JPH05315269A - Forming method for thin film - Google Patents

Forming method for thin film

Info

Publication number
JPH05315269A
JPH05315269A JP3048193A JP3048193A JPH05315269A JP H05315269 A JPH05315269 A JP H05315269A JP 3048193 A JP3048193 A JP 3048193A JP 3048193 A JP3048193 A JP 3048193A JP H05315269 A JPH05315269 A JP H05315269A
Authority
JP
Japan
Prior art keywords
substrate
thin film
gef4
deposited
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3048193A
Other languages
Japanese (ja)
Inventor
Masashi Yamamoto
雅司 山本
Masato Miyauchi
正人 宮内
Junichi Hanna
純一 半那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3048193A priority Critical patent/JPH05315269A/en
Publication of JPH05315269A publication Critical patent/JPH05315269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To react GeF4 with silane gas and to deposit a uniform SiGe thin film at a low temperature by supplying mixture gas of the GeF4 and the silane gas to a substrate heated to a special temperature. CONSTITUTION:An Si single crystalline substrate is mounted on a substrate holder 3, which is evacuated to 10<-6>Torr or less through an evacuation system 4. The substrate is heated by a heater contained therein to 200-600 deg.C, and held thereat. After the temperature of the substrate is stabilized, GeF4, SiH4 are introduced from a nozzle 2 through a gas tube 1, and He is further introduced. It is so held that an entire pressure becomes 520mTorr, and a Ge epitaxial thin film is deposited. A suitable flow rate ratio of the used GeF4 and silane gas is 0.5-20. Thus, the GeF4 and the silane gas are reacted to easily form a Ge or SiGe deposited film at a low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVD法により薄膜デ
バイスに用いるGe、SiGe薄膜を基板上に堆積せし
めるようにした薄膜の製膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method for depositing a Ge or SiGe thin film used for a thin film device on a substrate by a CVD method.

【0002】[0002]

【従来の技術およびその発明が解決しようとする問題
点】Ge、SiGeの堆積薄膜は、太陽電池、光センサ
ー、薄膜トランジスタ等の薄膜デバイスに広く利用され
ている。これらの薄膜の製造法についてもいくつか提案
されており、真空蒸着法、イオンプレーテイング法、ス
パッタリング法、CVD法等がよく知られている。
2. Description of the Related Art Deposited thin films of Ge and SiGe are widely used in thin film devices such as solar cells, photosensors, and thin film transistors. Several methods for producing these thin films have been proposed, and vacuum deposition method, ion plating method, sputtering method, CVD method and the like are well known.

【0003】特に、Geのエピタキシャル膜の形成に
は、気相エピタキシーと液相エピタキシーが挙げられる
が、一般に液相エピタキシーは高い結晶性が得られるも
のの膜厚が不均一で表面状態が悪くかつ量産性も悪いた
めあまり用いられない。
In particular, formation of an epitaxial film of Ge includes vapor phase epitaxy and liquid phase epitaxy. In general, liquid phase epitaxy has high crystallinity but has a non-uniform film thickness and poor surface condition and mass production. It is not used very often because it has bad sex.

【0004】一方、気相エピタキシーは、上記真空蒸着
法、イオンプレーテイング法、スパッタリング法、CV
D法等で行われるが、例えば、CVD法においては、原
料物質の分解を誘起し、それを維持するために何らかの
エネルギーを供給する必要がある。プラズマCVD法に
おいては、プラズマ中の高エネルギー電子との衝突によ
って与えられ、熱CVD法や光CVD法においては、そ
れぞれ基板加熱や光照射によって与えられる。
On the other hand, vapor phase epitaxy includes the above-mentioned vacuum deposition method, ion plating method, sputtering method and CV.
Although it is performed by the D method or the like, for example, in the CVD method, it is necessary to supply some energy in order to induce decomposition of the raw material and maintain it. In the plasma CVD method, it is given by collision with high-energy electrons in plasma, and in the thermal CVD method and the photo CVD method, it is given by substrate heating and light irradiation, respectively.

【0005】しかしながら、これらの方法よる堆積膜の
形成において、エネルギーの供給手段そのものがその有
用性や実用性などを制限することが多い。熱CVD法に
おいて、例えばGe薄膜を堆積させる場合500℃以上
の温度を必要とし、基板材料の選択が制限され装置その
ものも複雑化し工業的規模で生産される技術は確立され
ていない。
However, in the formation of the deposited film by these methods, the energy supplying means itself often limits the usefulness and practicality. In the thermal CVD method, for example, when depositing a Ge thin film, a temperature of 500 ° C. or higher is required, the selection of the substrate material is limited, the apparatus itself becomes complicated, and a technique for industrial scale production has not been established.

