JPH05254808A - Preparation of boron nitride - Google Patents

Preparation of boron nitride

Info

Publication number
JPH05254808A
JPH05254808A JP4087665A JP8766592A JPH05254808A JP H05254808 A JPH05254808 A JP H05254808A JP 4087665 A JP4087665 A JP 4087665A JP 8766592 A JP8766592 A JP 8766592A JP H05254808 A JPH05254808 A JP H05254808A
Authority
JP
Japan
Prior art keywords
temperature
gas
boron nitride
reaction
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4087665A
Other languages
Japanese (ja)
Inventor
Toru Inoue
亨 井上
Shinya Sumino
真也 角野
Shoji Miyanaga
昭治 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4087665A priority Critical patent/JPH05254808A/en
Publication of JPH05254808A publication Critical patent/JPH05254808A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form boron nitride at a low temperature by making a reactional gas flow from a high-temperature side through a reaction tube provided with a temperature gradient from a specific temperature to ambient temperature to a low-temperature side, decomposing the reactional gas in the high- temperature part and initiating BN-binding reaction in the low-temperature part. CONSTITUTION:A thermal chemical vapor deposition device, composed of a reaction tube, etc., made of an Ni alloy and provided with a temperature gradient from 900-1200 deg.C to ambient temperature is used. A boron source Gas such as B2F4 and an N source gas such as NF3, together with H2 Gas, at (0.7-2)/(0.8-1)/7 compositional ratio of B2F4/NF3/H2 are introduced into the reactional tube. The raw material gas made to flow at a prescribed flow rate of 1-8cm/sec cross-sectional flow velocity is decomposed and activated on the high-temperature side at 900-1200 deg.C. The activated gas is then subjected to BN-binding reaction on the surface of a substrate arranged on the low- temperature side at 200-450 deg.C and deposited. Thereby, a hexagonal BN thin film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は切削工具の寿命向上の為
の最終ハードコート膜として窒化ほう素を用いる方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using boron nitride as a final hard coat film for improving the life of a cutting tool.

【0002】本発明は半導体素子の一部および該半導体
素子本体として窒化ほう素を用いる方法に関する。
The present invention relates to a part of a semiconductor device and a method of using boron nitride as the semiconductor device body.

【0003】本発明は窒化ほう素の低温合成に関する。The present invention relates to low temperature synthesis of boron nitride.

【0004】[0004]

【従来の技術】窒化ほう素は天然には存在しない物質で
ある。ウルツ型、六方晶型等多くの結晶構造が知られて
いるが、中でも立方晶窒化ほう素はダイヤモンドに次ぐ
硬度と高い耐熱性を有しており、また広いバンドギャッ
プを持つことから、工具用コーティング材料や電子素子
材料としての実用化を目指して合成が高圧合成法や気相
成長法等、数多く試みられている。
2. Description of the Related Art Boron nitride is a substance that does not exist in nature. Many crystal structures such as wurtzite type and hexagonal type are known, but among them, cubic boron nitride has the second highest hardness and high heat resistance after diamond, and also has a wide band gap, so it is used for tools. Many attempts have been made to synthesize the coating material and the electronic device material, such as a high-pressure synthesis method and a vapor phase growth method, for practical use.

【0005】従来、窒化ほう素膜を化学的気相成長法
(CVD法)によって作製する際に用いる原料ガスは、
ジボラン等の水素化ほう素とアンモニアおよび水素の混
合ガスを用いる反応系、三塩化ほう素などの塩化ほう素
(主として常温常圧では液体)とアンモニアおよび水素
の混合ガスを用いる反応系が知られている。気相からの
窒化ほう素膜合成においては化学的気相成長法として熱
CVD法、プラズマCVD法などが用いられている。し
かし熱CVD法・プラズマCVD法で合成される窒化ほ
う素膜はほとんどが熱分解BN(PBN)と呼ばれる物
であり、結晶構造的には乱層構造の中に六方晶窒化ほう
素が混在する構造となっている。従ってCVD法によっ
て立方晶窒化ほう素薄膜を安定して合成することに成功
した例は今のところ報告されていない。勿論CVD法を
用いて立方晶窒化ほう素を合成しようという試みは広く
行われており、微細な立方晶窒化ほう素の合成に成功し
たという報告も幾つか見受けられるが、そのいずれにお
いても原料ガス活性化・成膜反応に必要な雰囲気温度は
1000℃以上であり自ずから成膜可能な基体の種類は
限定されてくる。
Conventionally, the raw material gas used for forming the boron nitride film by the chemical vapor deposition method (CVD method) is
A reaction system using a mixed gas of boron hydride such as diborane and ammonia and hydrogen, and a reaction system using a mixed gas of boron chloride such as boron trichloride (mainly liquid at normal temperature and pressure) and ammonia and hydrogen are known. ing. In synthesizing a boron nitride film from a vapor phase, a thermal CVD method, a plasma CVD method or the like is used as a chemical vapor deposition method. However, most of the boron nitride films synthesized by the thermal CVD method and the plasma CVD method are called pyrolytic BN (PBN), and in terms of crystal structure, hexagonal boron nitride is mixed in the disordered layer structure. It has a structure. Therefore, no example has been reported so far that the cubic boron nitride thin film was successfully synthesized by the CVD method. Of course, attempts to synthesize cubic boron nitride using the CVD method have been widely made, and there are some reports that succeeded in synthesizing fine cubic boron nitride. The ambient temperature required for the activation / film formation reaction is 1000 ° C. or higher, and the types of substrates on which film formation can be performed are naturally limited.

【0006】〔従来技術の問題点〕従来の技術では、ジ
ボラン(B2 6 )ガスを用いる場合が多い。これは二
つのほう素の間が解離点となりやすく、BH3 の様な分
子に比べて活性化が容易であるため、ほう素ラジカルが
得られやすいからである。しかし、立方晶窒化ほう素の
合成を考えるならば、例えアンモニアの様な活性なガス
を用いたとしても高い活性エネルギーが必要であり、ゆ
えに膜質の向上を考えるのであれば基体およびその雰囲
気温度を高温にしなければならない。その為、熱に弱い
物質には成膜できない。さらに、立方晶窒化ほう素と極
端に熱膨張係数が異なる物質の上では、成膜後に剥離す
る可能性が高くなる。また半導体における電子素子とし
て使用に耐えうるほど膜質の良い立方晶窒化ほう素膜も
作製されていない。
[Problems of Prior Art] In the prior art, diborane (B 2 H 6 ) gas is often used. This is because the dissociation point is likely to occur between the two boron atoms, and activation is easier as compared with a molecule such as BH 3 , so that a boron radical is easily obtained. However, when considering the synthesis of cubic boron nitride, high activation energy is required even if an active gas such as ammonia is used. Therefore, if improvement of the film quality is considered, the substrate and its ambient temperature should be controlled. Must be hot. Therefore, it is not possible to form a film on a heat-sensitive substance. Further, on a substance having a coefficient of thermal expansion that is extremely different from that of cubic boron nitride, the possibility of peeling after film formation increases. Further, a cubic boron nitride film having a good film quality that can be used as an electronic device in a semiconductor has not been produced.

