JPH02185026A - Selective forming method of al thin-film - Google Patents

Selective forming method of al thin-film

Info

Publication number
JPH02185026A
JPH02185026A JP517789A JP517789A JPH02185026A JP H02185026 A JPH02185026 A JP H02185026A JP 517789 A JP517789 A JP 517789A JP 517789 A JP517789 A JP 517789A JP H02185026 A JPH02185026 A JP H02185026A
Authority
JP
Japan
Prior art keywords
raw material
gas
film
thin
dimethylaluminum hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP517789A
Other languages
Japanese (ja)
Inventor
Tsutomu Niizawa
新澤 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP517789A priority Critical patent/JPH02185026A/en
Publication of JPH02185026A publication Critical patent/JPH02185026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the feed of a raw material sufficiently, and to increase the speed of film formation by using a dimethylaluminum hydride ((CH3)2AlH) as a raw material gas. CONSTITUTION:A dimethylaluminum hydride is sealed into a bubbler vessel 3, the carrier gas of hydrogen gas or a rare gas is supplied while the flow rate of the carrier gas is controlled by a mass flow controller 2, and the vapor pressure component of a raw material is mixed at a partial pressure ratio in the bubbler vessel 3, and introduced into a growth chamber 5 decompressed by an exhaust system 8. The dimethylaluminum hydride having high vapor pressure of 2Torr at 25 deg.C is used as a raw material gas, thus allowing selective growth, then increasing the feed of the raw material, provided that an Al thin- film can be formed selectively at the large speed of film formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン基板上へのAl薄膜の選択的形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for selectively forming an Al thin film on a silicon substrate.

〔従来の技術〕[Conventional technology]

AI!薄膜の選択的成長の応用としては、半導体の配線
形成において、従来のプロセスであるスパッタ法では不
可能であった微細なスルーホールの埋め込みによる配線
の高密度化や平坦化、更には多結晶シリコンへのAIの
張り付けによる配線抵抗の低減等がある。
AI! Applications of selective growth of thin films include increasing the density and flattening of interconnects by burying minute through holes, which was impossible with the conventional process of sputtering, in semiconductor interconnect formation, and even polycrystalline silicon. There is a reduction in wiring resistance by attaching AI to the wire.

従来、AJ?薄膜の選択的成長には、第18回国体素子
材料コンファレンス予稿集(1986年)の755〜7
56頁記載のように、トリイソブチルアルミ((l  
C4H5)s 、AJ’)を原料として用いた方法が報
告されている。そこでは、酸化シリコンのパターンを形
成したシリコン基板上で、化学気相堆積(CVD)法に
より、シリコンが露出したところにのみAfを堆積させ
るという選択的成膜を実現している。
Traditionally, AJ? For the selective growth of thin films, see 755-7 of the 18th National Element Materials Conference Proceedings (1986).
As described on page 56, triisobutylaluminum ((l
A method using C4H5)s, AJ') as a raw material has been reported. In this method, selective film formation is achieved in which Af is deposited only on exposed areas of silicon by chemical vapor deposition (CVD) on a silicon substrate on which a silicon oxide pattern is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のトリイソブチルアルミを用いたA
f薄膜の選択的形成方法では、原料であるトリイソブチ
ルアルミの蒸気圧が25℃で0.57゜「「と低いため
、原料供給量を十分に取ることができず、成膜速度が、
現在半導体プロセスに使用されているスパッタ法より2
桁程度小さいという実用土の問題がある。又、原料ガス
を事前に気相分解しなければならないという問題もある
However, conventional A using triisobutyl aluminum
In the f-thin film selective formation method, the vapor pressure of triisobutylaluminum, which is the raw material, is as low as 0.57° at 25°C, so it is not possible to obtain a sufficient amount of raw material supply, and the film formation rate is
2 from the sputtering method currently used in semiconductor processes.
There is a problem with practical soils, which are orders of magnitude smaller. Another problem is that the raw material gas must be subjected to gas phase decomposition in advance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、開口部を有するマスク材料で被覆されたシリ
コン基板上の前記開口部分に化学気相堆積方法を用いて
選択成長を行うAI!薄膜の選択的形成方法において、
ジメチルアルミハイドライド((CH3)2 A (!
 H)を原料ガスとして用いるAJ7薄膜の選択的形成
方法である。
The present invention provides AI! selective growth using a chemical vapor deposition method on a silicon substrate covered with a mask material having an opening. In a method for selectively forming a thin film,
Dimethyl aluminum hydride ((CH3)2 A (!
This is a method for selectively forming an AJ7 thin film using H) as a source gas.

