温調システムDについて、図1〜図3を参照しながら説明する。   The temperature control system D provided with the temperature control apparatus E which concerns on this invention is demonstrated referring FIGS. 1-3.

温調システムDは、図1に示すように、電子顕微鏡F(精密機器の一例)が配設されるブース1と、ブース1内に温調用空気Pを供給してブース1内の温調用空気Pの温度を調整可能な温調手段2及び温調手段2の運転を制御する制御部3(制御手段の一例)を備えた温調装置Eとを備える。基本的に、制御部3は、ブース1内の温調用空気Pの温度が電子顕微鏡Fの運転に適した設定温度になるように温調手段2の運転を制御するが、後述するようにその他の手段等の制御を行うことも可能に構成されている。
以下では、ブース1の構成及び温調装置Eの構成を説明した後、制御部3による温調装置Eの運転について説明する。
As shown in FIG. 1, the temperature control system D includes a booth 1 in which an electron microscope F (an example of a precision instrument) is disposed, and a temperature control air P in the booth 1 by supplying temperature control air P into the booth 1. A temperature control unit 2 that can adjust the temperature of P, and a temperature control device E that includes a control unit 3 (an example of a control unit) that controls the operation of the temperature control unit 2. Basically, the control unit 3 controls the operation of the temperature adjusting means 2 so that the temperature of the temperature adjusting air P in the booth 1 becomes a set temperature suitable for the operation of the electron microscope F. It is also possible to control such means.
Below, after demonstrated the structure of the booth 1 and the structure of the temperature control apparatus E, the driving | operation of the temperature control apparatus E by the control part 3 is demonstrated.

ブース1は、天井部1a及び側壁部1bを構成する壁面により囲繞されて概略立方体形状に形成されており、ブース1内の内部空間に外部から空気等が侵入しないように構成されている。ブース1の内部空間の底部には架台Gが配設され、当該架台G上に電子顕微鏡Fが配設されている。ブース1の側壁部1bの上部には、温調手段2から供給される温調用空気Pの流入する入口1cが設けられ、ブース1の側壁部1bの下部には、ブース1内の温調用空気Pの流出する出口1dが設けられている。なお、ブース1の温調用空気Pの入口1cには、HEPA等のフィルタが搭載され、ブース1はクリーンルームとされている。   The booth 1 is surrounded by wall surfaces constituting the ceiling portion 1a and the side wall portion 1b and is formed in a substantially cubic shape, and is configured so that air or the like does not enter the internal space inside the booth 1 from the outside. A gantry G is disposed at the bottom of the internal space of the booth 1, and an electron microscope F is disposed on the gantry G. An inlet 1c through which the temperature adjustment air P supplied from the temperature adjustment means 2 flows is provided at the upper part of the side wall 1b of the booth 1, and the temperature adjustment air in the booth 1 is provided at the lower part of the side wall 1b of the booth 1. An outlet 1d through which P flows out is provided. A filter such as HEPA is mounted on the inlet 1c of the temperature control air P of the booth 1, and the booth 1 is a clean room.

ブース1内に配設される電子顕微鏡Fは、公知の電子顕微鏡であるため、その詳細構成については説明を省略するが、少なくとも以下の構成を備える。
すなわち、電子顕微鏡Fは、内部に測定空間20を形成するケース21と、ケース21に形成された開口部22にゴムパッキン23(シール部材の一例)を介してボルト・ナット24(締結具の一例)により固定されたフランジ蓋体25と、フランジ蓋体25から測定空間20内に延出された測定台26とを備え、測定台26上に測定対象の試料27が載置されるように構成されている。
なお、ケース21は概略立方体形状に形成され、その内部の測定空間20内は略真空状態とされる。
Since the electron microscope F disposed in the booth 1 is a known electron microscope, a detailed description thereof is omitted, but at least the following configuration is provided.
That is, the electron microscope F includes a case 21 that forms a measurement space 20 therein, and an opening 22 formed in the case 21 with a bolt / nut 24 (an example of a fastener) through a rubber packing 23 (an example of a seal member). ) And a measurement table 26 extending from the flange cover 25 into the measurement space 20, and a sample 27 to be measured is placed on the measurement table 26. Has been.
In addition, the case 21 is formed in a substantially cubic shape, and the inside of the measurement space 20 is in a substantially vacuum state.

温調装置Eは、図2に示すように、圧縮機31、凝縮器32、第1膨張弁33、第1蒸発器34(冷却手段の一例)の順に冷媒A(図中点線矢印参照)を循環させる第1冷媒回路50(冷凍サイクル)を備えて構成されている。第1蒸発器34は、膨張された冷媒Aと温調用空気Pとを熱交換させて温調用空気Pを冷却させるように構成されている。なお、第1膨張弁33は、第1冷媒回路50を通流する冷媒Aの流量を調整自在で、当該冷媒Aを膨張可能に構成されている。   As shown in FIG. 2, the temperature control device E supplies the refrigerant A (see the dotted line arrow in the figure) in the order of the compressor 31, the condenser 32, the first expansion valve 33, and the first evaporator 34 (an example of a cooling unit). A first refrigerant circuit 50 (refrigeration cycle) to be circulated is provided. The first evaporator 34 is configured to cool the temperature adjusting air P by exchanging heat between the expanded refrigerant A and the temperature adjusting air P. The first expansion valve 33 is configured to be capable of adjusting the flow rate of the refrigerant A flowing through the first refrigerant circuit 50 and to expand the refrigerant A.

第1冷媒回路50には、凝縮器32と第1膨張弁33との間から分岐されて第1蒸発器34と圧縮機31との間に合流される第2冷媒回路51(冷凍サイクル)が接続されている。
この第2冷媒回路51は、冷媒Aを凝縮器32と第1膨張弁33との間から分岐させて、第1膨張弁33及び第1蒸発器34に対して並列に設けられた第1電磁弁47、第2膨張弁36及び第2蒸発器37の順に通流させ、第1蒸発器34と圧縮機31との間に戻すように構成されている。すなわち、第2冷媒回路51は、第1冷媒回路50の圧縮機31及び凝縮器32を共用するように構成され、圧縮機31、凝縮器32、第1電磁弁47、第2膨張弁36、第2蒸発器37、圧縮機31の順に冷媒Aを通流可能に構成されている。なお、第2蒸発器37は、膨張された冷媒Aと水Q(液体の一例)とを熱交換させて水Qを冷却させるように構成されている。また、第2膨張弁36は、第2冷媒回路51を通流する冷媒Aの流量を調整自在で、当該冷媒Aを膨張可能に構成されている。さらに、第1電磁弁47は、第2冷媒回路51を通流する冷媒Aの断続、すなわち、当該冷媒Aの通流の停止状態と通流状態とに切換できるように構成されている。なお、第1電磁弁47を、冷媒Aの通流状態では当該冷媒Aの流量を調整可能な構成としてもよい。
The first refrigerant circuit 50 includes a second refrigerant circuit 51 (refrigeration cycle) branched from between the condenser 32 and the first expansion valve 33 and joined between the first evaporator 34 and the compressor 31. It is connected.
The second refrigerant circuit 51 divides the refrigerant A from between the condenser 32 and the first expansion valve 33, and the first electromagnetic circuit provided in parallel with the first expansion valve 33 and the first evaporator 34. The valve 47, the second expansion valve 36, and the second evaporator 37 are passed in this order, and are returned between the first evaporator 34 and the compressor 31. That is, the second refrigerant circuit 51 is configured to share the compressor 31 and the condenser 32 of the first refrigerant circuit 50, and the compressor 31, the condenser 32, the first electromagnetic valve 47, the second expansion valve 36, The second evaporator 37 and the compressor 31 are configured in such a manner that the refrigerant A can flow therethrough. The second evaporator 37 is configured to cool the water Q by exchanging heat between the expanded refrigerant A and water Q (an example of a liquid). The second expansion valve 36 is configured to be capable of adjusting the flow rate of the refrigerant A flowing through the second refrigerant circuit 51 and to expand the refrigerant A. Further, the first solenoid valve 47 is configured to be able to switch between intermittent and continuous states of the refrigerant A flowing through the second refrigerant circuit 51, that is, a stopped state and a flowing state of the refrigerant A. The first electromagnetic valve 47 may be configured such that the flow rate of the refrigerant A can be adjusted when the refrigerant A is flowing.

