JPH02183230A - Organic nonlinear optical material and production thereof - Google Patents

Organic nonlinear optical material and production thereof

Info

Publication number
JPH02183230A
JPH02183230A JP259989A JP259989A JPH02183230A JP H02183230 A JPH02183230 A JP H02183230A JP 259989 A JP259989 A JP 259989A JP 259989 A JP259989 A JP 259989A JP H02183230 A JPH02183230 A JP H02183230A
Authority
JP
Japan
Prior art keywords
electron
group
molecules
optical material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP259989A
Other languages
Japanese (ja)
Inventor
Yoshiro Akagi
与志郎 赤木
Mariko Ishino
石野 真理子
Atsuhisa Inoue
井上 敦央
Yoshiharu Nakajima
義晴 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP259989A priority Critical patent/JPH02183230A/en
Publication of JPH02183230A publication Critical patent/JPH02183230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain thin-film org. nonlinear optical material having large nonlinearity by laminating the layer of molecules having a benzene ring which is a pi-electron conjugation system as skeleton and respectively having an electron-donating group and an electron-accepting group at both ends on the thin film of a solid phase polymerizable aliphat. diacetylene compd. CONSTITUTION:The layer of the molecules having the benzene ring which is the pi-electron conjugation system as skeleton and respectively having the electron-donating group and the electron-accepting group at both ends is laminated on the thin film of the solid phase polymerizable aliphat. diacetylene compd. which can be made into a crystalline high polymer by solid phase polymn. Namely, the layer of the molecules respectively having the electron-donating group and the electron-accepting group is formed by a vacuum vapor deposition method. The orientation and lamination of the particles deposited by evaporation in the specified direction are possible in this way and the optical material having the large nonlinearity is obtd.

Description

【発明の詳細な説明】 〈産業上の分野〉 本発明は薄膜非線形光学材料と、その製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field> The present invention relates to a thin film nonlinear optical material and a method for manufacturing the same.

〈従来の技術〉 非線形光学材料として、π−電子共役系を介して電子供
与基と電子受容基を有する有機化合物は、無機化合物と
比べて非常に大きい非線形光学特性を示すこと、又、有
機化合物は比較的自由な分子設計の可能性を有している
点でも注目されている。
<Prior Art> As a nonlinear optical material, an organic compound having an electron donating group and an electron accepting group via a π-electron conjugated system exhibits significantly greater nonlinear optical properties than an inorganic compound. is also attracting attention because it allows for relatively free molecular design.

しかし、この非線形光学材料′ft実用デバイスとして
使用し、第2高調波発生などの非線形光学特性を大きく
発生させるためには、これら有機分子全配向・結晶化さ
せることが重要である。配向有機薄膜形成法としては従
来LB法(ラングミュア・プロジェット法)が知られて
いる。同方法は水面上へ、一方に親水基を有し、他方に
疎水基を持つ有機分子を単分子状に展開し、有機分子が
水面上に垂直に立った状態で、適当な基板上に累積する
ことを特徴とするものであり、通常は有機分子軸が基板
に垂直方向に配向した薄膜を得ることができる。
However, in order to use this nonlinear optical material as a practical device and to generate significant nonlinear optical properties such as second harmonic generation, it is important to fully orient and crystallize these organic molecules. The LB method (Langmuir-Prodgett method) is conventionally known as a method for forming oriented organic thin films. In this method, organic molecules that have a hydrophilic group on one side and a hydrophobic group on the other side are developed into monomolecules on the water surface, and then accumulated on a suitable substrate with the organic molecules standing vertically above the water surface. Usually, a thin film can be obtained in which the organic molecular axes are oriented perpendicularly to the substrate.

しかしながらLB法で用いる有機分子には、以下に述べ
る制約がある。まず、同方法を用いて配向を効果的に発
現させるためには用いられる有機分子が長鎖アルキル基
を骨格とし、両端の親水基と疎水基がバランスよく約9
合うように設計、合成されたものでなければならないこ
と、又、長鎖アルキル基は数1OAに及んでいるため両
端における構造的相関が弱くなることが避けらnない゛
However, the organic molecules used in the LB method have the following limitations. First, in order to effectively achieve orientation using this method, the organic molecule used has a long-chain alkyl group as its backbone, and the hydrophilic and hydrophobic groups at both ends are well-balanced to about 90%.
They must be designed and synthesized to suit each other, and since the long chain alkyl group spans several OA, it is inevitable that the structural relationship at both ends will be weak.