【0006】本発明の目的はGe、SiGe薄膜の形成
において、物質のもつ物理的性質と化学的性質を考慮し
た出発原料の選択や作製プロセスの設計により、低温で
かつ均一な薄膜の合理的な作製技術を提供することにあ
る。
The object of the present invention is to form a Ge and SiGe thin film at a low temperature and in a uniform ratio by selecting the starting material and designing the production process in consideration of the physical and chemical properties of the substance. It is to provide manufacturing technology.

【0007】[0007]

【問題点を解決するための手段】本発明者らは、これら
の問題点について種々検討の結果、GeF4 とシランガ
ス(Sin 2n+2,nは1〜3の整数)とを反応させる
ことによりGe、SiGe薄膜を堆積させる方法を見出
し本発明に到達した。
The present inventors have problems To achieve the] a result of various investigations on these problems, GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3) is reacted with As a result, a method of depositing a Ge or SiGe thin film was found, and the present invention was reached.

【0008】すなわち本発明は、基板温度が、200〜
600℃の温度範囲である加熱基板上に、GeF4 とシ
ランガス(Sin 2n+2,nは1〜3の整数)の混合ガ
スを供給することによりGeあるいはSiGe薄膜を堆
積させることを特徴とする薄膜の製膜方法である。
That is, according to the present invention, the substrate temperature is 200 to
A heating substrate which is a temperature range of 600 ° C., GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3), wherein the depositing a Ge or SiGe thin film by supplying a mixed gas of Is a method for forming a thin film.

【0009】本発明は、基板温度が、200〜600℃
の温度範囲である加熱基板上に、GeF4 とシランガス
(Sin 2n+2,nは1〜3の整数)の混合ガスを供給
することによりGe、SiGe薄膜を堆積させるもので
あるが、基板温度が200℃より低い場合は、反応速度
が遅く熱分解が不十分となり膜の堆積が起こらず好まし
くない。また、600℃以上になると原料ガスの分解が
起こり均一な膜の生成ができないため好ましくない。特
に、好ましくは300〜450℃の範囲で反応させるの
が最適である。
In the present invention, the substrate temperature is 200 to 600 ° C.
On a heated substrate which is the temperature range, GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3) Ge by supplying a mixed gas, but is intended to deposit a SiGe film, When the substrate temperature is lower than 200 ° C., the reaction rate is slow and the thermal decomposition is insufficient to cause film deposition, which is not preferable. Further, when the temperature is 600 ° C. or higher, the raw material gas is decomposed and a uniform film cannot be formed, which is not preferable. In particular, it is most preferable to react in the range of 300 to 450 ° C.

【0010】本発明において、キャリアーガスは、必要
に応じてH2 、N2 、He、Arを用いることもでき
る。本発明において、用いる基板材料としてSiまたは
Ge等の単結晶基板を用いることが好ましいが、その他
ガラス基板、Si多結晶基板、Siアモルファス基板、
Ge多結晶基板、Geアモルファス基板等が用いられ、
これらに限定されるものではない。特にエピタキシャル
成長では、Geの堆積速度は基板の面方位に影響され
る。Si基板の場合、(100)面への堆積速度が高
く、次いで(110)面で、(111)面には殆ど堆積
しない。
In the present invention, the carrier gas may be H 2 , N 2 , He or Ar, if necessary. In the present invention, it is preferable to use a single crystal substrate such as Si or Ge as the substrate material to be used, but other glass substrates, Si polycrystalline substrates, Si amorphous substrates,
Ge polycrystal substrate, Ge amorphous substrate, etc. are used,
It is not limited to these. Particularly in epitaxial growth, the Ge deposition rate is affected by the plane orientation of the substrate. In the case of a Si substrate, the deposition rate on the (100) plane is high, and then on the (110) plane, there is almost no deposition on the (111) plane.