第1冷媒回路50には、圧縮機31と凝縮器32との間から分岐される3つの第1分岐路52、第2分岐路53、第3分岐路54が設けられている。   The first refrigerant circuit 50 is provided with three first branch paths 52, a second branch path 53, and a third branch path 54 that branch from between the compressor 31 and the condenser 32.

第1分岐路52は、冷媒Aを圧縮機31と凝縮器32との間から分岐させて、温調用空気Pを加熱する加熱用熱交換器35(加熱手段の一例)に通流させ、第1冷媒回路50における第1膨張弁33と第1蒸発器34との間に戻すように構成されている。第1分岐路52には、冷媒Aの流れ方向の上流側から順に、温調用空気Pを加熱する加熱用熱交換器35、第1分岐路52を通流する冷媒Aの流量を調整自在で、当該冷媒Aを膨張させることが可能な第3膨張弁42が配設されている。なお、加熱用熱交換器35は、第1蒸発器34で冷却された温調用空気Pと圧縮機31から吐出された冷媒Aとを熱交換させて、温調用空気Pを加熱させるように構成されている。   The first branch path 52 branches the refrigerant A from between the compressor 31 and the condenser 32 and allows the refrigerant A to flow through a heating heat exchanger 35 (an example of a heating unit) that heats the temperature adjustment air P. The first refrigerant circuit 50 is configured to return between the first expansion valve 33 and the first evaporator 34. In the first branch path 52, the heating heat exchanger 35 for heating the temperature adjustment air P and the flow rate of the refrigerant A flowing through the first branch path 52 are adjustable in order from the upstream side in the flow direction of the refrigerant A. A third expansion valve 42 capable of expanding the refrigerant A is disposed. The heating heat exchanger 35 is configured to heat the temperature adjustment air P by exchanging heat between the temperature adjustment air P cooled by the first evaporator 34 and the refrigerant A discharged from the compressor 31. Has been.

第2分岐路53は、冷媒Aを圧縮機31と凝縮器32との間から分岐させて、第2冷媒回路51における第2膨張弁36と第2蒸発器37との間に戻すように構成されている。第2分岐路53には、冷媒Aの流れ方向の上流側から順に、第2蒸発器37にて冷却された水Qを、第2分岐路53を通流する冷媒Aと熱交換させて、水Qを温調する温調部38、第2分岐路53を通流する冷媒Aの断続、すなわち、当該冷媒Aの通流の停止状態と通流状態とに切換できるように構成された第2電磁弁48が配設されている。第2電磁弁48を、冷媒Aの通流状態では当該冷媒Aの流量を調整可能な構成としてもよい。   The second branch passage 53 is configured to branch the refrigerant A from between the compressor 31 and the condenser 32 and return it between the second expansion valve 36 and the second evaporator 37 in the second refrigerant circuit 51. Has been. In the second branch 53, the water Q cooled by the second evaporator 37 is exchanged with the refrigerant A flowing through the second branch 53 in order from the upstream side in the flow direction of the refrigerant A. The temperature control unit 38 for controlling the temperature of the water Q and the intermittent state of the refrigerant A flowing through the second branch 53, that is, the first state configured to be able to be switched between the stopped state and the flowing state of the refrigerant A. Two electromagnetic valves 48 are provided. The second electromagnetic valve 48 may be configured to be capable of adjusting the flow rate of the refrigerant A when the refrigerant A is flowing.

第3分岐路54は、冷媒Aを圧縮機31と凝縮器32との間から分岐させて、圧縮空気Rを温調する温調部40を通流させ、第1冷媒回路50における第1膨張弁33と第1蒸発器34との間に戻すように構成されている。第3分岐路54には、冷媒Aの流れ方向の上流側から順に、冷却部39にて冷却された圧縮空気Rを、第3分岐路54を通流する冷媒Aと熱交換させて、圧縮空気Rを温調する温調部40、第3分岐路54を通流する冷媒Aの流量を調整自在で、当該冷媒Aを膨張させることが可能な第4膨張弁43、第3分岐路54を通流する冷媒Aの断続、すなわち、当該冷媒Aの通流の停止状態と通流状態とに切換できるように構成された第3電磁弁49が配設されている。なお、冷却部39は、圧縮空気Rと後述する第1蒸発器34にて冷却された第2分岐温調用空気P2とを熱交換させて、圧縮空気Rを冷却させるように構成されている。   The third branch 54 branches the refrigerant A from between the compressor 31 and the condenser 32, and flows the temperature adjustment unit 40 for adjusting the temperature of the compressed air R, so that the first expansion in the first refrigerant circuit 50 is performed. It is configured to return between the valve 33 and the first evaporator 34. In the third branch 54, the compressed air R cooled by the cooling unit 39 is exchanged with the refrigerant A flowing through the third branch 54 in order from the upstream side in the flow direction of the refrigerant A, and compressed. A temperature control unit 40 for controlling the temperature of the air R, a fourth expansion valve 43 capable of adjusting the flow rate of the refrigerant A flowing through the third branch passage 54 and allowing the refrigerant A to expand, and a third branch passage 54. A third electromagnetic valve 49 configured to be able to switch between the intermittent state of the flowing refrigerant A, that is, the stopped state and the flowing state of the refrigerant A, is provided. The cooling unit 39 is configured to cool the compressed air R by exchanging heat between the compressed air R and the second branch temperature adjusting air P2 cooled by the first evaporator 34 described later.