父、工程が湿式法であるために材料的にも制約が伴うこ
と、単分子形成であるために所定の厚さにするには多大
な時間がかかるということも無視しえない。
Furthermore, since the process is a wet method, there are restrictions in terms of materials, and since it is a monomolecular formation process, it cannot be ignored that it takes a great deal of time to reach the desired thickness.

LB法の他の薄膜形成法として真空蒸着法がある。同法
は乾式法であp、近年有機化合物の薄膜形成法として一
般的な方法となシつつある。ところがこの真空蒸着法で
は一般に分子の配向性を側副することは容易ではない。
There is a vacuum evaporation method as a thin film forming method other than the LB method. This method is a dry method and has recently become a popular method for forming thin films of organic compounds. However, in this vacuum evaporation method, it is generally not easy to control the orientation of molecules.

これは■族生導体、化合物半導体、もしくは一般の無機
化合物の時のように結晶構造、格子定数の似かよった薄
膜形成用基板と被膜物質の組みあわせを選ぶことができ
ないという事情によるところが大きい。
This is largely due to the fact that it is not possible to select a combination of a thin film forming substrate and coating material that have similar crystal structures and lattice constants, as is the case with group III conductors, compound semiconductors, or general inorganic compounds.

これを解決するために基板として一軸延伸配向性のポリ
エステルフィルム等を用いることによシ被蒸着有機分子
の配向を規制する方法があるが、配向度は低い。
To solve this problem, there is a method of controlling the orientation of organic molecules to be deposited by using a uniaxially stretched oriented polyester film as a substrate, but the degree of orientation is low.

〈発明が解決しようとする課題〉 前項で述べたように従来技術ではLB法、真空蒸着法の
いずれの薄膜形成法であっても、良質の結晶性薄膜全形
成するに際する共通する問題点として、薄膜を形成する
のに必要な基板を得がたいということが挙げられる。本
発明の目的は、実用的な薄膜形成手段である真空蒸着法
を用いつつも、蒸着用基板として化学的性質、幾何学的
形状が大きく異なる無機化合物から成る基板ではなく、
被蒸着有機分子と親和力が高くかつ結晶性の高い高配向
性有機高分子材料から成る基板を用いることにより、被
蒸着有機分子が高度に配向した、非線形性の大きな薄膜
有機非線形光学材料を提供することにある。
<Problems to be solved by the invention> As stated in the previous section, in the prior art, there are common problems in forming a high-quality crystalline thin film, regardless of whether the thin film formation method is the LB method or the vacuum evaporation method. One of the main reasons for this is that it is difficult to obtain the substrates necessary to form thin films. The purpose of the present invention is to use a vacuum evaporation method, which is a practical means of forming thin films, but to use a substrate for evaporation rather than a substrate made of inorganic compounds with significantly different chemical properties and geometric shapes.
By using a substrate made of a highly oriented organic polymer material that has a high affinity for organic molecules to be deposited and has high crystallinity, we provide a thin film organic nonlinear optical material in which the organic molecules to be deposited are highly oriented and have large nonlinearity. There is a particular thing.

く課題を解決するための手段〉 上記目的を実現するため本発明は、 (l  固相重合によって結晶性高分子となりうる固相
重合性脂肪族ジアセチレン化合物薄膜上に、π−電子共
役系であるベンゼン環を骨格とし両端に電子供与基およ
び電子受容基を各々有する分子の層を積層してなる有機
非線形光学材料、及び (2)固層重合によって結晶性高分子となりうる固相重
合性脂肪族ジアセチレン化合物薄膜上に、π−電子共役
系であるベンゼン環を骨格とし、両端に電子供与基およ
び電子受容基を各々有する分子のΔを真空蒸着法で形成
供与基および電子受容基を各々有する分子の層を真空蒸
着法で形成する有機非線形光学材料の製造方法から構成
される。
Means for Solving the Problems> In order to achieve the above objects, the present invention provides the following features: An organic nonlinear optical material formed by laminating layers of molecules having a certain benzene ring as a skeleton and having an electron-donating group and an electron-accepting group at both ends, and (2) a solid-phase polymerizable fat that can become a crystalline polymer by solid-phase polymerization. On a thin film of a group diacetylene compound, a molecule Δ having a benzene ring, which is a π-electron conjugated system, as a backbone and an electron donating group and an electron accepting group at both ends, is formed using a vacuum evaporation method. It consists of a method for manufacturing an organic nonlinear optical material, in which a layer of molecules having the above properties is formed by vacuum evaporation.