【0011】次に本発明において、シランガス(Sin
2n+2,nは1〜3の整数)を導入することにより、G
eF4 からGeあるいはSiGe薄膜を堆積させること
ができるが、条件の選択によりSiの混入あるいは合金
の生成を抑えGeエピタキシャル薄膜を堆積させること
ができることは極めて有益なことである。GeF4 単独
あるいはキャリアーガスと共に分解反応させるだけでは
薄膜を堆積させることはできない。特に、Si基板に堆
積させる場合、GeF4 単独またはキャリアーガスと共
に導入するとSi基板はエッチングされ、シランガス
(Sin 2n+2,nは1〜3の整数)が存在しなけれ
ば、エッチングの起こりは大きくなり、その速度は数十
〜百Å/sとなる。
Next, in the present invention, silane gas (Si n
H 2n + 2 , n is an integer of 1 to 3)
A Ge or SiGe thin film can be deposited from eF 4, but it is extremely useful to be able to deposit a Ge epitaxial thin film by suppressing the incorporation of Si or the formation of an alloy by selecting the conditions. A thin film cannot be deposited only by decomposing the GeF 4 alone or with a carrier gas. In particular, when deposited on the Si substrate, Si substrate is introduced along with GeF 4 alone or carrier gas is etched, if silane (Si n H 2n + 2, n is an integer of 1 to 3) is present, it occurs in the etching Becomes large, and the speed becomes several tens to one hundred Å / s.

【0012】本発明において、用いられるGeF4 とシ
ランガス(Sin 2n+2,nは1〜3の整数)との量の
割合は、成膜条件等により異なるが、流量比〔シランガ
ス(Sin 2n+2,nは1〜3の整数)/GeF4 〕は
0.5〜20が適当であり、好ましくは0.5〜10と
するのが望ましい。また、堆積薄膜の堆積速度は、シラ
ンガス(Sin 2n+2,nは1〜3の整数)の分圧が高
くなるほど、また基板温度が高くなるほど高くなる。
In the present invention, the ratio of the amounts of GeF 4 and silane gas (Si n H 2n + 2 , n being an integer of 1 to 3) used varies depending on the film forming conditions and the like, but the flow rate ratio [silane gas (Si n H 2n + 2, n is an integer of 1 to 3) / GeF 4] is suitably from 0.5 to 20 is preferably is desirably 0.5 to 10. Further, the deposition rate of the deposited film, the more the partial pressure of silane gas (Si n H 2n + 2, n is an integer of 1 to 3) is increased, also the higher the substrate temperature increases.

【0013】本発明において、Ge堆積薄膜等の堆積方
法は低圧CVD法のみならず、高真空蒸着法等も利用で
きる。圧力は、一般に低圧下が望ましいが、希釈率を考
慮すれば大気圧でも十分堆積が可能で圧力範囲について
は、特に制限されない。
In the present invention, not only the low pressure CVD method but also the high vacuum vapor deposition method can be used as the deposition method for the Ge deposited thin film and the like. Generally, the pressure is preferably low pressure, but considering the dilution ratio, sufficient deposition is possible even at atmospheric pressure, and the pressure range is not particularly limited.

【0014】[0014]

【実施例】以下、実施例によって本発明を詳細に説明す
るが、これらにより限定されるものではない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0015】実施例 1 図1に示した基板ホルダー3にSi単結晶基板を取付
け、排気系4を介して10-6Torr以下に減圧した。
ノズル2と基板との距離は40mmである。内蔵された
ヒーターにより基板を375℃に加熱し保持した。基板
温度が安定した後、ガス導入管1を経てノズル2よりG
eF4 5sccm、SiH4 30sccmを導入し、さ
らにHeを導入して全圧を520mTorrになるよう
保持し、Geエピタキシャル薄膜を堆積させた。このと
きの成膜速度は1Å/sであった。この堆積膜をX線光
電子分光法、ラマン分光法、X線回折および電子線回折
法によるRHEEDパターンにより分析した結果、(1
00)面のGeエピタキシャル薄膜であった。
Example 1 A Si single crystal substrate was attached to the substrate holder 3 shown in FIG. 1, and the pressure was reduced to 10 −6 Torr or less through an exhaust system 4.
The distance between the nozzle 2 and the substrate is 40 mm. The substrate was heated to and held at 375 ° C. by the built-in heater. After the substrate temperature is stabilized, G is passed from the nozzle 2 through the gas introduction pipe 1.
Introducing 5 sccm of eF 4 and 30 sccm of SiH 4 , and further introducing He to maintain the total pressure at 520 mTorr to deposit a Ge epitaxial thin film. The film forming rate at this time was 1 Å / s. The deposited film was analyzed by RHEED pattern by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and electron beam diffraction.
It was a Ge epitaxial thin film having a (00) plane.