ブース1及び温調装置Eには、温調用空気Pを、第1蒸発器34、加熱用交換器35及び冷却部39、ブロア4(送風手段の一例)、ブース1、第1蒸発器34の順に循環通流させる温調用空気循環路5が設けられている。なお、この温調用空気循環路5に設けられたブロア4は、温調された温調用空気Pを温調用空気循環路5に循環通流させ、ブース1内に送り込む送風手段として機能する。   In the booth 1 and the temperature control device E, the temperature control air P is supplied to the first evaporator 34, the heating exchanger 35 and the cooling unit 39, the blower 4 (an example of a blowing unit), the booth 1, and the first evaporator 34. A temperature adjusting air circulation path 5 is provided for circulation in order. The blower 4 provided in the temperature adjustment air circulation path 5 functions as a blowing means for circulating the temperature-controlled temperature adjustment air P through the temperature adjustment air circulation path 5 and sending it into the booth 1.

この温調用空気循環路5において、第1蒸発器34と加熱用熱交換器35との間には、第1蒸発器34を通過した温調用空気Pを、加熱用熱交換器35に供給する第1分岐温調用空気P1と冷却部39に供給する第2分岐温調用空気P2とに分岐する分岐手段61が設けられている。詳細な説明は省略するが、分岐手段61は、第1蒸発器34を通過した第1分岐温調用空気P1を加熱用熱交換器35に導く第1流路61aと、第1蒸発器34を通過した第2分岐温調用空気P2を冷却部39に導く第2流路61bとから構成されている。なお、第1流路61aと第2流路61bとは、第1流路61aを通流する第1分岐温調用空気P1の流量と第2流路61bを通流する第2分岐温調用空気P2の流量との関係が予め設定された関係(例えば、1対1)となるように流路面積等が調整されている。
さらに、この温調用空気循環路5において、加熱用熱交換器35及び冷却部39とブロア4との間には、加熱用熱交換器35を通過した第1分岐温調用空気P1と冷却部39を通過した第2分岐温調用空気P2とを合流させて、合流させた温調用空気Pをブロア4に供給する合流手段62が設けられている。詳細な説明は省略するが、合流手段62は、加熱用熱交換器35を通過した第1分岐温調用空気P1をブロア4に導く第3流路62aと、冷却部39を通過した第2分岐温調用空気P2を第3流路62aの途中部分に供給する第4流路62bとから構成されている。
なお、図2に示すように、温調用空気循環路5に配設される加熱用熱交換器35及び冷却部39は一体の熱交換器として構成されている。
In the temperature adjusting air circulation path 5, the temperature adjusting air P that has passed through the first evaporator 34 is supplied to the heating heat exchanger 35 between the first evaporator 34 and the heating heat exchanger 35. A branching means 61 is provided to branch into the first branching temperature adjusting air P1 and the second branching temperature adjusting air P2 supplied to the cooling unit 39. Although a detailed description is omitted, the branching unit 61 includes a first flow path 61a that guides the first branch temperature adjusting air P1 that has passed through the first evaporator 34 to the heating heat exchanger 35, and the first evaporator 34. The second branch temperature adjusting air P <b> 2 that has passed through the second flow path 61 b that guides the air to the cooling unit 39. The first flow path 61a and the second flow path 61b are the flow rate of the first branch temperature adjustment air P1 flowing through the first flow path 61a and the second branch temperature adjustment air flowing through the second flow path 61b. The flow path area and the like are adjusted so that the relationship with the flow rate of P2 becomes a preset relationship (for example, 1: 1).
Further, in the temperature adjusting air circulation path 5, the first branch temperature adjusting air P 1 and the cooling unit 39 that have passed through the heating heat exchanger 35 are disposed between the heating heat exchanger 35 and the cooling unit 39 and the blower 4. The merging means 62 is provided for joining the second branch temperature adjusting air P2 that has passed through the air and supplying the merged temperature adjusting air P to the blower 4. Although the detailed description is omitted, the merging means 62 includes a third flow path 62a that guides the first branch temperature adjusting air P1 that has passed through the heating heat exchanger 35 to the blower 4, and a second branch that has passed through the cooling unit 39. It is comprised from the 4th flow path 62b which supplies the air P2 for temperature control to the middle part of the 3rd flow path 62a.
As shown in FIG. 2, the heating heat exchanger 35 and the cooling unit 39 disposed in the temperature adjusting air circulation path 5 are configured as an integral heat exchanger.

また、この温調用空気循環路5における第1蒸発器34の上流側とブース1の下流側との間には外部空気導入路10が接続され、この外部空気導入路10を介してブース1の外部から温調用空気循環路5に外部空気OA(空気)を導入可能に構成されている。温調用空気循環路5と接続する外部空気導入路10内の一端部には、当該外部空気導入路10から温調用空気循環路5に導入される外部空気OAの量を調整可能なダンパー11(流量調整手段の一例)が配設され、外部空気導入路10の他端部は大気解放されている。また、制御部3は、ダンパー11の開度を制御して、温調用空気循環路5に導入される外部空気OAの量を調整可能に構成されている。
上記より、温調手段2は、少なくとも第1蒸発器34、加熱用交換器35、ブロア4、温調用空気循環路5、外部空気導入路10及びダンパー11を備えて構成されている。
In addition, an external air introduction path 10 is connected between the upstream side of the first evaporator 34 and the downstream side of the booth 1 in the temperature control air circulation path 5, and the booth 1 is connected via the external air introduction path 10. External air OA (air) can be introduced into the temperature adjusting air circulation path 5 from the outside. A damper 11 (adjustable amount of external air OA introduced from the external air introduction path 10 to the temperature adjustment air circulation path 5 is provided at one end of the external air introduction path 10 connected to the temperature adjustment air circulation path 5. An example of the flow rate adjusting means is disposed, and the other end of the external air introduction path 10 is released to the atmosphere. The control unit 3 is configured to be able to adjust the amount of the external air OA introduced into the temperature adjusting air circulation path 5 by controlling the opening degree of the damper 11.
As described above, the temperature control means 2 includes at least the first evaporator 34, the heating exchanger 35, the blower 4, the temperature control air circulation path 5, the external air introduction path 10, and the damper 11.

温調装置Eには、圧縮空気Rを、第1ポンプ6a、冷却部39、温調部40の順に循環通流させる圧縮空気循環路6が設けられている。この圧縮空気循環路6に設けられた第1ポンプ6aは、圧縮空気Rを圧縮空気循環路6に循環通流させる循環手段として機能する。なお、圧縮空気循環路6は、圧縮空気Rをブース1内の各種機器に供給可能に構成することができ、必要に応じて、ブース1内において圧縮空気Rを利用することもできる。   The temperature control device E is provided with a compressed air circulation path 6 for circulating the compressed air R in the order of the first pump 6a, the cooling unit 39, and the temperature control unit 40. The first pump 6 a provided in the compressed air circulation path 6 functions as a circulation means for circulating the compressed air R through the compressed air circulation path 6. The compressed air circulation path 6 can be configured to be able to supply the compressed air R to various devices in the booth 1, and the compressed air R can also be used in the booth 1 as necessary.