〔作用〕[Effect]

本発明においては、原料ガスとして蒸気圧が25℃で2
 Torrと高いジメチルアルミハイドライドを用いる
ことにより、選択成長が可能で、且つ原料の供給量を従
来のトリイソブチルアルミを用いるよりも1〜2桁増加
させることができる。この作用は、本発明者が新たに実
験的に見出した知見に基づいている。
In the present invention, the raw material gas has a vapor pressure of 2 at 25°C.
By using dimethylaluminum hydride with a high Torr, selective growth is possible, and the amount of raw material supplied can be increased by one to two orders of magnitude compared to the conventional use of triisobutylaluminum. This effect is based on new experimental findings by the inventor.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す図で、AI!薄膜の選
択的形成を実施するためのガスミキサ及び減圧CVD装
置の構成図である。1はキャリアガスボンベ、2はキャ
リアガスの流量を調整するマスフローコントローラ、3
は原料をキャリアガスと混合するためのバブラ容器、4
はバブラ容器の蒸気圧を制御するための温度調整機、5
は成長室、6はウェハ、7はウェハの温度を制御するヒ
ータ、8は排気系である。
FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 2 is a configuration diagram of a gas mixer and a low pressure CVD apparatus for selectively forming a thin film. 1 is a carrier gas cylinder; 2 is a mass flow controller that adjusts the flow rate of the carrier gas; 3
is a bubbler container for mixing raw materials with carrier gas, 4
5 is a temperature regulator for controlling the vapor pressure of the bubbler container;
6 is a growth chamber, 6 is a wafer, 7 is a heater for controlling the temperature of the wafer, and 8 is an exhaust system.

バブラ容器3にジメチルアルミハイドライドを封入し、
水素ガスあるいは希ガスのキャリアガスの流量をマスフ
ローコントローラ2で制御しながらフローさせ、バブラ
容器3で原料の蒸気圧成分を分圧比で混合し、排気系8
にて減圧された成長室5へ導入する。
Fill the bubbler container 3 with dimethyl aluminum hydride,
The flow rate of a carrier gas such as hydrogen gas or rare gas is controlled by a mass flow controller 2, and the vapor pressure components of the raw materials are mixed at a partial pressure ratio in a bubbler container 3.
The sample is introduced into the growth chamber 5, which is depressurized at .

このとき成長室5内の圧力はI Torr、キャリアガ
スは水素でマスフローコントローラ2で60SCCM(
0℃、1気圧換算でのcm37win )に制御し、バ
ブラ容器3の温度は温度調整機4で25℃に保たれてい
る。このとき、成長室5内の原料ガスの分圧はQ、l 
Torrと見積られた。成長室5の中に設置されたウェ
ハ6は、ヒータ7により選択性を示す温度に保たれてい
る。ここで、220〜250℃の温度範囲であれば、十
分に選択性を示すことを確認した。導入された原料は、
ウェハ6で加熱され熱分解によりAlを堆積させる。
At this time, the pressure inside the growth chamber 5 is I Torr, the carrier gas is hydrogen, and the mass flow controller 2 is operated at 60 SCCM (
The temperature of the bubbler container 3 is maintained at 25°C by a temperature regulator 4. At this time, the partial pressure of the source gas in the growth chamber 5 is Q, l
It was estimated to be Torr. A wafer 6 placed in the growth chamber 5 is maintained at a temperature that exhibits selectivity by a heater 7. Here, it was confirmed that sufficient selectivity was exhibited within the temperature range of 220 to 250°C. The raw materials introduced are
The wafer 6 is heated to deposit Al by thermal decomposition.