【0016】実施例 2 SiO2 でパターニングしたSi(100)基板を用
い、実施例1と同じ条件で調整し、基板温度が安定した
後、ノズル2よりGeF4 5sccm、SiH430s
ccmを導入し、さらにHeを導入して全圧を520m
Torrになるよう保持し、Ge薄膜を堆積させた。こ
の堆積膜をX線光電子分光法、ラマン分光法、X線回折
および電子線回折法によるRHEEDパターン、走査型
電子顕微鏡により分析した結果、SiO2 上には膜の堆
積がみられずSi(100)面上に選択的にGeエピタ
キシャル薄膜の堆積が認められた。
Example 2 A Si (100) substrate patterned by SiO 2 was used, adjusted under the same conditions as in Example 1, and after stabilizing the substrate temperature, GeF 4 5 sccm and SiH 4 30 s from nozzle 2.
ccm is introduced, and He is further introduced so that the total pressure is 520 m.
The Ge thin film was deposited while holding it at Torr. The deposited film was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy, RHEED pattern by X-ray diffraction and electron beam diffraction, and a scanning electron microscope. As a result, no deposition of the film was observed on SiO 2 and Si (100 ) Surface was selectively deposited with Ge epitaxial thin film.

【0017】実施例3 実施例1と同じ条件で調整し、基板温度が安定した後、
ノズル2よりGeF430sccm、SiH4 30sc
cmを導入し、さらにHeを導入して全圧を520mT
orrになるよう保持し、Geエピタキシャル薄膜を堆
積させた。このときの成膜速度は0.5Å/sであっ
た。この堆積膜をX線光電子分光法、ラマン分光法、X
線回折および電子線回折法によるRHEEDパターンに
より分析した結果、(100)面のGeエピタキシャル
薄膜であった。
Example 3 After adjusting under the same conditions as in Example 1 and stabilizing the substrate temperature,
GeF 4 30 sccm from the nozzle 2, SiH 4 30sc
cm and then He to bring the total pressure to 520 mT.
The Ge epitaxial thin film was deposited while holding it at orr. The film forming rate at this time was 0.5 Å / s. This deposited film is subjected to X-ray photoelectron spectroscopy, Raman spectroscopy, X
As a result of analysis by a RHEED pattern by a line diffraction method and an electron diffraction method, it was a Ge epitaxial thin film having a (100) plane.

【0018】実施例 4 SiO2 でパターニングしたSi(100)基板を用
い、実施例1と同じ条件で調整し、基板温度が安定した
後、ノズル2よりGeF4 1.5sccm、Si 26
15sccmを導入し、さらにHeを導入して全圧を4
20mTorrになるよう保持し、Ge薄膜を堆積させ
た。このときの成膜速度は6.5Å/sであった。この
堆積膜をX線光電子分光法、ラマン分光法、X線回折お
よび電子線回折法によるRHEEDパターン、走査型電
子顕微鏡により分析した結果、Si基板上に選択成長が
見られ成長したGeは(400)面配向のエピタキシャ
ル薄膜であった。
Example 4 SiO2Uses Si (100) substrate patterned by
The substrate temperature was stabilized by adjusting under the same conditions as in Example 1.
After that, GeF from nozzle 2Four1.5 sccm, Si 2H6
Introduce 15 sccm and further introduce He to bring the total pressure to 4
Hold to 20 mTorr and deposit Ge thin film
It was The film formation rate at this time was 6.5 Å / s. this
X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and X-ray diffraction
And RHEED pattern by electron diffraction method, scanning electron
As a result of analysis with a child microscope, selective growth on the Si substrate
Seen and grown Ge is epitaxy with (400) plane orientation.
It was a thin film.

【0019】実施例 5 ガラス基板を用いて実施例1と同じ条件で調整し、基板
温度を420℃に保持し安定した後、ノズル2よりGe
4 10sccm、Si2 6 30sccmを導入し、
さらにHeを導入して全圧を600mTorrになるよ
う保持し、Ge薄膜を堆積させた。このときの成膜速度
は50Å/sであった。この堆積膜をX線光電子分光
法、ラマン分光法、X線回折および電子線回折法による
RHEEDパターンにより分析した結果、Ge多結晶薄
膜であった。
Example 5 A glass substrate was used and adjusted under the same conditions as in Example 1, and after the substrate temperature was kept stable at 420 ° C. and stabilized, Ge was discharged from the nozzle 2.
Introducing F 4 10sccm and Si 2 H 6 30sccm,
He was further introduced to maintain the total pressure at 600 mTorr, and a Ge thin film was deposited. The film forming rate at this time was 50 Å / s. The deposited film was analyzed by RHEED pattern by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and electron diffraction, and as a result, it was a Ge polycrystalline thin film.