温調装置Eには、水Qを、第2蒸発器37、温調部38、第2ポンプ7a、の順に循環通流させる水循環路7が設けられている。この水循環路7に設けられた第2ポンプ7aは、水Qを水循環路7に循環通流させる循環手段として機能する。なお、水循環路7は、水Qをブース1内の各種機器に供給可能に構成することができ、必要に応じて、ブース1内において水Qを利用することもできる。   The temperature control device E is provided with a water circulation path 7 through which water Q is circulated through the second evaporator 37, the temperature control unit 38, and the second pump 7a in this order. The second pump 7 a provided in the water circulation path 7 functions as a circulation means for circulating the water Q through the water circulation path 7. The water circulation path 7 can be configured to be able to supply the water Q to various devices in the booth 1, and the water Q can be used in the booth 1 as necessary.

ブース1内には、ブース1内の温調用空気Pの温度を検出する空気温度センサ8が配設されている。空気温度センサ8による温度検出結果は、制御部3に入力される構成となっている。制御部3に入力された温度検出結果は、ブース1内の温度が設定温度となるように制御するための制御対象温度として参照される。   In the booth 1, an air temperature sensor 8 for detecting the temperature of the temperature adjusting air P in the booth 1 is disposed. The temperature detection result by the air temperature sensor 8 is input to the control unit 3. The temperature detection result input to the control unit 3 is referred to as a control target temperature for controlling the temperature in the booth 1 to be the set temperature.

また、ブース1内には、ブース1内の圧力を検出する圧力センサ9(圧力検出手段の一例)が配設されている。圧力センサ9としては公知の圧力センサを採用することができる。圧力センサ9による圧力検出結果は、制御部3に入力される構成となっている。なお、制御部3に入力された圧力検出結果は、後述するように、電子顕微鏡Fの運転開始時t1の圧力K1は基準圧力K1aとして用いられ、また、電子顕微鏡Fの運転開始時t1から運転停止時t2には、ブース1内の圧力が上記基準圧力K1aに維持されるように制御するための制御対象圧力として参照される。 Further, in the booth 1, a pressure sensor 9 (an example of pressure detection means) that detects the pressure in the booth 1 is disposed. A known pressure sensor can be adopted as the pressure sensor 9. The pressure detection result by the pressure sensor 9 is input to the control unit 3. As will be described later, the pressure K 1 at the start of operation of the electron microscope F is used as the reference pressure K 1a , and the pressure detection result input to the control unit 3 is at the start of operation t1 of the electron microscope F. From time to time t2 when the operation is stopped, the pressure in the booth 1 is referred to as a control target pressure for controlling the pressure to be maintained at the reference pressure K1a .

制御部3は、公知の情報演算処理手段から構成され、ブロア4、第1ポンプ6a、第2ポンプ7a及びダンパー11の制御のほかに、第1電磁弁47、第2電磁弁48、第3電磁弁49、圧縮機31、第1膨張弁33、第2膨張弁36、第3膨張弁42、第4膨張弁43等の動作を制御し、温調用空気P、水Q及び圧縮空気Rの流量や温度制御等が可能に構成されている。なお、制御部3には、各機器の作動状態に関する信号が、当該各機器から入力されるように構成されている。また、図示を省略するが、制御部3には各種情報を記憶可能な記憶部を備えている。   The control unit 3 includes known information calculation processing means. In addition to controlling the blower 4, the first pump 6a, the second pump 7a and the damper 11, the control unit 3 includes a first electromagnetic valve 47, a second electromagnetic valve 48, a third electromagnetic valve. The operation of the solenoid valve 49, the compressor 31, the first expansion valve 33, the second expansion valve 36, the third expansion valve 42, the fourth expansion valve 43, etc. is controlled, and the temperature adjustment air P, water Q and compressed air R are controlled. The flow rate and temperature control are possible. Note that the control unit 3 is configured such that a signal related to the operating state of each device is input from each device. Although not shown, the control unit 3 includes a storage unit that can store various types of information.

次に、温調装置Eの運転について説明する。
図1に示すように、電子顕微鏡Fの運転を開始しようとするときには、まず、ユーザが測定対象の試料27をケース21内の測定空間20における測定台26上に載置した後、操作部(図示せず)を操作して電子顕微鏡Fを起動し、真空ポンプ(図示せず)等を用いて測定空間20内を略真空状態とする。そして、ユーザが操作部を操作して温調装置Eを起動させると共に、電子顕微鏡Fの周囲の温度(ブース1内の温度)が測定に最適な温度(設定温度:例えば20〜22℃)となるように、当該設定温度を入力する。なお、温調装置Eの起動と同時に、予め設定された温度を記憶部から読み出して、設定温度として用いてもよい。
Next, the operation of the temperature control device E will be described.
As shown in FIG. 1, when the operation of the electron microscope F is to be started, first, after the user places the sample 27 to be measured on the measurement table 26 in the measurement space 20 in the case 21, the operation unit ( The electron microscope F is activated by operating (not shown), and the inside of the measurement space 20 is brought into a substantially vacuum state using a vacuum pump (not shown) or the like. And while a user operates the operation part and starts the temperature control apparatus E, the temperature (setting temperature: For example, 20-22 degreeC) with the temperature around the electron microscope F (temperature in booth 1) is optimal. The set temperature is input so that Note that a preset temperature may be read from the storage unit and used as the set temperature simultaneously with the activation of the temperature control device E.

温調装置Eが起動されると、制御部3は、空気温度センサ8により検出されたブース1内の温調用空気Pの温度が設定温度となるように、温調装置Eの運転を制御する。この際には、温調用空気Pは温調用空気循環路5を通流する際に、第1蒸発器34にて冷却され、加熱用熱交換器35及び冷却部39にて加熱されて設定温度に温調される(図2参照)。
また、制御部3は、図3に示すように、ブロア4を一定の出力で運転させ、温調装置Eにより温調された一定量の温調用空気Pをブース1内に送り込んで、ブース1内の圧力K1(図3の実線)を、大気圧K0(図3の破線)よりも一定値ΔKだけ大きな圧力(陽圧)にする(図3参照)。この一定値ΔKは、ブース1内の圧力K1の最小値が大気圧K0の最大値よりも常に大きくなるような圧力に設定されている。そして、例えば、この状態では、制御部3は、外部空気導入路10に配設されたダンパー11の開度を、50%程度の開度とし、温調用空気循環路5と外部空気導入路10との合流箇所の下流側における温調用空気Pと外部空気OAとの通流割合を、温調用空気P:外部空気OA=9:1程度とする。なお、ブロア4の出力やダンパー11の開度、温調用空気Pと外部空気OAとの通流割合等は例示であり適宜変更することが可能である。
When the temperature adjustment device E is activated, the control unit 3 controls the operation of the temperature adjustment device E so that the temperature of the temperature adjustment air P in the booth 1 detected by the air temperature sensor 8 becomes the set temperature. . At this time, when the temperature adjusting air P flows through the temperature adjusting air circulation path 5, the temperature adjusting air P is cooled by the first evaporator 34, heated by the heating heat exchanger 35 and the cooling unit 39, and set temperature. (See FIG. 2).
In addition, as shown in FIG. 3, the control unit 3 operates the blower 4 with a constant output, sends a constant amount of temperature adjustment air P temperature-controlled by the temperature adjustment device E into the booth 1, and The internal pressure K 1 (solid line in FIG. 3) is set to a pressure (positive pressure) larger than the atmospheric pressure K 0 (broken line in FIG. 3) by a constant value ΔK (see FIG. 3). The predetermined value ΔK is the minimum value of the pressure K 1 in the booth 1 is always set to larger such pressure than the maximum value of the atmospheric pressure K 0. For example, in this state, the controller 3 sets the opening degree of the damper 11 disposed in the external air introduction path 10 to an opening degree of about 50%, and the temperature adjustment air circulation path 5 and the external air introduction path 10. The flow rate ratio between the temperature adjustment air P and the external air OA on the downstream side of the merging point is about 9: 1 for the temperature adjustment air P: external air OA. The output of the blower 4, the opening degree of the damper 11, the flow rate of the temperature adjusting air P and the external air OA, etc. are examples and can be appropriately changed.