【0007】また近年、高圧合成立方晶窒化ほう素を用
いてpn接合を成功させて青色〜柴外光の発光素子を作
製したという報告が成されているが、単結晶で立方晶窒
化ほう素を得ることが困難なため、非常に高価な材料と
なっている。このため、薄膜の立方晶窒化ほう素でpn
接合を達成すれば青色〜柴外光発光素子の量産化が可能
となる。
[0007] In recent years, it has been reported that a high-pressure synthetic cubic boron nitride was used to make a pn junction successfully to produce a light emitting device of blue to Shiga outside light. However, a cubic crystal boron nitride is obtained from a single crystal. This makes it a very expensive material. For this reason, thin film cubic boron nitride
If the bonding is achieved, it will be possible to mass-produce blue-light emitting light emitting devices.

【0008】[0008]

【発明が解決しようとする課題】本発明は、低温で立方
晶構造を有する窒化ほう素を大面積で作製することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to produce boron nitride having a cubic crystal structure in a large area at a low temperature.

【0009】[0009]

【課題を解決するための手段】本発明は、気相から窒化
ほう素を作製する際、900℃〜1200℃から室温に
いたる温度勾配を設けた反応管を反応装置とし、反応ガ
スを該反応管中の高温側から低温側へ流し、該温度勾配
を通過する際に高温部で反応ガスの分解、低温部でBN
結合反応を起こすことを第1の発明の構成とするもので
ある、また、気相から窒化ほう素を作製する際、900
℃〜1200℃の高温度ガス反応部分とそれより低温度
部分の200℃〜450℃に保たれた基体との二段階温
度設定部を設けた装置を用い、反応ガスを該反応装置中
の高温側から低温側へ流し、該二段階温度設定部を通過
する際に高温部で分解、低温部でBN結合反応を起こす
構成を第2の発明の構成とするものである。また、上記
構成において、反応ガスとしてハロゲンまたはハロゲン
化合物を用いることを特徴とするものである。
According to the present invention, when boron nitride is produced from a gas phase, a reaction tube provided with a temperature gradient from 900 ° C. to 1200 ° C. to room temperature is used as a reaction device, and the reaction gas is used for the reaction. Flowing from the high temperature side to the low temperature side in the pipe, when passing through the temperature gradient, decomposition of the reaction gas at the high temperature portion, BN at the low temperature portion
The first aspect of the present invention is to cause a binding reaction. Further, when boron nitride is produced from a vapor phase, 900
C. to 1200.degree. C. high temperature gas reaction part and a device having a two-step temperature setting part of a lower temperature part and a substrate kept at 200.degree. C. to 450.degree. The second aspect of the present invention is a configuration in which it flows from the low temperature side to the low temperature side and decomposes in the high temperature portion and causes a BN bond reaction in the low temperature portion when passing through the two-step temperature setting portion. Further, in the above structure, halogen or a halogen compound is used as a reaction gas.

【0010】我々のこれまでの研究によると、ハロゲン
(フッ素・塩素)ガスまたはハロゲン(フッ素・塩素・
臭素・沃素)化合物、好ましくはフッ素系ガスを反応ガ
スとして用いれば膜質の良好な立方晶窒化ほう素膜を作
製することが可能であることが明らかになった。またそ
れにより基体雰囲気温度を低温化し、かつ反応装置を簡
略化することが可能であることが明らかになった。
According to our previous research, halogen (fluorine / chlorine) gas or halogen (fluorine / chlorine.
It has been clarified that a cubic boron nitride film having a good film quality can be produced by using a bromine / iodine) compound, preferably a fluorine-based gas as a reaction gas. It has also been clarified that it is possible to lower the temperature of the substrate atmosphere and to simplify the reactor.

【0011】従来の方法では窒化ほう素の原料ガスとし
て三塩化ほう素が既に使用されており、三塩化ほう素と
アンモニアを原料ガスとして組み合わせた例が報告され
ている。この反応系においては本発明のガス種条件を満
たすように思われるが、得られた窒化ほう素は前述のP
BNすなわちアモルファスに類似した緻密な乱層構造の
六方晶窒化ほう素であった。従って本発明が解決しよう
とする立方晶窒化ほう素成膜プロセスの低温化という課
題を解決するに至ってはいない。
In the conventional method, boron trichloride has already been used as a raw material gas for boron nitride, and an example in which boron trichloride and ammonia are combined as a raw material gas has been reported. In this reaction system, it seems that the gas species conditions of the present invention are satisfied, but the obtained boron nitride has the above-mentioned P content.
It was BN, that is, hexagonal boron nitride having a dense turbostratic structure similar to amorphous. Therefore, the problem of lowering the temperature of the cubic boron nitride film forming process which the present invention intends to solve has not yet been solved.

【0012】我々の研究の結果では、ほう素源としての
ハロゲン化合物の種類に関する選択も重要であることが
明らかになった。すなわち三フッ化ほう素・三塩化ほう
素のような単体ほう素分子のガスを使用した場合のラジ
カル生成エネルギーは必ずしも水素化合物系に比べて低
いとは言えず、分子構造に若干偏りが見られるガスを使
用することによって初めてより低温において、結晶性に
優れた立方晶窒化ほう素膜を作製できる事、さらにはこ
の分子構造に若干偏りが見られるほう素源ガスとしては
2 4 が最も好ましいものであることが明らかになっ
た。分子構造に若干偏りが見られるほう素源ガスとして
は、液体ソースではあるが、B2 Cl4を用いることが
できる。
The results of our research have revealed that the selection of the type of halogen compound as a boron source is also important. In other words, the radical formation energy when using a gas of a single boron molecule such as boron trifluoride / boron trichloride is not necessarily lower than that of a hydrogen compound system, and there is a slight bias in the molecular structure. It is possible to form a cubic boron nitride film with excellent crystallinity at a lower temperature for the first time by using a gas, and B 2 F 4 is the most boron source gas with a slight bias in the molecular structure. It turned out to be preferable. As a boron source gas whose molecular structure is slightly biased, B 2 Cl 4 can be used although it is a liquid source.

【0013】分子構造に若干偏りのあるというのは、分
子単体で見た場合、電荷が偏って存在している分子をい
うものである。このような分子は、ダイポールモーメン
トをゆうしているので、低いエネルギーでラジカルを生
成するという特徴を有する。
The fact that the molecular structure is slightly biased refers to a molecule in which the charge is biased when viewed as a single molecule. Since such a molecule has a dipole moment, it has a feature of generating radicals with low energy.