ウェハにてAJ7薄膜が1μg+/+unの成膜速度が
得られる条件で、シリコン上に酸化シリコンのマスクパ
ターンが形成されたウェハを用いたところ、マスクパタ
ーンの開口部から露出したシリコン上にのみ選択性良く
Alが堆積した。ここではマスク材料として酸化シリコ
ンを用いたが、SiNxやPSGなとの他の材料を用い
ても本発明の効果は得られる。
When a wafer with a silicon oxide mask pattern formed on the silicon was used under the conditions that the AJ7 thin film was deposited at a deposition rate of 1 μg +/+ un on the wafer, the film was selected only on the silicon exposed through the opening of the mask pattern. Al was deposited with good quality. Although silicon oxide is used here as the mask material, the effects of the present invention can also be obtained using other materials such as SiNx and PSG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原料供給量が十分なため、従来よりも
大きな成膜速度で選択的にAl薄膜を形成することがで
きる。又、原料を事前に分解する必要もなくなる。
According to the present invention, since the amount of raw material supplied is sufficient, it is possible to selectively form an Al thin film at a faster film formation rate than in the past. Also, there is no need to decompose the raw material in advance.

第1図は本発明の一実施例を説明するための装置の構成
図である。
FIG. 1 is a configuration diagram of an apparatus for explaining one embodiment of the present invention.

1・・・キャリアガスボンベ、 2・・・マスフローコ
ントローラ、 3・・・バブラ容器、 4・・・温度調
整機、 5・・・成長室、 6・・・ウェハ、7・・・
ヒータ、8・・・排気系。
DESCRIPTION OF SYMBOLS 1... Carrier gas cylinder, 2... Mass flow controller, 3... Bubbler container, 4... Temperature regulator, 5... Growth chamber, 6... Wafer, 7...
Heater, 8...exhaust system.

Claims (1)

【特許請求の範囲】[Claims] 開口部を有するマスク材料で被覆されたシリコン基板上
の前記開口部分に化学気相堆積方法を用いて選択成長を
行うAl薄膜の選択的形成方法において、ジメチルアル
ミハイドライド((CH_3)_2AlH)を原料ガス
として用いることを特徴とするAl薄膜の選択的形成方
法。
In a method for selectively forming an Al thin film in which selective growth is performed using a chemical vapor deposition method on a silicon substrate covered with a mask material having an opening, dimethyl aluminum hydride ((CH_3)_2AlH) is used as a raw material. A method for selectively forming an Al thin film, characterized in that it is used as a gas.
JP517789A 1989-01-11 1989-01-11 Selective forming method of al thin-film Pending JPH02185026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP517789A JPH02185026A (en) 1989-01-11 1989-01-11 Selective forming method of al thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP517789A JPH02185026A (en) 1989-01-11 1989-01-11 Selective forming method of al thin-film

Publications (1)

Publication Number Publication Date
JPH02185026A true JPH02185026A (en) 1990-07-19

Family

ID=11603954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP517789A Pending JPH02185026A (en) 1989-01-11 1989-01-11 Selective forming method of al thin-film

Country Status (1)