次に、制御部3は、空気温度センサ8により検出されたブース1内の温調用空気Pの温度が上記設定温度となると、圧力センサ9によりブース1内の圧力K1を検出し、当該圧力K1を基準圧力K1a(陽圧)として設定する。そして、制御部3は、ブロア4の出力及びダンパー11の開度を調整して、ブース1内の圧力K1を、設定された基準圧力K1aに維持する。具体的には、制御部3は、基準圧力K1aの設定後、圧力センサ9により順次検出される圧力K1が当該基準圧力K1aに維持されるように、上述のように一定の出力で運転されるブロア4の出力を、当該出力よりも低下させ、さらに、上述のように開度調整されたダンパー11の開度を、当該開度よりも大きくする。 Next, when the temperature of the temperature adjustment air P in the booth 1 detected by the air temperature sensor 8 reaches the set temperature, the control unit 3 detects the pressure K 1 in the booth 1 by the pressure sensor 9, and the pressure K 1 is set as the reference pressure K 1a (positive pressure). And the control part 3 adjusts the output of the blower 4, and the opening degree of the damper 11, and maintains the pressure K1 in the booth 1 to the set reference pressure K1a . Specifically, after setting the reference pressure K 1a , the control unit 3 has a constant output as described above so that the pressure K 1 sequentially detected by the pressure sensor 9 is maintained at the reference pressure K 1a. The output of the blower 4 to be operated is reduced below the output, and the opening degree of the damper 11 whose opening degree is adjusted as described above is made larger than the opening degree.

ここで、上述のようにブース1内の温調用空気Pの温度が設定温度となると、電子顕微鏡Fの運転(測定)が開始できる状態となるため、上記では、この時点におけるブース1内の圧力K1を基準圧力K1aとしている。すなわち、制御部3は、電子顕微鏡Fの運転開始時のブース1内の圧力K1を基準圧力K1aとして、電子顕微鏡Fの運転開始時t1から運転停止時t2までの間(運転時間:Δt)、ブース1内の圧力K1を基準圧力K1aに維持している。この電子顕微鏡Fの運転時間Δtは、例えば、数時間とされる。なお、一般的に、大気圧K0は比較的長い周期(例えば、1日や2日)で変動するため、電子顕微鏡Fの運転時間Δt内(数時間程度)では当該大気圧K0の変動幅は比較的小さくなり、上述のようにブース1内の圧力K1を基準圧力K1aに維持しても、当該ブース1内の圧力K1(基準圧力K1a)は常に陽圧に維持されることとなる(ブース1内の圧力K1(基準圧力K1a)が、大気圧K0以下となることはない)。 Here, since the operation (measurement) of the electron microscope F can be started when the temperature of the temperature adjusting air P in the booth 1 reaches the set temperature as described above, the pressure in the booth 1 at this time is described above. K 1 is the reference pressure K 1a . That is, the control unit 3, as a reference pressure K 1a pressure K 1 in the booth 1 is in operation at the start of the electron microscope F, during the period from the operation start time t1 of the electron microscope F operation to stop t2 (operation time: Delta] t ) maintains the pressure K 1 in the booth 1 to the reference pressure K 1a. The operation time Δt of the electron microscope F is, for example, several hours. In general, the atmospheric pressure K 0 fluctuates with a relatively long cycle (for example, 1 day or 2 days), and therefore the atmospheric pressure K 0 fluctuates within the operation time Δt of the electron microscope F (about several hours). width is relatively small, it is maintained at a reference pressure K 1a pressure K 1 in the booth 1, as described above, the pressure K 1 (reference pressure K 1a) in the booth 1 is always maintained at a positive pressure the Rukoto (pressure in the booth 1 K 1 (reference pressure K 1a) is, does not become the atmospheric pressure K 0 or less).

次に、試料27の測定が終了し、電子顕微鏡Fの運転(測定)が停止する運転停止時t2には、制御部3は、ブロア4を一定の出力での運転に戻すとともに、ダンパー11の開度を、50%程度の開度に戻す。すなわち、制御部3は、ブース1内の圧力K1を基準圧力K1aに維持する制御を停止し、温調装置Eにより温調された一定量の温調用空気Pをブース1内に送り込んで、ブース1内の圧力K1(図3の実線)を、電子顕微鏡Fの運転時における基準圧力K1aよりも大きな圧力で、しかも、大気圧K0(図3の破線)よりも一定値(ΔK)だけ大きな圧力にまで上昇させる(図3参照)。 Next, at the time t2 when the measurement of the sample 27 is completed and the operation (measurement) of the electron microscope F is stopped, the control unit 3 returns the blower 4 to the operation at a constant output and the damper 11 Return the opening to about 50%. That is, the control unit 3 stops the control for maintaining the pressure K 1 in the booth 1 to the reference pressure K 1a, by feeding air P for temperature control of the fixed amount that is controlled at the booth 1 by temperature controller E , the pressure K 1 in the booth 1 (solid line in FIG. 3), at a pressure greater than the reference pressure K 1a during operation of the electron microscope F, moreover, a constant value than the atmospheric pressure K 0 (broken line in FIG. 3) ( The pressure is increased to a large pressure by ΔK) (see FIG. 3).