【0014】また、窒素源ガスに関してもNF3 の様な
ハロゲン系のガスを用いると更に好ましい結果が得られ
た。このように反応ガスにハロゲン化合物を用いる事に
よって低温成膜が可能になった結果、成膜装置を簡略化
できることが判った。
Further, with respect to the nitrogen source gas, more preferable results were obtained by using a halogen-based gas such as NF 3 . As described above, the use of the halogen compound as the reaction gas enables low-temperature film formation, and as a result, it has been found that the film forming apparatus can be simplified.

【0015】これまで試みられてきた立方晶窒化ほう素
の成膜では、前述の様に高い反応エネルギーを加えるこ
とが必要であるため、ひたすら大掛かりな装置の運用が
必要であった。例えば電磁波によって原料ガスをプラズ
マ励起する装置を用いて得た活性種を反応室内部に挿入
した熱フィラメントによる補助加熱によって延命する方
法や、電気炉の内部にプラズマCVD装置を挿入する方
法など、極端な活性化方法を取っているものが多かっ
た。
In the film formation of cubic boron nitride, which has been attempted so far, it is necessary to apply high reaction energy as described above, and thus it is necessary to simply operate a large-scale apparatus. For example, a method of prolonging the life of active species obtained by using a device for plasma-exciting a raw material gas by electromagnetic waves by auxiliary heating with a hot filament inserted in the reaction chamber, a method of inserting a plasma CVD device inside an electric furnace, etc. Many of them took various activation methods.

【0016】我々の研究によるとこのような反応ガス系
を用いれば大掛かりな真空装置を用意する必要は無く常
圧のガス流装置の応用で充分であり、従来の方法に比べ
成膜装置は大きく簡略化される。但しハロゲン系のガス
の対策(処理装置等)に関しては充分に検討されねばな
らない。
According to our research, if such a reaction gas system is used, it is not necessary to prepare a large-scale vacuum device, and application of a gas flow device at normal pressure is sufficient, and the film forming device is larger than the conventional method. It is simplified. However, measures against halogen-based gases (processing equipment, etc.) must be thoroughly examined.

【0017】我々の研究による成膜装置では、反応管に
対して電気炉を用いて温度勾配を設定して約300℃付
近に基体を設置し、高温度領域側から低温度領域側へあ
る流速でガスを通過させ高温度領域においてガスを活性
化することにより、低温度領域において立方晶窒化ほう
素膜の成膜を行なうことができた。またその方法を発展
させて高温度のガス活性化領域と該領域から離れて設置
された約200℃の温度に保持された基板を用意し、上
記方法と同様に高温度領域から低温度に保持された基体
へある流速でガスを通過させる方法を用いても、立方晶
窒化ほう素の成膜が可能であることが明らかになった。
In the film forming apparatus according to our research, an electric furnace is used for a reaction tube to set a temperature gradient, a substrate is installed at about 300 ° C., and a flow velocity from a high temperature region side to a low temperature region side is set. It was possible to form a cubic boron nitride film in the low temperature region by passing the gas in the above and activating the gas in the high temperature region. Further, by developing the method, a high temperature gas activation region and a substrate held at a temperature of about 200 ° C. installed away from the high temperature region are prepared, and the high temperature region is kept at a low temperature as in the above method. It was revealed that the cubic boron nitride film can be formed by using a method of passing a gas through the prepared substrate at a certain flow rate.

【0018】ここで重要な条件となるのが原料ガスの流
速である。高温度領域において活性化された反応活性種
には、低温度部分にて結晶構造を有する膜を形成するた
めに必要なエネルギーを維持する活性種寿命がある。す
なわち活性種を発生させる為に必要な温度の低い原料ガ
スを選択し、活性種寿命の内に低温度領域に活性種を到
達せしめる流速の組み合わせを選択することが出来れ
ば、成膜温度を低下させ、ひいては反応装置の簡略化を
はかることが可能となるのである。以下、実施例をもと
に本発明をさらに詳解する。
The important condition here is the flow velocity of the raw material gas. The reactive species activated in the high temperature region have a lifetime of active species that maintains the energy required to form a film having a crystalline structure in the low temperature portion. That is, if it is possible to select a raw material gas having a low temperature necessary for generating active species and to select a combination of flow rates that allows the active species to reach a low temperature region within the life of the active species, the film formation temperature can be lowered. Therefore, it is possible to simplify the reactor. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0019】[0019]

【実施例】【Example】

「実施例1」 「実施例1」は一種の予備実験の意味も含んでいる。本
実施例においては、図1に示した熱CVD装置を用いて
立方晶窒化ほう素膜の合成を試みた。本装置は所謂ホッ
トウォール型熱CVD装置の一種であり、横置きに配置
した炉心管11に、電気炉12と冷却ファン(炉心管1
1内に反応ガスを図のinの向きに送り込む為に用いられ
る)を用いて長さ30cmに渡る1050℃〜室温の温度
勾配を設定した。1050℃の部分は点線a−a’の線
上に存在する。なお、以上の温度は雰囲気温度であり、
温度勾配は点線a−a’で示される部分からout と表示
がある方向に向かって設定される。また、雰囲気温度
は、熱電対により計測を行った。
"Example 1""Example1" also includes the meaning of a kind of preliminary experiment. In this example, the thermal CVD apparatus shown in FIG. 1 was used to try to synthesize a cubic boron nitride film. This apparatus is a kind of so-called hot wall type thermal CVD apparatus, and includes an electric furnace 12 and a cooling fan (core tube 1) in a horizontally arranged furnace tube 11.
(Used to feed the reaction gas in the direction indicated by "in" in Fig. 1) was used to set a temperature gradient from 1050 ° C to room temperature over a length of 30 cm. The portion at 1050 ° C. exists on the dotted line aa ′. The above temperature is the ambient temperature,
The temperature gradient is set from the part indicated by the dotted line aa 'in the direction indicated by out. The ambient temperature was measured by a thermocouple.

【0020】炉心管材料は、反応中に発生するであろう
HFガス等の腐食環境、耐熱能力および機械的強度の見
地から、慎重に検討されるべきであるが反応ガス種や加
熱形式等の実験条件によって選択の余地を残す。例えば
SUS316の様なステンレス材料を頻繁に交換する方
法や、炭化珪素や窒化珪素等のセラミックス材料を使用
するなどしても良い。本実施例では、耐蝕性・機械強度
に優れたニッケル合金管の内、インコネル625を使用
した。炉心管は外径32mm、内径27mm、長さ1mであ
る。
The core tube material should be carefully examined from the viewpoints of the corrosive environment such as HF gas which will be generated during the reaction, the heat resistance and the mechanical strength, but the reaction gas species and the heating type, etc. Leave room for choice depending on experimental conditions. For example, a method of frequently exchanging a stainless material such as SUS316 or a ceramic material such as silicon carbide or silicon nitride may be used. In this example, Inconel 625 was used among the nickel alloy tubes having excellent corrosion resistance and mechanical strength. The core tube has an outer diameter of 32 mm, an inner diameter of 27 mm and a length of 1 m.