【0020】実施例 6 基板ホルダー3にSiのアモルファス基板を取付け、排
気系4を介して10-6Torr以下に減圧した。ノズル
2と基板との距離は40mmである。内蔵されたヒータ
ーにより基板を350℃に加熱し保持した。基板温度が
安定した後、ノズル2よりGeF4 5sccm、SiH
4 20sccmを導入し、さらにHeを導入して全圧を
550mTorrになるよう保持し、Geエピタキシャ
ル薄膜を堆積させた。このときの成膜速度は0.6Å/
sであった。この堆積膜をX線光電子分光法、ラマン分
光法、X線回折および電子線回折法によるRHEEDパ
ターンにより分析した結果、(100)面のGe多結晶
薄膜であった。
Example 6 An amorphous Si substrate was attached to the substrate holder 3, and the pressure was reduced to 10 −6 Torr or less through the exhaust system 4. The distance between the nozzle 2 and the substrate is 40 mm. The substrate was heated to and held at 350 ° C. by the built-in heater. After the substrate temperature was stabilized, GeF 4 5sccm, SiH
After introducing 20 sccm and further introducing He, the total pressure was kept at 550 mTorr and a Ge epitaxial thin film was deposited. The deposition rate at this time is 0.6Å /
It was s. The deposited film was analyzed by RHEED pattern by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and electron diffraction, and as a result, it was a Ge polycrystal thin film of (100) plane.

【0021】実施例 7 実施例1と同じ条件で調整し、内蔵されたヒーターによ
り基板を420℃に加熱し保持した。基板温度が安定し
た後、ノズル2よりGeF4 2.7sccm、Si2
6 30sccmを導入し、さらにHeを導入して全圧を
600mTorrになるよう保持し、薄膜を堆積させ
た。このときの成膜速度は45Å/sであった。この堆
積膜をX線光電子分光法、ラマン分光法、X線回折およ
び電子線回折法により分析した結果、SiGe多結晶薄
膜であった。
Example 7 The substrate was adjusted to the same conditions as in Example 1 and the substrate was heated to 420 ° C. by a built-in heater and held. After the substrate temperature is stabilized, GeF 4 2.7 sccm, Si 2 H is discharged from the nozzle 2.
A thin film was deposited by introducing 630 sccm and further introducing He to maintain the total pressure at 600 mTorr. The film forming rate at this time was 45 Å / s. The deposited film was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and electron diffraction to find that it was a SiGe polycrystalline thin film.

【0022】比較例 1 実施例1と同じ条件で調整し、基板温度が安定した後、
ノズル2よりGeF430sccmを導入し、さらにH
eを導入して全圧を520mTorrになるよう保持
し、Geエピタキシャル薄膜の堆積を試みたが、基板上
には堆積膜は確認できなかった。このときSi基板はエ
ッチングされていた。
Comparative Example 1 After adjusting under the same conditions as in Example 1 and stabilizing the substrate temperature,
GeF 4 30sccm was introduced from nozzle 2, and further H
An attempt was made to deposit a Ge epitaxial thin film by introducing e and maintaining the total pressure at 520 mTorr, but no deposited film could be confirmed on the substrate. At this time, the Si substrate was etched.

【0023】[0023]

【発明の効果】本発明の方法によれば、GeあるいはS
iGe堆積膜を従来の方法よりも低温でかつ複雑な製造
設備を必要とせずに形成することを可能にした。
According to the method of the present invention, Ge or S
It has made it possible to form iGe deposited films at lower temperatures than conventional methods and without the need for complicated manufacturing equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いた薄膜堆積装置の概略図を示す。FIG. 1 shows a schematic view of a thin film deposition apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1.ガス導入管 2.ノズル 3.基板ホルダー 4.排気系 1. Gas inlet pipe 2. Nozzle 3. Substrate holder 4. Exhaust system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板温度が、200〜600℃の温度範囲
である加熱基板上に、GeF4 とシランガス(Sin
2n+2,nは1〜3の整数)の混合ガスを供給することに
よりGeあるいはSiGe薄膜を堆積させることを特徴
とする薄膜の製膜方法。
1. GeF 4 and silane gas (Si n H 2) on a heated substrate having a substrate temperature of 200 to 600 ° C.
2n + 2 , n is an integer of 1 to 3) A Ge or SiGe thin film is deposited by supplying a mixed gas to form a thin film.
JP3048193A 1992-03-11 1993-02-19 Forming method for thin film Pending JPH05315269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048193A JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-52804 1992-03-11
JP5280492 1992-03-11
JP3048193A JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Publications (1)