〈作 用〉 すなわち本発明では、基板として結晶化度の高い薄膜が
得られる固相重合性脂肪族ジアセチレン化合物を用い、
蒸着分子として上記π−電子共役系の両端に電子供与基
および電子受容基を各有する分子を用いることによシ、
蒸着分子を一定の向きに配向積層させ、薄膜有機非線形
光学材料を提供しうることを思いだした。
<Function> That is, in the present invention, a solid phase polymerizable aliphatic diacetylene compound from which a thin film with a high degree of crystallinity can be obtained is used as a substrate,
By using a molecule having an electron donating group and an electron accepting group at both ends of the π-electron conjugated system as the evaporation molecule,
I remembered that it is possible to provide a thin film organic nonlinear optical material by aligning and stacking deposited molecules in a certain direction.

固相重合性脂肪族ジアセチレン化合物から成る薄膜全基
板として用いることによシ、蒸着分子の配向方向を規定
することができるが、ラングミュア・プロジェット法が
基板の垂直方向に分子が配向するのとは異なシ、本発明
によれば基板として用いる脂肪族ジアセチレン化合物の
側鎖に用いる官能基により制御しうる可能性金も有する
ものである。
By using a thin film made of a solid-phase polymerizable aliphatic diacetylene compound as an entire substrate, the orientation direction of the vapor-deposited molecules can be determined. However, according to the present invention, the aliphatic diacetylene compound used as the substrate also has the possibility of being controlled by the functional group used in the side chain.

本発明に於ける同相重合性脂肪族ジアセチレン化合物と
はジアセチレン基の両端に脂肪族官能基を有しておシ熱
あるいは光、特に紫外線下で固相にて容易に重合し、か
つ結晶を形成するものを指す。ジアセチレン化合物の重
合速度等の反応性は一般に側鎖官能基の種類、サイズに
よって規定される事が知られているが一方結晶性は側鎖
官能基の化学的性質に依存するとされている。脂肪族ジ
アセチレン化合物の化学式は一般にR−C=C−(=C
−R’ と書けるが具体的にはR=−(CH2)mCH
s 、R’=  CH20H,(CHz)ncOOH。
In the present invention, a homopolymerizable aliphatic diacetylene compound has an aliphatic functional group at both ends of a diacetylene group, easily polymerizes in a solid phase under heat or light, especially ultraviolet rays, and has a crystalline structure. Refers to the things that form the. It is known that the reactivity of diacetylene compounds, such as the polymerization rate, is generally determined by the type and size of the side chain functional groups, while the crystallinity is said to depend on the chemical properties of the side chain functional groups. The chemical formula of aliphatic diacetylene compounds is generally R-C=C-(=C
-R', but specifically R=-(CH2)mCH
s, R'=CH20H, (CHz)ncOOH.

(CH2)40CONH(CH2)RCH3、もしくは
R=R’=  (CH2)mOH,−(CH2)nOc
ONH(CH2)RCH3,等が望筐しい。これら側鎖
官能基の長さとサイズは高分子結晶格子のサイズに反映
し、−OH基やウレタン基−0CONH−は分子内、間
での水素結合形成に寄与するため高分子結晶の結晶度を
支配する要素として働く。蒸着分子の基板として用いる
これら固相重合性脂肪族ジアセチレン化合物の厚さは特
に限定さnない。又、基板として用いるこれらジアセチ
レン化合物は光学素子との結合等のため石英ガラス、化
合物半導体、金属上に付着させて用いる。基板形成は溶
液塗布法、蒸着法のいずれでもよい。均−性等の観侭か
らは蒸着法が望ましいが熱分解等の困囃を伴う場合には
溶液塗布によってもよいことは勿論である。
(CH2)40CONH(CH2)RCH3, or R=R'= (CH2)mOH, -(CH2)nOc
ONH (CH2) RCH3, etc. are desirable. The length and size of these side chain functional groups are reflected in the size of the polymer crystal lattice, and the -OH group and urethane group -0CONH- contribute to the formation of hydrogen bonds within and between molecules, so they affect the crystallinity of the polymer crystal. It acts as a controlling element. The thickness of these solid phase polymerizable aliphatic diacetylene compounds used as a substrate for vapor-deposited molecules is not particularly limited. Further, these diacetylene compounds used as a substrate are used by being attached to quartz glass, compound semiconductors, or metals for bonding with optical elements, etc. The substrate may be formed by either a solution coating method or a vapor deposition method. From the viewpoint of uniformity, etc., the vapor deposition method is preferable, but if problems such as thermal decomposition are involved, it goes without saying that solution coating may also be used.