【0021】窒化ほう素が形成される基体である基板1
3は、幅8mm、長さ400mmのモネル400(ニッケル
合金)を、先端が電気炉の中央に来るように炉心管内部
に置いた。基板をこのようにして設置するのは、温度勾
配を有する雰囲気温度の違いによって、成膜状況がどの
ように変化するかということを明らかにするためであ
る。すなわち、基板の各表面部分が接する雰囲気の温度
は、温度勾配に従って違っている構成になっている。
Substrate 1 which is a substrate on which boron nitride is formed
In No. 3, Monel 400 (nickel alloy) having a width of 8 mm and a length of 400 mm was placed inside the core tube so that the tip end was in the center of the electric furnace. The substrate is installed in this manner in order to clarify how the film formation situation changes depending on the difference in ambient temperature having a temperature gradient. That is, the temperature of the atmosphere in which the respective surface portions of the substrate are in contact is different according to the temperature gradient.

【0022】反応ガスは、前述の様にほう素源ガスはハ
ロゲン化合物であることが望ましく、かつ分子構造的に
若干アンバランスであるダイポールモーメントを有して
いるものが好ましい。本実施例ではほう素源ガスとして
ダイポールモーメントを有しており、解離エネルギーの
大きいB2 4 を用い、窒素源ガスとしてNF3 を使用
し、これらを水素ガスと共に温度勾配設定を行った炉心
管内部へ導入した。ガス組成はB2 4 :NF3 :H2
を0.7 〜2:0.8 〜1:7、好ましくは1.85:0.9 :7
が適当である。但しこのガス比はガス種、加熱温度、温
度勾配の長さ、および後述のガスの断面流速によって大
きく変化する。しかし少なくとも、ほう素源・窒素源ガ
スの解離・活性化を促す為の水素ガスの割合は大きく取
らねばならない。
As described above, it is desirable that the boron source gas is a halogen compound, and that the reaction gas has a dipole moment that is slightly unbalanced in terms of molecular structure. In the present embodiment, B 2 F 4 having a dipole moment as the boron source gas and having a large dissociation energy is used, NF 3 is used as the nitrogen source gas, and a temperature gradient is set for these cores together with hydrogen gas. It was introduced inside the tube. The gas composition is B 2 F 4 : NF 3 : H 2
0.7-2: 0.8-1: 7, preferably 1.85: 0.9: 7
Is appropriate. However, this gas ratio largely changes depending on the type of gas, the heating temperature, the length of the temperature gradient, and the cross-sectional flow velocity of the gas described later. However, at least, the proportion of hydrogen gas for promoting dissociation / activation of boron source / nitrogen source gas must be large.

【0023】断面流速は総流量と反応炉心管の断面積か
ら容易に算出できる値であるが、前述の様に断面流速は
発生する活性種の寿命と到達距離から成膜の是非を決定
する非常に重要な条件である。断面流速は前述の温度勾
配設定距離と温度勾配の最高温度から検討されねばなら
ない。いくつか行った予備実験で本実施例の温度勾配条
件においては1〜8cm/sが適当であることが明らかに
なったので、断面流速を約4cm/sとした。この時の反
応ガスの総流量は1500ccmである。また、反応圧
力は圧力計と連結された圧力制御装置を用いて760T
orr、すなわち常圧とした。反応時間は4時間とし
た。
The cross-sectional flow velocity is a value that can be easily calculated from the total flow rate and the cross-sectional area of the reactor core tube, but as described above, the cross-sectional flow velocity determines the suitability of film formation based on the life and reaching distance of the generated active species. Is an important condition. The cross-sectional flow velocity should be examined from the above-mentioned temperature gradient setting distance and the maximum temperature of the temperature gradient. Preliminary experiments carried out revealed that 1 to 8 cm / s is suitable under the temperature gradient condition of the present embodiment, so the cross-sectional flow velocity was set to about 4 cm / s. At this time, the total flow rate of the reaction gas is 1500 ccm. The reaction pressure is 760T using a pressure control device connected to a pressure gauge.
Orr, that is, atmospheric pressure. The reaction time was 4 hours.

【0024】得られた試料はXRDで膜の結晶性を、赤
外線吸収(以下IR)で膜の組成を、SIMSで膜中の
不純物をそれぞれ分析した。
The obtained sample was analyzed by XRD for film crystallinity, infrared absorption (hereinafter IR) for film composition, and SIMS for impurities in the film.

【0025】以下比較例を示し、ほう素ガス種の選択に
ついて、温度勾配について、断面流速について検討す
る。
Comparative examples will be shown below to examine the selection of boron gas species, the temperature gradient, and the cross-sectional flow velocity.

【0026】「比較例1」本比較例ではほう素源ガス種
選択の効果を比較するため、B2 4 の代わりにBF3
を使用し、温度勾配や断面流速を実施例1と同じにし
た。得られた試料の評価方法は実施例1と同じである。
"Comparative Example 1" In this comparative example, BF 3 was used instead of B 2 F 4 in order to compare the effect of selecting a boron source gas species.
Was used, and the temperature gradient and cross-sectional flow velocity were the same as in Example 1. The evaluation method of the obtained sample is the same as in Example 1.

【0027】「比較例2」本比較例では温度勾配を比較
するため、ほう素源ガス種選択や断面流速を実施例1と
同じにし、次の実験を行った。温度勾配長さを30cmに
固定し、最高温度1400℃、850℃の2種類につい
て成膜を行った。
"Comparative Example 2" In this comparative example, in order to compare the temperature gradients, the following experiment was conducted with the same boron source gas species selection and cross-sectional flow velocity as in Example 1. The temperature gradient length was fixed at 30 cm, and film formation was performed for two types of maximum temperatures of 1400 ° C and 850 ° C.

【0028】「比較例3」本比較例では断面流速を比較
するため、ほう素源ガス種選択や温度勾配を実施例1と
同じにし、次の2つの実験を行った。 1. 原料ガス比を実施例1に固定し、総流量を2200
ccm(断面流速は約6.4cm/s)として成膜を行っ
た。 2. 原料ガス比を実施例1に固定し、総流量を100
0ccm(断面流速は約2.9cm/s)として成膜を行
った。 得られた試料の評価方法は実施例1と同じである。
Comparative Example 3 In this comparative example, in order to compare the cross-sectional flow velocities, the following two experiments were conducted with the same boron source gas species selection and temperature gradient as in Example 1. 1. The raw material gas ratio was fixed to that of Example 1, and the total flow rate was 2200.
The film was formed at a ccm (a cross-sectional flow velocity of about 6.4 cm / s). 2. The raw material gas ratio was fixed to that of Example 1, and the total flow rate was 100.
The film formation was carried out at 0 ccm (cross-sectional flow velocity: about 2.9 cm / s). The evaluation method of the obtained sample is the same as in Example 1.