これにより、ブース1内の圧力K1は常に陽圧に維持されるが、電子顕微鏡Fの運転開始t1から運転停止t2までの時間だけ均一な圧力(基準圧力K1a)に維持される。従って、電子顕微鏡Fの運転時(運転時間:Δt)には、ブース1内の圧力K1を陽圧で、しかも均一な圧力(基準圧力K1a)に維持することができるので、電子顕微鏡Fの運転を安定させ測定精度の低下を抑制することができる。また、均一に維持されるブース1内の圧力K1は電子顕微鏡Fの運転開始時t1の基準圧力K1aであるので、当該基準圧力K1aが単に維持されるようにブロア4及びダンパー11の運転を行うだけで(ブロア4の出力の増減の幅が小さな状態の運転で)、ブース1内の圧力K1を所望の均一の圧力に容易に維持することができる。さらに、電子顕微鏡Fの運転時のみブース1内の圧力K1を均一に維持するだけでよいので、電子顕微鏡Fの運転時以外にはブース1内を均一な圧力にするために、出力を増減させてブロア4を運転させる必要がなくなる(単に一定の出力で運転すればよくなる)とともに、ダンパー11の開度を調整したりする必要がなくなり、省エネを図ることができる。また、圧力センサ9によるブース1内の圧力検出も、電子顕微鏡Fの運転開始時t1及び運転時だけでよく、圧力の監視負担も軽減する。なお、このような構成としても、温調手段2により温調された温調用空気Pがブース1内に送り込まれることによりブース1内を所望の設定温度に温調でき、また、温調用空気Pが送り込まれてブース1内が陽圧とされることにより、ブース1の外部からブース1内に塵埃等が侵入することを防止することができる。 Thus, the pressure K 1 in the booth 1 is always kept positive pressure is maintained in time by a uniform pressure from the operation start t1 of the electron microscope F until shutdown t2 (reference pressure K 1a). Accordingly, during operation of the electron microscope F (operation time: Δt), the pressure K 1 in the booth 1 can be maintained at a positive pressure and a uniform pressure (reference pressure K 1a ). It is possible to stabilize the operation and suppress a decrease in measurement accuracy. The pressure K 1 in the booth 1 is uniformly maintained since the reference pressure K 1a of the driver at the start t1 of the electron microscope F, the blower 4 and the damper 11 such that the reference pressure K 1a is simply maintained The pressure K 1 in the booth 1 can be easily maintained at a desired uniform pressure only by performing the operation (in an operation in which the increase / decrease of the output of the blower 4 is small). Furthermore, it is only to maintain a uniform pressure K 1 in operation only when the booth 1 of the electron microscope F, except when the operation of the electron microscope F is to the booth 1 into a uniform pressure, increase or decrease the output Thus, it is not necessary to operate the blower 4 (it is only necessary to operate at a constant output), and it is not necessary to adjust the opening degree of the damper 11, thereby saving energy. Further, the pressure in the booth 1 can be detected only by the pressure sensor 9 at the start of the operation of the electron microscope F and at the time of operation, and the pressure monitoring load is reduced. Even in such a configuration, the temperature adjustment air P temperature-controlled by the temperature adjustment means 2 is sent into the booth 1, whereby the temperature inside the booth 1 can be adjusted to a desired set temperature, and the temperature adjustment air P Can be prevented from entering the booth 1 from the outside of the booth 1.

しかも、上述のように、電子顕微鏡Fにおいて、ブース1の内部空間と、当該ブース1の内部空間に配設された電子顕微鏡Fのケース21により区画される測定空間20とを連通する開口部22が、シール部材23を介して締結具24で固定されたフランジ蓋体25により閉塞されているので、仮に、ブース1内の圧力変動等が発生すると、当該電子顕微鏡Fではシール部材23が伸縮して、フランジ蓋体25から延出する測定台26が移動する虞がある。しかしながら、当該構成の電子顕微鏡Fを採用したとしても、電子顕微鏡Fの運転時にはブース1内の圧力K1が均一に維持されているので、シール部材23を介して固定されたフランジ蓋体25及び測定台26上に載置された測定対象の試料27が移動してしまうことがなく、電子顕微鏡Fの測定精度の低下を防止することができる。 Moreover, as described above, in the electron microscope F, the opening 22 that connects the internal space of the booth 1 and the measurement space 20 defined by the case 21 of the electron microscope F disposed in the internal space of the booth 1. However, if the pressure fluctuation or the like in the booth 1 occurs, the sealing member 23 expands and contracts in the electron microscope F, if it is closed by the flange lid body 25 fixed by the fastener 24 via the sealing member 23. Thus, there is a possibility that the measuring table 26 extending from the flange lid body 25 moves. However, even when the electron microscope F having such a configuration is adopted, the pressure K 1 in the booth 1 is maintained uniformly during operation of the electron microscope F. Therefore, the flange lid body 25 fixed via the seal member 23 and The sample 27 to be measured placed on the measurement table 26 is not moved, and the measurement accuracy of the electron microscope F can be prevented from being lowered.

さらに、温調用空気循環路5を循環通風する温調用空気Pの流量(ブース1内に供給される温調用空気Pの量)は、当該温調空気循環路5に配設されたブロア4の運転状態を制御することで調整できることに加え、外部空気導入路10に配設されたダンパー11の作動状態を制御することで調整することができ、ブース1内の圧力K1をより確実に陽圧で、しかも均一な圧力(基準圧力K1a)に維持することができる。 Further, the flow rate of the temperature adjustment air P circulating through the temperature adjustment air circulation path 5 (the amount of the temperature adjustment air P supplied into the booth 1) is determined by the blower 4 disposed in the temperature adjustment air circulation path 5. in addition to be adjusted by controlling the operating state, it can be adjusted by controlling the operating state of the damper 11 disposed to the outside air introduction passage 10, the pressure K 1 in the booth 1 more reliably positive And a uniform pressure (reference pressure K 1a ).

〔別実施形態〕
(A)上記実施形態においては、精密機器として電子顕微鏡Fを採用した例を述べたが、これに限らず、精密機器として、ブース1内の圧力変動により測定精度や運転状態に悪影響を受ける虞がある、ナノオーダの加工精度が要求される超精密な加工を行う加工機械等(例えば、半導体露光装置など)にも適用することができる。
[Another embodiment]
(A) In the above embodiment, an example in which the electron microscope F is used as a precision instrument has been described. However, the present invention is not limited to this example, and the precision of the instrument may be adversely affected by pressure fluctuations in the booth 1 as a precision instrument. The present invention can also be applied to a processing machine or the like (for example, a semiconductor exposure apparatus) that performs ultra-precise processing that requires nano-order processing accuracy.

(B)上記実施形態においては、圧力センサ9によりブース1内の圧力K1を基準圧力K1aとして検出する際に、その検出タイミングを電子顕微鏡Fの運転(測定)開始時t1とする例について説明したが、特にこの構成に限定されるものではなく、例えば、電子顕微鏡の運転(測定)開始前(運転開始時t1よりも前)に圧力センサ9によりブース1内の圧力K1を基準圧力K1aとして検出する構成としてもよい。 In (B) the above-described embodiment, when detecting the pressure K 1 in the booth 1 by the pressure sensor 9 as a reference pressure K 1a, for example for the detection timing and the electron microscope F operation (measurement) start time t1 Although described above, the present invention is not particularly limited to this configuration. For example, the pressure K1 in the booth 1 is set to the reference pressure by the pressure sensor 9 before the start of the operation (measurement) of the electron microscope (before the start of operation t1). it may be detected as a K 1a.