次に本発明で用いるれるL−電子共役系の両端に電子供
与基、および電子受容基を各介する非線形有機被蒸着分
子について説明する。
Next, a nonlinear organic evaporated molecule having an electron donating group and an electron accepting group at both ends of the L-electron conjugated system used in the present invention will be explained.

本発明で用いられるπ−電子共役系は、ベンゼン、1.
2−ジフェニルエチレン、1.2−ジフェニルアセチレ
ン、1.4−ジフェニルアセチレンが望ましい。又、電
子供与基には、アミノ基、N−メチルアミノ基に代表さ
几るN−アルキルアミミノ基、N、N−ジメチルアミノ
基に代表されるN、N−ジアルキルアミノ基、等が代表
的であるがヒドロキ7基、アルコキン基でもよい。一方
、電子受容基には、ニトロ基、シアノ基、チオシアノ基
、アルデヒド基、カルボキシル基、カルボニル基、等が
挙げられる。
The π-electron conjugated system used in the present invention includes benzene, 1.
2-diphenylethylene, 1.2-diphenylacetylene, and 1.4-diphenylacetylene are preferred. Representative electron-donating groups include amino groups, N-alkylamino groups represented by N-methylamino groups, N,N-dialkylamino groups represented by N,N-dimethylamino groups, etc. However, a hydroxy group or an alkoxy group may also be used. On the other hand, examples of electron-accepting groups include a nitro group, a cyano group, a thiocyano group, an aldehyde group, a carboxyl group, and a carbonyl group.

具体的な化合物としては特にこれ等に限定されないが、
m、p−ニトロアニリン、2−メチル−4−ニトロアニ
リン、1−(4’−N、 N’ジメチルアミノフェニル
)−4−(4’−ニトロフェニル)シ・アセチレン、m
−ヅニトロベンゼン、2−ブロモ−4−ニトロアニリン
、ホルミルニトロフェニルヒドラジン、ニトロ−4−フ
ェニル−N−(メチルシアノメチル)アミンといった化
合物が挙げられる。
Specific compounds are not particularly limited to these, but
m, p-nitroaniline, 2-methyl-4-nitroaniline, 1-(4'-N, N'dimethylaminophenyl)-4-(4'-nitrophenyl)cy-acetylene, m
-dunitrobenzene, 2-bromo-4-nitroaniline, formylnitrophenylhydrazine, and nitro-4-phenyl-N-(methylcyanomethyl)amine.

本発明における被蒸着分子の蒸着方法は特に限定しない
が配向性、光学特性を良好に発現させるためには蒸着膜
厚が100A〜10μm程度であることが望ましい。又
、蒸着源温度は有機化合物の分解を避けるため著しい高
温は望1しくない。
Although the method of vapor deposition of molecules to be vapor-deposited in the present invention is not particularly limited, it is desirable that the thickness of the vapor-deposited film is about 100 Å to 10 μm in order to exhibit good orientation and optical properties. Further, it is not desirable that the temperature of the vapor deposition source be extremely high in order to avoid decomposition of organic compounds.

〈実施例〉 次に実施例により本発明を具体的に説明する。<Example> Next, the present invention will be specifically explained with reference to Examples.

用いた固相重合性脂肪族ジアセチレンモノマーの名称、
化学式、形成方法、形成温度、膜厚を表1にまとめて示
す。
Name of solid phase polymerizable aliphatic diacetylene monomer used,
The chemical formula, formation method, formation temperature, and film thickness are summarized in Table 1.

(八 1 伍 自 ) これらは全て石英ガラス上に形成した。各基板は形成後
、大気中で200W水銀ランプを用いて紫外線全照射し
同相での重合を促進した。固相重合の完了したポリシア
七チレン各試料の結晶性はX線回折法を用いて確認した
。各々(0,2n。
(81.5) All of these were formed on quartz glass. After each substrate was formed, it was fully irradiated with ultraviolet rays using a 200 W mercury lamp in the atmosphere to promote polymerization in the same phase. The crystallinity of each sample of polysia-7-ethylene that had undergone solid phase polymerization was confirmed using X-ray diffraction. Each (0,2n.

0)反射のみが観測され粉末原料とは明らかに異なる配
向性金示した。
0) Only reflection was observed, showing an oriented gold clearly different from that of the powder raw material.