【0029】「実施例1」と「比較例1〜3」の結果を
以下に比較する。まず実施例1において得られた試料の
評価結果である。表面観察では、本実施例においては電
子顕微鏡観察の結果から雰囲気温度が約200〜450
℃の部分における基板表面には、非常に凹凸のはげしい
表面を持った薄膜となっていることが判った。触針式段
差膜厚計を用いた膜厚測定の結果からは300℃の部分
で約4800Åであった。このことから成膜速度は約
0.16μm/時である事がわかる。同じ部分でのXR
Dの結果からは、ほぼ立方晶構造のみの多結晶窒化ほう
素薄膜であることが確認された。因みに高温度部分へ移
動するに従って、立方晶ではあったが、成膜速度が減少
していくことがわかった。また極端に低温度の部分で
は、ウルツ型や六方晶窒化ほう素の薄膜ないし粉体とな
る傾向がある。
The results of "Example 1" and "Comparative Examples 1 to 3" are compared below. First, the evaluation results of the sample obtained in Example 1. In the surface observation, in the present embodiment, the atmospheric temperature is about 200 to 450 from the result of the electron microscope observation.
It was found that the substrate surface at the temperature of ℃ was a thin film with a very rough surface. From the result of the film thickness measurement using the stylus type step film thickness meter, it was about 4800Å at the temperature of 300 ° C. From this, it is understood that the film forming rate is about 0.16 μm / hour. XR in the same part
From the result of D, it was confirmed that the thin film was a polycrystalline boron nitride thin film having only a cubic structure. By the way, it was found that the film formation rate decreased although it was a cubic crystal as it moved to the high temperature part. In an extremely low temperature portion, a thin film or powder of wurtz type or hexagonal boron nitride tends to be formed.

【0030】図2に、雰囲気温度が180℃の部分にお
ける基板表面で得られた膜のIRスペクトルを示す。I
R分析の結果では四配位(sp3 )のB−N結合に起因
する吸収スペクトルが1070cm-1に認められた他は全
く吸収スペクトルは認められなかった。またSIMSに
よる膜中不純物の測定では、フッ素は全く確認できず、
また水素は表面で検出されたのみであった。
FIG. 2 shows the IR spectrum of the film obtained on the surface of the substrate at the portion where the ambient temperature was 180 ° C. I
As a result of R analysis, no absorption spectrum was observed at all except that an absorption spectrum at 1070 cm -1 due to a tetracoordinate (sp 3 ) BN bond was observed. Further, in the measurement of impurities in the film by SIMS, fluorine could not be confirmed at all,
Also, hydrogen was only detected on the surface.

【0031】それに対して比較例1で得られた試料につ
いて行った同様の評価では、ほぼ実施例1と同じ温度範
囲において2000Å〜1μmの堆積物が確認された
が、全温度範囲に渡って無定形窒化ほう素であった。
On the other hand, in the same evaluation performed on the sample obtained in Comparative Example 1, a deposit of 2000 Å to 1 μm was confirmed in the same temperature range as in Example 1, but no deposit was found over the entire temperature range. It was a regular boron nitride.

【0032】比較例1で得られた資料におけるIR分析
の結果では、微弱な三配位(sp2)のB−N結合に起
因する吸収スペクトルが1390cm-1と800cm-1に、
N−H結合に起因する吸収スペクトルが3200cm-1
近と1700cm-1付近に認められた。またB−H結合に
起因する吸収スペクトルが2600cm-1付近に認められ
たことから、添加した水素との再結合が起こっているこ
とがわかった。XRDの結果からは何箇所かの測定点に
おいて六方晶らしいピークが微弱ながらも得られたが、
大部分が無定形構造であることが確認された。SIMS
測定では、フッ素は全く確認できなかったが、水素が膜
の深さ方向全体に検出された。
[0032] Results of IR analysis of the obtained materials in Comparative Example 1, the absorption spectra due to the B-N bond weak three-coordinate (sp 2) is in 1390 cm -1 and 800 cm -1,
Absorption spectra due to the N—H bond were observed near 3200 cm −1 and 1700 cm −1 . Further, since an absorption spectrum due to the B—H bond was found around 2600 cm −1 , it was found that recombination with the added hydrogen occurred. From the XRD results, some hexagonal peaks were obtained at some measurement points, although they were weak.
It was confirmed that most of them had an amorphous structure. SIMS
In the measurement, no fluorine was confirmed, but hydrogen was detected throughout the depth of the film.

【0033】また比較例2のでは温度勾配の最高温度1
400℃、850℃のどちらも最高温度(活性化部分の
雰囲気温度)1050℃の場合に比べて膜ないし粉体の
付着量・物性に大きな違いが認められた。すなわち最高
温度1400℃の場合は900℃〜700℃の高温度部
分において堆積物が得られたが、IR分析およびXRD
から、無定形窒化ほう素の堆積であり、結晶性窒化ほう
素は得られなかった。おそらくB2 4 の活性化が極端
に進んでいる為ではないかと思われる。但し700℃以
下では薄膜状であった。SIMSの分析結果からは、粉
体・薄膜共にフッ素・水素を含有していることが判っ
た。最高温度850℃の場合は1200℃の場合のよう
な高温度部分での無定形窒化ほう素は認められなかっ
た。ただしこちらも結晶性薄膜としては得られず、無定
形の組織の中に、IR分析とXRDから六方晶窒化ほう
素と考えられる微粒子が点在する堆積物が600℃〜4
50℃に認められた。ただしSIMS分析でフッ素が検
出される無定形窒化ほう素薄膜が450℃〜室温の範囲
で確認された。
In Comparative Example 2, the maximum temperature of the temperature gradient is 1
Both at 400 ° C. and 850 ° C., a large difference was observed in the amount of adhesion of the film or powder and the physical properties as compared with the case of the maximum temperature (atmosphere temperature of the activated portion) of 1050 ° C. That is, when the maximum temperature was 1400 ° C, deposits were obtained in the high temperature portion of 900 ° C to 700 ° C, but IR analysis and XRD
Therefore, amorphous boron nitride was deposited, and crystalline boron nitride was not obtained. Perhaps it is because the activation of B 2 F 4 is extremely advanced. However, it was a thin film at 700 ° C. or lower. From the results of SIMS analysis, it was found that both the powder and the thin film contained fluorine and hydrogen. When the maximum temperature was 850 ° C., amorphous boron nitride was not recognized in the high temperature portion as in the case of 1200 ° C. However, this is also not obtained as a crystalline thin film, and a deposit in which amorphous fine particles are scattered from IR analysis and XRD, which are considered to be hexagonal boron nitride, is 600 ° C to 4 ° C.
It was observed at 50 ° C. However, an amorphous boron nitride thin film in which fluorine was detected by SIMS analysis was confirmed in the range of 450 ° C to room temperature.