(C)上記実施形態においては、電子顕微鏡Fの運転時においてブース1内の圧力K1を基準圧力K1aに維持する際に、ブース1内の圧力K1が時間の経過とともに増加する傾向にある場合において(図3参照)、ブロア4の出力を低下させ、ダンパー11の開度を大きくする例について説明したが、適切にブース1内の圧力K1を基準圧力K1aに維持できる構成であれば、特にこの構成に限定されるものではない。
例えば、ブース1内の圧力K1が時間の経過とともに減少する傾向にある場合には、ブロア4の出力を上昇させ、ダンパー11の開度を小さくするように調整して、電子顕微鏡Fの運転時においてブース1内の圧力K1を基準圧力K1aに維持することもできる。また、ブロア4による温調用空気Pの送り込みのみで、ブース1内の圧力K1を大気圧K0よりも大きくすることができ、しかも、ブロア4の出力の調整で、電子顕微鏡Fの運転時にブース1内の圧力K1を基準圧力K1aに維持することができれば、ダンパー11を省略する構成とすることもできる。
In (C) In the above embodiment, in maintaining during operation of the electron microscope F pressure K 1 in the booth 1 to the reference pressure K 1a, tends to pressure K 1 in the booth 1 is increased with the lapse of time In some cases (see FIG. 3), the example in which the output of the blower 4 is reduced and the opening degree of the damper 11 is increased has been described. However, the pressure K 1 in the booth 1 can be appropriately maintained at the reference pressure K 1a. If there is, it is not particularly limited to this configuration.
For example, if there is a tendency that the pressure K 1 in the booth 1 is reduced over time, the output of the blower 4 is raised, by adjusting so as to reduce the opening degree of the damper 11, the operation of the electron microscope F At times, the pressure K 1 in the booth 1 can be maintained at the reference pressure K 1a . Further, only the infeed of air P for temperature control by the blower 4, the pressure K 1 in the booth 1 can be greater than atmospheric pressure K 0, moreover, by adjusting the output of the blower 4, during operation of the electron microscope F if it is possible to maintain the pressure K 1 in the booth 1 to the reference pressure K 1a, it can be omitted from the damper 11.

(D)上記実施形態においては、温調装置Eにおいて温調用空気Pのほかに、水Q及び圧縮空気Rを温調することができる構成について説明したが、水Q及び圧縮空気Rが必要なければ、これら水Q及び圧縮空気Rに関する構成を省略した温調装置を採用することもできる。この場合、例えば、第2冷媒回路51、第1分岐路52、第2分岐路53、第3分岐路54、圧縮空気循環路6、水循環路7、分岐手段61及び合流手段62を省略し、加熱手段としての加熱用熱交換器35の替わりに、電気ヒータ等を用いた構成の温調装置とすることができる。
また、温調装置Eにおける冷却手段や加熱手段としては、温調用空気Pを冷却できる公知の冷却手段や加熱できる公知の加熱手段を用いることができる。また、冷却手段や加熱手段の数についても適宜設定することができる。
(D) In the above embodiment, the temperature adjustment device E has described the configuration that can regulate the temperature of the water Q and the compressed air R in addition to the temperature adjustment air P. However, the water Q and the compressed air R are required. For example, a temperature control device that omits the configuration relating to the water Q and the compressed air R may be employed. In this case, for example, the second refrigerant circuit 51, the first branch path 52, the second branch path 53, the third branch path 54, the compressed air circulation path 6, the water circulation path 7, the branching means 61 and the joining means 62 are omitted. Instead of the heating heat exchanger 35 serving as a heating means, a temperature control device using an electric heater or the like can be used.
As the cooling means and heating means in the temperature control device E, a known cooling means capable of cooling the temperature adjustment air P and a known heating means capable of heating can be used. The number of cooling means and heating means can also be set as appropriate.

以上説明したように、精密機器が配設されたブース内の圧力の変動を防止して測定精度の低下を抑制しつつ、省エネをも実現できる温調装置として有効に利用することができる。   As described above, it can be effectively used as a temperature control device that can realize energy saving while preventing a change in pressure in a booth in which a precision instrument is disposed and suppressing a decrease in measurement accuracy.

1 ブース
2 温調手段
3 制御部(制御手段)
4 ブロア(送風手段)
5 温調用空気循環路
9 圧力センサ(圧力検出手段)
10 外部空気導入路
11 ダンパー(流量調整手段)
20 測定空間
21 ケース
22 開口部
23 ゴムパッキン(シール部材)
24 ボルト・ナット(締結具)
25 フランジ蓋体
26 測定台
27 試料
34 第1蒸発器(冷却手段)
35 加熱用熱交換器(加熱手段)
E 温調装置
F 電子顕微鏡(精密機器)
P 温調用空気
OA 外部空気(空気)
0 大気圧
1 ブース内の圧力
1a 基準圧力
t1 運転開始時
t2 運転停止時
1 Booth 2 Temperature Control Unit 3 Control Unit (Control Unit)
4 Blower (Blower)
5 Air circuit for temperature control 9 Pressure sensor (pressure detection means)
10 External air introduction path 11 Damper (flow rate adjusting means)
20 Measurement space 21 Case 22 Opening 23 Rubber packing (seal member)
24 Bolts and nuts (fasteners)
25 Flange lid 26 Measuring table 27 Sample 34 First evaporator (cooling means)
35 Heat exchanger for heating (heating means)
E Temperature controller F Electron microscope (Precision equipment)
P Air for temperature control OA External air (air)
K 0 Atmospheric pressure K 1 Booth pressure K 1a Reference pressure t1 When operation starts t2 When operation stops

Claims (3)