これら固相重合性脂肪族ポリジアセチレン結晶性薄膜の
各々全基板として有機非線形光学材料である 2−メチ
7レー4−二トロアニリン(MNA)を2 X 10 
 Torrの真空度で蒸着した。基板温度は室温、原料
温度は90℃であった。2−メチル−4−ニトロアニリ
ンの蒸着膜厚は500〜2000Aであった。
Each of these solid-phase polymerizable aliphatic polydiacetylene crystalline thin films uses 2×10 2-methyl-4-nitroaniline (MNA), which is an organic nonlinear optical material, as the entire substrate.
The deposition was carried out at a vacuum degree of Torr. The substrate temperature was room temperature, and the raw material temperature was 90°C. The thickness of the deposited film of 2-methyl-4-nitroaniline was 500 to 2000A.

結晶性高分子薄膜上に蒸着された2−メチル−4−ニト
ロアニリンの結晶配向性はX線回折法で評価した。なお
比較のために本発明で述べた固相重合性ポリアセチレン
を蒸着、塗布していない石英ガラスを、そのまま基板と
して用い、上記実施例と同様に有機非線形光学材料であ
る2−メチル−4−ニトロアニリンを蒸着しX線回折法
による評価を行った。こnらの結果を表2に示す。
The crystal orientation of 2-methyl-4-nitroaniline deposited on the crystalline polymer thin film was evaluated by X-ray diffraction. For comparison, quartz glass without the solid-phase polymerizable polyacetylene described in the present invention being vapor-deposited or coated was used as a substrate as it was, and 2-methyl-4-nitro, which is an organic nonlinear optical material, was used as in the above example. Aniline was deposited and evaluated by X-ray diffraction. The results are shown in Table 2.

表 *配向度は、X線回折法で得られる(112)回折強度
の(020)回折強度に対する比として定義。
Table *Orientation degree is defined as the ratio of (112) diffraction intensity to (020) diffraction intensity obtained by X-ray diffraction method.

ここで(112)反射は2−メチル−4−ニトロアニリ
ンの分子面がポリジアセチレン結晶性薄膜基板面にほぼ
平行、(020)反射は同分子面が基板面と垂直に配向
している状、熊の密度全反映している。ラングミュア・
プロジェット法が基板の垂直方向に分子が配列するのと
は異なり、本発明の方法では分子面が基板に対し平行方
向に配列した配向状態全実現することができた。又、固
相重合性脂肪族シア七千しン結晶性薄膜基板上ではこれ
らの傾向が明らかに増大することをも見い出した。
Here, (112) reflection indicates that the molecular plane of 2-methyl-4-nitroaniline is almost parallel to the polydiacetylene crystalline thin film substrate surface, and (020) reflection indicates that the same molecular plane is oriented perpendicular to the substrate surface. The density of bears is fully reflected. langmuir
Unlike the Projet method, in which the molecules are aligned perpendicularly to the substrate, the method of the present invention was able to achieve a complete orientation state in which the molecular planes were aligned parallel to the substrate. We have also found that these tendencies clearly increase on a crystalline thin film substrate of solid phase polymerizable aliphatic cyanosulfate.

〈発明の効果〉 本発明の如く固相重合性脂肪族ポリジアセチレン結晶性
蒸着膜もしくは結晶性塗布暎からなる基板上に、π−〒
n子共役系の両端に電子供与基及び電子受容基を各A有
する分子を蒸着することにより、同分子を一定の方向に
配向積層させることが可能となったものである。
<Effects of the Invention> As in the present invention, π-〒
By depositing molecules each having an electron-donating group and an electron-accepting group A at both ends of an n-son conjugated system, it has become possible to orient and stack the same molecules in a fixed direction.

Claims (1)

【特許請求の範囲】 1、固相重合によって結晶性高分子となりうる固相重合
性脂肪族ジアセチレン化合物薄膜上に、π−電子共役系
であるベンゼン環を骨格とし両端に電子供与基および電
子受容基を各々有する分子の層を積層してなることを特
徴とする有機非線形光学材料。 2、固有重合によって結晶性高分子となりうる固有重合
性脂肪族ジアセチレン化合物薄膜上に、π−電子共役系
であるベンゼン環を骨格とし、両端に電子供与基および
電子受容基を各々有する分子の層を真空蒸着法で形成す
ることを特徴とする有機非線形光学材料の製造方法。
[Scope of Claims] 1. On a thin film of a solid-phase polymerizable aliphatic diacetylene compound that can be made into a crystalline polymer by solid-phase polymerization, a benzene ring, which is a π-electron conjugated system, is used as a backbone, and an electron-donating group and an electron are attached at both ends. An organic nonlinear optical material characterized by being formed by laminating layers of molecules each having an accepting group. 2. On a thin film of an intrinsically polymerizable aliphatic diacetylene compound that can become a crystalline polymer through intrinsic polymerization, a molecule having a benzene ring, which is a π-electron conjugated system, as a skeleton and has an electron donating group and an electron accepting group at both ends, is formed. A method for producing an organic nonlinear optical material, characterized in that a layer is formed by a vacuum evaporation method.
JP259989A 1989-01-09 1989-01-09 Organic nonlinear optical material and production thereof Pending JPH02183230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP259989A JPH02183230A (en) 1989-01-09 1989-01-09 Organic nonlinear optical material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP259989A JPH02183230A (en) 1989-01-09 1989-01-09 Organic nonlinear optical material and production thereof