【0034】比較例3の断面流速比較では、つぎの様な
結果が得られた。先ず、原料ガス総流量2200ccm
(断面流速約6.4cm/s)の成膜では、立方晶窒化ほ
う素と無定形物質の混合薄膜が得られた。この無定形物
質の同定は困難である。単に無定形窒化ほう素かとも思
われたが、SIMSではフッ素をかなり含んでいる用で
ある。
In comparison of the cross-sectional flow velocities of Comparative Example 3, the following results were obtained. First, the total flow rate of raw material gas is 2200 ccm
In the film formation with a cross-sectional flow velocity of about 6.4 cm / s, a mixed thin film of cubic boron nitride and an amorphous substance was obtained. Identification of this amorphous substance is difficult. It was thought to be simply amorphous boron nitride, but SIMS contains a large amount of fluorine.

【0035】次に原料ガス総流量1000ccm(断面
流速約2.9cm/s)の成膜では、最も厚い個所でも5
00Å足らずの、極端に薄い無定形な窒化ほう素膜のみ
が、650〜400℃の部分に確認された。おそらく活
性種が必要よりも高温度部分で基板上にトラップされる
事により、結晶化よりも先に基板から脱離してしまうた
めと思われる。
Next, in forming a film with a total source gas flow rate of 1000 ccm (cross-sectional flow velocity of about 2.9 cm / s), even the thickest part is 5
Only an extremely thin amorphous boron nitride film having a thickness of less than 00Å was confirmed at a temperature of 650 to 400 ° C. Presumably, the active species are desorbed from the substrate before crystallization by being trapped on the substrate at a temperature higher than necessary.

【0036】以上の結果より、原料ガスとしてB2 4
とNF3 を用い、活性化のための温度を約1050℃と
し、基板付近の雰囲気温度を約300℃とすることによ
って立方晶構造よりなる多結晶窒化ほう素膜を得られる
ことがわかる。
From the above results, B 2 F 4 was used as the source gas.
It can be seen that a polycrystalline boron nitride film having a cubic structure can be obtained by using NF 3 and NF 3 and setting the activation temperature to about 1050 ° C. and the ambient temperature near the substrate to about 300 ° C.

【0037】「実施例2」本実施例は、実施例1と比較
例1〜3の結果より、適当な反応ガス活性化温度と基体
の温度を選択すれば、必ずしもリニアな温度勾配に固執
する必要はないという仮定に基づいて図3に示す改良ホ
ットウォール型熱CVD装置を使用して窒化ほう素膜を
作製した例である。
[Example 2] From the results of Example 1 and Comparative Examples 1 to 3, this example is not limited to a linear temperature gradient if appropriate reaction gas activation temperature and substrate temperature are selected. This is an example of producing a boron nitride film by using the improved hot wall type thermal CVD apparatus shown in FIG. 3 based on the assumption that it is not necessary.

【0038】すなわち、本実施例においては、反応ガス
の活性化のための加熱とは独立に基板自体の加熱を行う
ことによって、温度勾配を設けるのではなく、2種類の
温度設定を行ない、200℃〜450℃という従来より
も低い基板温度で窒化ほう素膜の成膜を行なうものであ
る。
That is, in this embodiment, the temperature of the substrate itself is heated independently of the heating for activating the reaction gas so that two kinds of temperatures are set instead of providing a temperature gradient. The boron nitride film is formed at a substrate temperature of ℃ to 450 ℃, which is lower than the conventional temperature.

【0039】図3に本実施例において用いた装置を示
す。装置は実施例1と同じく腐食環境、耐熱能力および
機械的強度から反応管31としてインコネル625を使
用し、実施例1よりも大型の外径80mm、内径70mm、
長さ500mmの円筒状とした。ただしこの反応装置寸法
は、電気炉32やフィラメント等の加熱装置の選択等に
より変化する。フィラメント等の加熱装置は、基板ホル
ダー33の内部に設けられており、基板34を所定の温
度に加熱する。
FIG. 3 shows the apparatus used in this example. The apparatus uses Inconel 625 as the reaction tube 31 in view of the corrosive environment, heat resistance and mechanical strength as in Example 1, and is larger than Example 1 in outer diameter 80 mm, inner diameter 70 mm,
It was cylindrical with a length of 500 mm. However, the size of the reactor varies depending on the selection of the heating device such as the electric furnace 32 and the filament. A heating device such as a filament is provided inside the substrate holder 33 and heats the substrate 34 to a predetermined temperature.

【0040】原料ガスの組成比は実施例1に準じた。た
だし総流量は2000ccmとした。これにより断面流
速は0.86cm/secである。
The composition ratio of the raw material gas was the same as in Example 1. However, the total flow rate was 2000 ccm. As a result, the cross-sectional flow velocity is 0.86 cm / sec.

【0041】前述のように本実施例の装置は、反応ガス
の活性化のための温度設定と基板温度の設定とを別に行
っている。まず反応ガス活性化は反応管31外部に設置
した電気炉32により外部周囲から行なわれる。電気炉
32の中心位置は反応ガスの供給口より約200mm離し
て設置し、中心温度は1050℃とした。なお本実施例
では、電気炉を用いたホットウォール型の装置とした
が、流速設定を検討すればガス流の中に熱フィラメント
を挿入して原料ガスの活性化う形式のものでもよい。
As described above, the apparatus of this embodiment separately sets the temperature for activating the reaction gas and the substrate temperature. First, activation of the reaction gas is performed from the outside by an electric furnace 32 installed outside the reaction tube 31. The central position of the electric furnace 32 was installed at a distance of about 200 mm from the reaction gas supply port, and the central temperature was 1050 ° C. In this embodiment, a hot wall type apparatus using an electric furnace is used, but if the flow rate setting is considered, a hot filament type may be inserted into the gas flow to activate the source gas.

【0042】本実施例においては、基板の温度設定は3
00℃とし、基板ステージの裏面からのフィラメント加
熱に基板の温度を制御した。試料である基板34は、実
施例1と同じくモネル400を42mm×42mm、厚さ8
mmとして使用した。予備実験により基板はフィラメント
保温のみで、ガス流によるものを除いては電気炉による
加熱は受けていないことを確認した。
In this embodiment, the substrate temperature is set to 3
The temperature of the substrate was controlled by setting the temperature to 00 ° C. and heating the filament from the back surface of the substrate stage. The substrate 34, which is a sample, is the same as in Example 1 except that the Monel 400 is 42 mm × 42 mm and the thickness is 8 mm.
Used as mm. Preliminary experiments confirmed that the substrate was only kept warm by the filament and not heated by the electric furnace except by the gas flow.