Country Link
JP (1) JPH02185026A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091210A (en) * 1989-09-26 1992-02-25 Canon Kabushiki Kaisha Plasma CVD of aluminum films
US5154949A (en) * 1989-09-26 1992-10-13 Canon Kabushiki Kaisha Process for forming metal deposited film containing aluminum as main component by use of alkyl aluminum hydride
US5179042A (en) * 1989-09-09 1993-01-12 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride
US5180687A (en) * 1989-09-26 1993-01-19 Canon Kabushiki Kaisha Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride
US5196372A (en) * 1989-09-09 1993-03-23 Canon Kabushiki Kaisha Process for forming metal deposited film containing aluminum as main component by use of alkyl hydride
US5316972A (en) * 1989-09-26 1994-05-31 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
US5665630A (en) * 1990-05-31 1997-09-09 Canon Kabushiki Kaisha Device separation structure and semiconductor device improved in wiring structure
US6218223B1 (en) * 1990-05-31 2001-04-17 Canon Kabushiki Kaisha Process for producing electrode for semiconductor element and semiconductor device having the electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333569A (en) * 1986-07-25 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Production of thin metallic film
JPH0238569A (en) * 1988-07-28 1990-02-07 Anelva Corp Formation of smooth thin aluminum film on silicon substrate and resulting optical reflecting mirror

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333569A (en) * 1986-07-25 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Production of thin metallic film
JPH0238569A (en) * 1988-07-28 1990-02-07 Anelva Corp Formation of smooth thin aluminum film on silicon substrate and resulting optical reflecting mirror

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179042A (en) * 1989-09-09 1993-01-12 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride
US5196372A (en) * 1989-09-09 1993-03-23 Canon Kabushiki Kaisha Process for forming metal deposited film containing aluminum as main component by use of alkyl hydride
US5328873A (en) * 1989-09-09 1994-07-12 Canon Kubushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride
US5091210A (en) * 1989-09-26 1992-02-25 Canon Kabushiki Kaisha Plasma CVD of aluminum films
US5154949A (en) * 1989-09-26 1992-10-13 Canon Kabushiki Kaisha Process for forming metal deposited film containing aluminum as main component by use of alkyl aluminum hydride
US5180687A (en) * 1989-09-26 1993-01-19 Canon Kabushiki Kaisha Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride
US5316972A (en) * 1989-09-26 1994-05-31 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
US5393699A (en) * 1989-09-26 1995-02-28 Canon Kabushiki Kaisha Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
US5665630A (en) * 1990-05-31 1997-09-09 Canon Kabushiki Kaisha Device separation structure and semiconductor device improved in wiring structure
US6218223B1 (en) * 1990-05-31 2001-04-17 Canon Kabushiki Kaisha Process for producing electrode for semiconductor element and semiconductor device having the electrode

Similar Documents

Publication Publication Date Title
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
JP4585692B2 (en) Thin film formation method
US4368098A (en) Epitaxial composite and method of making
US5231056A (en) Tungsten silicide (WSix) deposition process for semiconductor manufacture
US5201995A (en) Alternating cyclic pressure modulation process for selective area deposition
Tischler et al. Self‐limiting mechanism in the atomic layer epitaxy of GaAs
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
US3941647A (en) Method of producing epitaxially semiconductor layers
JPH08188878A (en) Method and apparatus for sticking aluminum oxide
JPH02185026A (en) Selective forming method of al thin-film
US5217756A (en) Selective chemical vapor deposition of aluminum, aluminum CVD materials and process for preparing the same
JPH05254808A (en) Preparation of boron nitride
US5130459A (en) Selective chemical vapor deposition of aluminum, aluminum CVD materials and process for preparing the same
JPS6261668B2 (en)
JPS6050169A (en) Formation of thin film
JPH05315269A (en) Forming method for thin film
JP2605928B2 (en) A. Method for selective formation of thin film
JP5378631B2 (en) Vapor growth crystal thin film manufacturing method
JP2595773B2 (en) Al selective CVD material and method of manufacturing the same
Tsang Chemical beam epitaxy of InGaAs
JPH0278223A (en) Selective formation of al thin film
JP3194547B2 (en) Method for manufacturing polycrystalline silicon layer
JPS6115150B2 (en)
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements
KR0172857B1 (en) Thin film forming method by cvd