Publication Number Publication Date
JPH05315269A true JPH05315269A (en) 1993-11-26

Family

ID=26368843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048193A Pending JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Country Status (1)

Country Link
JP (1) JPH05315269A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211653A (en) * 1994-01-26 1995-08-11 Central Glass Co Ltd Deposition of ge thin film
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US6958253B2 (en) * 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
JP2007013194A (en) * 2006-08-07 2007-01-18 Junichi Hanna Semiconductor substrate and method of manufacturing same
JP2007165921A (en) * 2007-01-19 2007-06-28 Junichi Hanna Semiconductor base material and production method thereof
JP2008133544A (en) * 2008-01-28 2008-06-12 Junichi Hanna Conductive pattern and method for forming the same
US7413967B2 (en) 2004-05-19 2008-08-19 International Business Machines Corporation Yield improvement in silicon-germanium epitaxial growth
JP2011223020A (en) * 2003-03-19 2011-11-04 Taiwan Semiconductor Manufactuaring Co Ltd Method of producing high quality relaxed silicon germanium layer
US8878244B2 (en) 2002-05-31 2014-11-04 Renesas Electronics Corporation Semiconductor device having strained silicon film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211653A (en) * 1994-01-26 1995-08-11 Central Glass Co Ltd Deposition of ge thin film
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US6958253B2 (en) * 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
US8878244B2 (en) 2002-05-31 2014-11-04 Renesas Electronics Corporation Semiconductor device having strained silicon film
JP2011223020A (en) * 2003-03-19 2011-11-04 Taiwan Semiconductor Manufactuaring Co Ltd Method of producing high quality relaxed silicon germanium layer
US7413967B2 (en) 2004-05-19 2008-08-19 International Business Machines Corporation Yield improvement in silicon-germanium epitaxial growth
JP2007013194A (en) * 2006-08-07 2007-01-18 Junichi Hanna Semiconductor substrate and method of manufacturing same
JP4527090B2 (en) * 2006-08-07 2010-08-18 純一 半那 Manufacturing method of semiconductor substrate
JP2007165921A (en) * 2007-01-19 2007-06-28 Junichi Hanna Semiconductor base material and production method thereof
JP2008133544A (en) * 2008-01-28 2008-06-12 Junichi Hanna Conductive pattern and method for forming the same
JP4739356B2 (en) * 2008-01-28 2011-08-03 純一 半那 Conductive pattern

Similar Documents

Publication Publication Date Title
EP0632145B1 (en) Method of forming crystalline silicon carbide coatings
KR100287489B1 (en) How to form crystalline silicon carbide film at low temperature
JP2965094B2 (en) Deposition film formation method
US5471946A (en) Method for producing a wafer with a monocrystalline silicon carbide layer
JPH01162326A (en) Manufacture of beta-silicon carbide layer
US7029995B2 (en) Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
US20070105373A1 (en) Method of direct deposition of polycrystalline silicon
JPH05315269A (en) Forming method for thin film
US5294285A (en) Process for the production of functional crystalline film
JPH02258689A (en) Method for forming crystalline thin film
US7186295B2 (en) Quartz thin film
EP0240314B1 (en) Method for forming deposited film
EP0240305B1 (en) Method for forming a deposited film
JP2649221B2 (en) Deposition film formation method
JPH04298023A (en) Manufacture of single crystal silicon thin film
JP3728466B2 (en) Method for producing single crystal diamond film
JPS6348817A (en) Epitaxial growth method
JPH07211653A (en) Deposition of ge thin film
JP3219832B2 (en) Manufacturing method of silicon carbide thin film
KR20240009063A (en) Method for preparing thin film of three-dimensional transition metal dichalcogenide having high uniformity
JPH0597582A (en) Method for depositing thin film of diamond
JP3008455B2 (en) Method for manufacturing crystalline silicon film
KR0151821B1 (en) Process for chemical vapor deposition of silicon with suppressed particle formation
JPH06204139A (en) Manufacture of silicon crystal film by thermal cvd
JPH071753B2 (en) Method for manufacturing semiconductor device