【0043】反応ガスは、組成・流速共に実施例1と同
様とした。高温度側から導入される反応ガスは電気炉部
分を通過する際に活性化され、保温されたモネル基板3
4に到達する。その他反応圧力は実施例1と同様に76
0Torrに固定し、また反応時間は4時間とした。
The composition and flow rate of the reaction gas were the same as in Example 1. The reaction gas introduced from the high temperature side is activated when passing through the electric furnace part, and is kept warm.
Reach 4. The other reaction pressure is 76 as in Example 1.
It was fixed at 0 Torr and the reaction time was 4 hours.

【0044】得られた試料の評価は、実施例1と同様に
XRDで膜の結晶性を、IRで膜の組成を、SIMSで
膜中不純物をそれぞれ評価した。XRDからは立方晶構
造のみの多結晶窒化ほう素薄膜であることがわかった。
IR、SIMSの測定結果も実施例1と全く同様であっ
た。ただし基板端部においては、膜質が若干劣った膜と
なっていた。
In the evaluation of the obtained sample, the crystallinity of the film was evaluated by XRD, the composition of the film was evaluated by IR, and the impurities in the film were evaluated by SIMS, as in Example 1. From XRD, it was found to be a polycrystalline boron nitride thin film having only a cubic crystal structure.
The measurement results of IR and SIMS were completely the same as in Example 1. However, the film quality was slightly inferior at the edge of the substrate.

【0045】得られた試料の表面均一性を触針式段差計
にて確認したところ、基板の周辺部において若干薄くな
る部分(最低で約1500Å)が認められた他は概ね均
一であった(4300〜5100Å)。このことから本
実施例の方法は、大面積の立方晶窒化ほう素成膜の可能
性を開くものといえる。
When the surface uniformity of the obtained sample was confirmed by a stylus profilometer, it was almost uniform except for a slightly thinned portion (at least about 1500 Å at the periphery) of the substrate ( 4300-5100Å). From this, it can be said that the method of this example opens up the possibility of forming a cubic boron nitride film over a large area.

【0046】本実施例の構成をとるならば、すなわち加
熱方法および加熱装置の検討によって原料ガス活性化と
基板温度の均一設定を行えば、より大型化し処理面積を
増大させることも可能である。従来、CVD装置として
は例えば熱フィラメントを用いたもの、プラズマによる
もの等様々な形式が考えられるが、例えば基板ステージ
の回転機構の工夫や均一な熱・プラズマ加熱の実現な
ど、かなり困難な工夫が必要であった。それに対して本
実施例の様にハロゲン系ガスを用いて成膜を行う場合
は、簡単な電気炉加熱で必要な活性種を得る事ができ、
基板加熱を均一にすれば充分大面積成膜に対応出来る。
If the structure of this embodiment is adopted, that is, if the raw material gas is activated and the substrate temperature is uniformly set by examining the heating method and the heating apparatus, it is possible to further increase the size and increase the processing area. Conventionally, various types of CVD devices are conceivable, for example, a device using a hot filament, a device using plasma, etc., but rather difficult device such as devising a rotation mechanism of a substrate stage and achieving uniform heat / plasma heating. Was needed. On the other hand, when a film is formed by using a halogen-based gas as in this embodiment, the necessary active species can be obtained by simple electric furnace heating,
If the substrate is heated uniformly, a large area film can be formed.

【0047】本発明における基体としては、200℃以
上の耐熱性を有しているならば、絶縁物、半導体、導電
体その他如何なる材料でもよい。
The substrate in the present invention may be any material such as an insulator, a semiconductor, a conductor, as long as it has a heat resistance of 200 ° C. or higher.

【0048】なお、本実施例においては基板温度を制御
したが、基板付近の雰囲気温度を制御する方法によるも
のであってもよい。
Although the substrate temperature is controlled in this embodiment, a method of controlling the ambient temperature near the substrate may be used.

【0049】「実施例3」本実施例は、実施例2の場合
において反応ガスの活性化のための加熱を900℃で行
なった場合の例である。本実施例において作製された膜
は、IR分析とXRDから無定形の組織の中に、六方晶
構造と立方晶構造とが混在した様子が認められた。しか
し、立方晶構造を有する多結晶窒化ほう素を得ることは
できた。
[Embodiment 3] This embodiment is an example in which the heating for activating the reaction gas is performed at 900 ° C. in the case of Embodiment 2. From the IR analysis and XRD, it was confirmed from the IR analysis and XRD that the film produced in this example had a mixture of a hexagonal crystal structure and a cubic crystal structure. However, it was possible to obtain polycrystalline boron nitride having a cubic crystal structure.

【0050】「実施例4」本実施例は、実施例2の場合
において反応ガスの活性化のための加熱を1200℃で
行なった場合の例である。本実施例において作製された
膜は、IR分析およびXRDから、無定形窒化ほう素と
立方晶構造を有する多結晶窒化ほう素とが混在している
状態が確認できた。
[Embodiment 4] This embodiment is an example in which the heating for activating the reaction gas is performed at 1200 ° C. in the case of Embodiment 2. From the IR analysis and XRD, it was confirmed that the film produced in this example was a mixture of amorphous boron nitride and polycrystalline boron nitride having a cubic crystal structure.

【0051】[0051]

【発明の効果】本発明を用いることによって、合成が困
難とされる良質な立方晶窒化ほう素薄膜を、非常に簡単
な合成装置により、500℃以下という従来の1000
℃以上の基体温度に比較して半分以下の低温で形成する
ことが可能になった。また、異種基板上への成膜実験と
しては異例の高速で成膜が可能になった。特に実施例2
で示した形式を発展させれば、立方晶窒化ほう素薄膜の
大面積成膜が可能である。すなわちハロゲン化合物であ
る窒素源ガスとハロゲン化合物であり、かつダイポール
モーメントを有する分子構造をもつほう素源ガスとを有
する反応ガスを1050℃まで加熱し、基板温度を30
0℃近辺に保持し、該基板上に適当な速度で加熱ガス
(活性種)を吹きつければよい。もちろんガス種や基体
の種類によって条件は選択されるべきであるが、本発明
の応用で充分に可能と思われる。
Industrial Applicability According to the present invention, a cubic boron nitride thin film of high quality, which is difficult to synthesize, can be produced at a temperature of 500 ° C. or less by the conventional method using a very simple synthesizer.
It became possible to form at a low temperature of less than half as compared with the substrate temperature of ℃ or more. Moreover, it became possible to form a film at a high speed, which is unusual for a film forming experiment on a different type of substrate. Especially Example 2
By expanding the type shown in, it is possible to form a large area of a cubic boron nitride thin film. That is, a reaction gas including a nitrogen source gas which is a halogen compound and a boron source gas which is a halogen compound and has a molecular structure having a dipole moment is heated to 1050 ° C. and a substrate temperature is set to 30 ° C.
The temperature may be maintained at around 0 ° C., and the heating gas (active species) may be blown onto the substrate at an appropriate rate. Of course, the conditions should be selected depending on the type of gas and the type of substrate, but it seems to be sufficiently possible in the application of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用した熱CVD装置の概略図であ
る。
FIG. 1 is a schematic diagram of a thermal CVD apparatus used in Example 1.