精密機器が配設されたブース内に、温調用空気を供給して前記ブース内を温調する温調手段と、前記温調手段の運転を制御する制御手段とを備えた温調装置であって、
前記ブース内の圧力を検出する圧力検出手段を前記ブース内に備え、
前記温調手段が、温調された前記温調用空気を前記ブース内に送り込む送風手段を備え、
前記制御手段が、前記送風手段を運転させて前記ブース内に前記温調用空気を送り込んで、前記ブース内の圧力を大気圧よりも大きな圧力にするとともに、
前記制御手段が、前記精密機器の運転開始時又は運転開始前に前記圧力検出手段により前記ブース内の圧力である基準圧力を検出させ、前記送風手段の運転を制御して、前記精密機器の運転開始時から運転停止までの間、前記ブース内の圧力を前記基準圧力に維持する温調装置。
A temperature control apparatus comprising temperature control means for supplying temperature adjustment air to a booth in which precision equipment is disposed, and temperature control means for controlling the operation of the temperature control means. And
Pressure detection means for detecting the pressure in the booth is provided in the booth,
The temperature adjusting means includes air blowing means for sending the temperature-controlled air into the booth.
The control means operates the air blowing means to send the temperature adjustment air into the booth to make the pressure in the booth larger than atmospheric pressure,
The control means detects the reference pressure, which is the pressure in the booth, by the pressure detection means at the start of operation of the precision instrument or before the start of operation, controls the operation of the blower means, and operates the precision instrument. A temperature control device that maintains the pressure in the booth at the reference pressure from the start to the shutdown.
前記精密機器が電子顕微鏡であり、前記電子顕微鏡が、内部に測定空間を形成するケースと、前記ケースに形成された開口部にシール部材を介して締結具により固定されたフランジ蓋体と、前記フランジ蓋体から前記測定空間内に延出された測定台とを備え、前記測定台上に測定対象の試料が載置されるように構成されている請求項1に記載の温調装置。   The precision instrument is an electron microscope, the electron microscope includes a case that forms a measurement space therein, a flange lid that is fixed to an opening formed in the case by a fastener via a seal member, The temperature control apparatus according to claim 1, further comprising a measurement table extending from the flange lid into the measurement space, wherein the sample to be measured is placed on the measurement table. 前記温調手段が、前記温調用空気を冷却する冷却手段及び加熱する加熱手段と、前記温調用空気を、前記冷却手段、前記加熱手段、前記送風手段、前記ブース、前記冷却手段の順に循環通風させる温調用空気循環路と、前記ブースの外部の空気を前記温調用空気循環路における前記冷却手段の上流側と前記ブースの下流側との間に導入可能な外部空気導入路と、前記外部空気導入路に配設され、前記ブースの外部から導入される空気の量を調整可能な流量調整手段とを備える請求項1又は2に記載の温調装置。   The temperature adjustment means is a cooling means for cooling the temperature adjustment air and a heating means for heating, and the temperature adjustment air is circulated in the order of the cooling means, the heating means, the blowing means, the booth, and the cooling means. A temperature adjustment air circulation path, an external air introduction path capable of introducing air outside the booth between the upstream side of the cooling means and the downstream side of the booth in the temperature adjustment air circulation path, and the external air The temperature control device according to claim 1, further comprising: a flow rate adjusting unit that is disposed in the introduction path and capable of adjusting an amount of air introduced from the outside of the booth.
JP2011008596A 2011-01-19 2011-01-19 Temperature control device Active JP5600857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008596A JP5600857B2 (en) 2011-01-19 2011-01-19 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008596A JP5600857B2 (en) 2011-01-19 2011-01-19 Temperature control device

Publications (2)

Publication Number Publication Date
JP2012149817A true JP2012149817A (en) 2012-08-09
JP5600857B2 JP5600857B2 (en) 2014-10-08

Family

ID=46792233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008596A Active JP5600857B2 (en) 2011-01-19 2011-01-19 Temperature control device

Country Status (1)

Country Link
JP (1) JP5600857B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468035A (en) * 1977-11-09 1979-05-31 Kanebo Ltd Method of controlling indoor pressure in air conditioning
JPS619842U (en) * 1984-06-22 1986-01-21 日本電子株式会社 Semiconductor sample mounting device
JPS61217641A (en) * 1985-03-23 1986-09-27 Takasago Thermal Eng Co Ltd Ventilating facility for controlling absolute interior pressure
US4667580A (en) * 1984-07-19 1987-05-26 Wetzel Lawrence E Clean room module
JPH02192537A (en) * 1989-01-18 1990-07-30 Hitachi Plant Eng & Constr Co Ltd Indoor absolute pressure controller device
JPH06103947A (en) * 1992-09-17 1994-04-15 Hitachi Ltd Focusing ion beam device
JPH11173649A (en) * 1997-12-15 1999-07-02 Taikisha Ltd Air conditioning system
JP2002008576A (en) * 2000-06-27 2002-01-11 Jeol Ltd Charged particle beam device
JP2002267034A (en) * 2001-03-06 2002-09-18 Jeol Ltd Pressure relief valve of clean room, etc.
JP2006071118A (en) * 2004-08-31 2006-03-16 Espec Corp Ventilating system for absolute pressure control chamber
JP2008032335A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Mini-environment device, inspection device, manufacturing device, and space cleaning method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468035A (en) * 1977-11-09 1979-05-31 Kanebo Ltd Method of controlling indoor pressure in air conditioning
JPS619842U (en) * 1984-06-22 1986-01-21 日本電子株式会社 Semiconductor sample mounting device
US4667580A (en) * 1984-07-19 1987-05-26 Wetzel Lawrence E Clean room module
JPS61217641A (en) * 1985-03-23 1986-09-27 Takasago Thermal Eng Co Ltd Ventilating facility for controlling absolute interior pressure
JPH02192537A (en) * 1989-01-18 1990-07-30 Hitachi Plant Eng & Constr Co Ltd Indoor absolute pressure controller device
JPH06103947A (en) * 1992-09-17 1994-04-15 Hitachi Ltd Focusing ion beam device
JPH11173649A (en) * 1997-12-15 1999-07-02 Taikisha Ltd Air conditioning system
JP2002008576A (en) * 2000-06-27 2002-01-11 Jeol Ltd Charged particle beam device
JP2002267034A (en) * 2001-03-06 2002-09-18 Jeol Ltd Pressure relief valve of clean room, etc.
JP2006071118A (en) * 2004-08-31 2006-03-16 Espec Corp Ventilating system for absolute pressure control chamber
JP2008032335A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Mini-environment device, inspection device, manufacturing device, and space cleaning method

Also Published As

Publication number Publication date
JP5600857B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
KR101639174B1 (en) Air conditioner and method for operating the same
CN103092229B (en) Temperature stabilizing and controlling system of laser
JP2011252717A (en) Environmental testing device
JP4615335B2 (en) Temperature control system and substrate processing apparatus
TW202028663A (en) Air conditioner, unit for floating conveying substrate with air conditioner and method of supplying air for floating conveying substrate
US11237577B2 (en) Temperature control system including multiple valves and temperature control method
JP4579025B2 (en) Temperature adjusting method, temperature adjusting device, plasma processing device
JP6453284B2 (en) Air conditioning system
JP2016053863A (en) Temperature regulator
JP5600857B2 (en) Temperature control device
JP6127099B2 (en) Temperature control system
WO2017208393A1 (en) Cooling device for semiconductor inspection apparatus
JP2017166747A5 (en)
JP6533445B2 (en) Brine feeder
JP5099843B2 (en) Temperature and humidity control device
JP6049936B1 (en) Air conditioner
JP2006261497A5 (en)
JP6129760B2 (en) Temperature control device
KR20150068249A (en) Apparatus for controlling multi output pump system and method thereof
JP2008185232A (en) Temperature-regulated air supplying device
JP2002228242A (en) Method and apparatus for room pressure control
JP2009122357A (en) Device for regulating temperature of plate-like member
KR101549533B1 (en) Air conditioning apparatus for ship
JP5102195B2 (en) Temperature control device
JP2011089663A (en) Temperature control device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5600857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150