Publications (1)

Publication Number Publication Date
JPH02183230A true JPH02183230A (en) 1990-07-17

Family

ID=11533851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP259989A Pending JPH02183230A (en) 1989-01-09 1989-01-09 Organic nonlinear optical material and production thereof

Country Status (1)

Country Link
JP (1) JPH02183230A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) * 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6509065B2 (en) 1998-12-16 2003-01-21 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656537B2 (en) 1997-09-29 2003-12-02 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6627267B2 (en) 1997-09-29 2003-09-30 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6811829B2 (en) 1998-12-16 2004-11-02 Battelle Memorial Institute Method of making a coating of a microtextured surface
US6497924B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Method of making non-linear optical polymer
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) * 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6858259B2 (en) 1998-12-16 2005-02-22 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6613395B2 (en) 1998-12-16 2003-09-02 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6497598B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6909230B2 (en) 1998-12-16 2005-06-21 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6509065B2 (en) 1998-12-16 2003-01-21 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6522067B1 (en) 1998-12-16 2003-02-18 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6544600B2 (en) 1998-12-16 2003-04-08 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6923702B2 (en) 1999-10-25 2005-08-02 Battelle Memorial Institute Method of making encapsulated display devices
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction

Similar Documents

Publication Publication Date Title
JPH02183230A (en) Organic nonlinear optical material and production thereof
Li et al. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials
JP2678055B2 (en) Manufacturing method of organic compound thin film
Tour et al. Self-assembled monolayers and multilayers of conjugated thiols,. alpha.,. omega.-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces
Zettsu et al. Soft crosslinkable azo polymer for rapid surface relief formation and persistent fixation
JP2578442B2 (en) Molecularly oriented thin film
JPH03170400A (en) Production of polyimide thin film and production of polyimide liquid crystal oriented film
Kuila et al. A synergistic coassembly of block copolymer and fluorescent probe in thin film for fine-tuning the block copolymer morphology and luminescence property of the probe molecules
Liu et al. Langmuir-Blodgett films of an asymmetrically substituted metal-free phthalocyanine and the second-order non-linear optical properties
JPH0987849A (en) Production of conjugated polymer film and conjugated organic polymer film
Aldea et al. Second harmonic generation diagnostic of layer-by-layer deposition from Disperse Red 1–functionalized maleic anhydride copolymer
Yokoyama et al. Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir-Blodgett films having a photoresponsive p-nitroazobenzene pendant group
Matsuura et al. Structures of Self-Assembled Monolayers versus Vacuum Deposited Films of Terthiophene
JPS62160427A (en) Organic nonlinear optical material and its preparation
JP3015221B2 (en) Organic thin film manufacturing method
Stanculescu et al. Effect of the morphology on the optical and electrical properties of polycarbonate film doped with aniline derivatives monomers
Do et al. Nonlinear optical polyimides with various substituents on chromophores: synthesis and glass transition temperature
JPH05307179A (en) Production of monomolecular film and production of monomolecular piled up film
Watakabe et al. Wholly. pi.-Conjugated Z-Type Langmuir-Blodgett Films of Oligo (phenylenevinylene) sulfonamides
JP3992203B2 (en) Oriented molecular thin film
JPH0820650A (en) Organic thin film material and its production
Zhang et al. Synthesis and non-linear optical properties of some organic self-assembled films on hydroxylated substrate surfaces
JP2755272B2 (en) Organic film fabrication method
Wijekoon et al. Linear and non-linear optical studies of mono-and multilayer Langmuir-Blodgett films of N-docosanoyl para-nitroaniline
JPH0240243B2 (en) BUNSHIHAIKOSEIHAKUMAKU