【図2】実施例1で得られた膜のIRスペクトルを示す
図である。
FIG. 2 is a diagram showing an IR spectrum of the film obtained in Example 1.

【図3】実施例2で使用した熱CVD装置の概略図であ
る。
FIG. 3 is a schematic diagram of a thermal CVD apparatus used in Example 2.

【符号の説明】[Explanation of symbols]

11 反応管 12 電気炉 13 基板 31 反応炉 32 電気炉 33 基板ホルダー 34 基板 11 Reaction Tube 12 Electric Furnace 13 Substrate 31 Reactor 32 Electric Furnace 33 Substrate Holder 34 Substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相から窒化ほう素を作製する際、90
0℃〜1200℃から室温にいたる温度勾配を設けた反
応管を反応装置とし、反応ガスを該反応管中の高温側か
ら低温側へ流し、該温度勾配部分を通過する際に高温部
で反応ガスの分解を行い、低温部でBN結合反応を起こ
させることを特徴とする窒化ほう素の作製方法。
1. When producing boron nitride from a vapor phase, 90
A reaction tube provided with a temperature gradient from 0 ° C. to 1200 ° C. to room temperature is used as a reaction device, and a reaction gas is caused to flow from a high temperature side to a low temperature side in the reaction tube, and a reaction is performed at a high temperature portion when passing through the temperature gradient portion. A method for producing boron nitride, characterized in that gas is decomposed to cause a BN bonding reaction in a low temperature part.
【請求項2】 請求項1において、反応ガスとしてハロ
ゲンまたはハロゲン化合物を用いることを特徴とする窒
化ほう素の作製方法。
2. The method for producing boron nitride according to claim 1, wherein halogen or a halogen compound is used as a reaction gas.
【請求項3】 気相から窒化ほう素を作製する際、90
0℃〜1200℃の高温度ガス反応部分と200℃〜4
50℃に保たれた基体部分の二段階の温度設定を有する
反応装置を用い、反応ガスを該反応装置中の高温側から
基体側へ流し、該二段階温度設定部を通過する際に高温
部で分解、基体部分でBN結合反応を起こさせるこを特
徴とする窒化ほう素の作製方法。
3. When producing boron nitride from the vapor phase, 90
High temperature gas reaction part of 0 ° C to 1200 ° C and 200 ° C to 4
Using a reactor having two-stage temperature setting of the substrate portion kept at 50 ° C., a reaction gas is caused to flow from the high temperature side to the substrate side in the reactor, and a high temperature part is passed when passing through the two-stage temperature setting part. 1. A method for producing boron nitride, characterized in that it is decomposed by, and a BN bond reaction is caused to occur in the substrate portion.
【請求項4】 請求項3において、反応ガスとしてハロ
ゲンまたはハロゲン化合物を用いることを特徴とする窒
化ほう素の作製方法。
4. The method for producing boron nitride according to claim 3, wherein halogen or a halogen compound is used as the reaction gas.
JP4087665A 1992-03-10 1992-03-10 Preparation of boron nitride Pending JPH05254808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087665A JPH05254808A (en) 1992-03-10 1992-03-10 Preparation of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087665A JPH05254808A (en) 1992-03-10 1992-03-10 Preparation of boron nitride

Publications (1)

Publication Number Publication Date
JPH05254808A true JPH05254808A (en) 1993-10-05

Family

ID=13921245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087665A Pending JPH05254808A (en) 1992-03-10 1992-03-10 Preparation of boron nitride

Country Status (1)

Country Link
JP (1) JPH05254808A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943204B2 (en) 2005-08-30 2011-05-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US8062965B2 (en) 2009-10-27 2011-11-22 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8138071B2 (en) 2009-10-27 2012-03-20 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9012874B2 (en) 2010-02-26 2015-04-21 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9938156B2 (en) 2011-10-10 2018-04-10 Entegris, Inc. B2F4 manufacturing process
US9960042B2 (en) 2012-02-14 2018-05-01 Entegris Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
US10497569B2 (en) 2009-07-23 2019-12-03 Entegris, Inc. Carbon materials for carbon implantation
US11062906B2 (en) 2013-08-16 2021-07-13 Entegris, Inc. Silicon implantation in substrates and provision of silicon precursor compositions therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455147B2 (en) 2005-08-30 2016-09-27 Entegris, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US8389068B2 (en) 2005-08-30 2013-03-05 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US7943204B2 (en) 2005-08-30 2011-05-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US10497569B2 (en) 2009-07-23 2019-12-03 Entegris, Inc. Carbon materials for carbon implantation
US8062965B2 (en) 2009-10-27 2011-11-22 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8138071B2 (en) 2009-10-27 2012-03-20 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9685304B2 (en) 2009-10-27 2017-06-20 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9142387B2 (en) 2009-10-27 2015-09-22 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9171725B2 (en) 2010-02-26 2015-10-27 Entegris, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9012874B2 (en) 2010-02-26 2015-04-21 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US9754786B2 (en) 2010-02-26 2017-09-05 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9764298B2 (en) 2010-08-30 2017-09-19 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9938156B2 (en) 2011-10-10 2018-04-10 Entegris, Inc. B2F4 manufacturing process
US9960042B2 (en) 2012-02-14 2018-05-01 Entegris Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
US10354877B2 (en) 2012-02-14 2019-07-16 Entegris, Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
US11062906B2 (en) 2013-08-16 2021-07-13 Entegris, Inc. Silicon implantation in substrates and provision of silicon precursor compositions therefor

Similar Documents

Publication Publication Date Title
JP3136307B2 (en) Diamond mounting substrate for electronic applications
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JPH01162326A (en) Manufacture of beta-silicon carbide layer
CN103922797A (en) Tantalum carbide-coated carbon material and manufacturing method for same
JPH05254808A (en) Preparation of boron nitride
US5368681A (en) Method for the deposition of diamond on a substrate
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
US5079038A (en) Hot filament CVD of boron nitride films
Hernberg et al. Diamond film synthesis on Mo in thermal RF plasma
Phani Thin films of boron nitride grown by CVD
JP3091305B2 (en) Method for manufacturing silicon carbide film
US8440566B2 (en) Method for forming an aluminum nitride thin film
US7622151B2 (en) Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
JPH02262324A (en) X-ray transmitting film and its manufacture
JP2803396B2 (en) Diamond thin film synthesis equipment
JPH1067584A (en) Reaction vessel
JP3071855B2 (en) Diamond film fabrication method
JPH01252780A (en) Boron nitride coated body and production thereof
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPH0815143B2 (en) Method for manufacturing 3C-SiC semiconductor device
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
JPS6369973A (en) Production of cubic boron nitride film
Jacques et al. (SiC/Ti3SiC2) n Multi-Layered Coatings Deposited by CVD
GB2192643A (en) Method of coating refractory vessels with boron nitride