JPH0820650A - Organic thin film material and its production - Google Patents

Organic thin film material and its production

Info

Publication number
JPH0820650A
JPH0820650A JP15752394A JP15752394A JPH0820650A JP H0820650 A JPH0820650 A JP H0820650A JP 15752394 A JP15752394 A JP 15752394A JP 15752394 A JP15752394 A JP 15752394A JP H0820650 A JPH0820650 A JP H0820650A
Authority
JP
Japan
Prior art keywords
thin film
aromatic compound
group
vacuum
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15752394A
Other languages
Japanese (ja)
Other versions
JP2980521B2 (en
Inventor
Tetsuyuki Kurata
哲之 藏田
Hiroyuki Fuchigami
宏幸 渕上
Eiji Nobutoki
英治 信時
Koji Hamano
浩司 浜野
Shigeru Kubota
繁 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15752394A priority Critical patent/JP2980521B2/en
Publication of JPH0820650A publication Critical patent/JPH0820650A/en
Application granted granted Critical
Publication of JP2980521B2 publication Critical patent/JP2980521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject material exhibiting high function properties because of its excellent (high grade) structure-controlling property, excellent in stability due to the polymer, and useful as a photoconductive material, an organic semiconductor, etc., by vacuum-depositing different kinds of specific aromatic compounds on a substrate and subsequently irradiating the deposited compounds with light for a photochemical reaction. CONSTITUTION:This material is obtained by vacuum-depositing (A) an aromatic compound having a radical-generating group in the molecule [e.g. a compound of formula I (phi1 is the residue of benzene, naphthalene, anthracene, phenathrene, tetralin, etc.), a compound of formula II] and (B) an aromatic compound having an unsaturated bond in the molecule [e.g. a compound of formula III (phi2 is phi1), a compound of formula IV] on a substrate under a vacuum of <=10<-6>Torr and subsequently subjecting the deposited compounds to a photochemical reaction by the irradiation of light. The objective material can also be obtained by using e.g. a compound of the formula HS-phi3-CidenticalCH (phi3 is phi1) instead of the components A and B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、有機薄膜材料及びそ
の製造方法、特に、有機半導体、非線形光学材料、光導
電材料などの機能性有機薄膜やそれらを用いたデバイス
に利用される新規で有用な芳香族化合物の有機薄膜材料
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film material and a method for producing the same, and particularly to a novel and useful organic thin film such as an organic semiconductor, a non-linear optical material and a photoconductive material, and a device using them. The present invention relates to an organic thin film material of aromatic compound and a method for producing the same.

【0002】[0002]

【従来の技術】近年、有機分子の持つ半導体性、非線形
光学特性、光導電性などの機能性を利用した新規な電子
又は光デバイスの開発が盛んに行われている。このよう
なデバイスに用いるためには、層構造、結晶性、分子配
向などの高次構造が制御された薄膜に形成することが必
須となっている。
2. Description of the Related Art In recent years, new electronic or optical devices utilizing the functionality of organic molecules such as semiconductor properties, nonlinear optical properties, and photoconductivity have been actively developed. For use in such a device, it is essential to form a thin film in which a higher-order structure such as a layer structure, crystallinity and molecular orientation is controlled.

【0003】このような高次構造の制御された有機薄膜
の製造方法としては種々の方法があるが、その中でも近
年は真空蒸着法を基本とする作製技術が注目されてい
る。特に、超高真空下で分子をゆっくりとした堆積速度
で蒸着することによって薄膜中の分子の配向を制御す
る、あるいは結晶化させることのできる有機分子線蒸着
法が優れており、盛んに研究が行われている。
There are various methods for manufacturing such an organic thin film having a controlled high-order structure, and among them, a manufacturing technique based on a vacuum vapor deposition method has recently attracted attention. In particular, the organic molecular beam evaporation method, which can control the orientation of molecules in a thin film or crystallize them by evaporating the molecules at a slow deposition rate under ultra-high vacuum, is excellent and has been actively researched. Has been done.

【0004】[0004]

【発明が解決しようとする課題】上述したような有機薄
膜材料の製造方法、特に有機分子線蒸着法による薄膜の
製造方法では、用いられる分子が蒸着可能であるという
制限がある。材料的に安定な高分子では蒸着不可能なこ
とが多く、また蒸着が可能な場合でも高分子自体に分子
量分布があるため、高次構造が制御された薄膜を製造す
るのは困難であるという問題点があった(飯島正行ら
「真空」第32巻、第6号、P.531、1959
年)。一方、蒸着分子に低分子材料を用いた場合、高次
構造の制御性は高いが、製造された膜の構造が安定性に
欠けるという問題点があった。
The above-mentioned method for producing an organic thin film material, particularly the method for producing a thin film by the organic molecular beam deposition method, has a limitation that the molecules used can be vapor deposited. In many cases, it is difficult to vapor-deposit a polymer that is stable as a material, and even if vapor deposition is possible, it is difficult to produce a thin film with a controlled higher-order structure because the polymer itself has a molecular weight distribution. There was a problem (Masayuki Iijima et al. "Vacuum" Vol. 32, No. 6, P. 531, 1959)
Year). On the other hand, when a low molecular weight material is used as the vapor deposition molecule, the controllability of the higher order structure is high, but the structure of the manufactured film lacks stability.

【0005】さらに、蒸着可能な低分子材料を原料に用
いて、光照射などのエネルギー供給により原料を重合し
て安定な薄膜を製造する方法としては、化学気相堆積法
(CVD法)がある。しかし、CVD法は有機薄膜内の
分子の配向状態の制御性が劣り、得られる薄膜は分子配
向性や結晶性の無いアモルファス状態の薄膜となること
が多く、機能が充分に発現されていない場合がほとんど
であるという問題点もあった。
Further, there is a chemical vapor deposition method (CVD method) as a method for producing a stable thin film by using a vapor-depositable low-molecular material as a raw material and polymerizing the raw material by supplying energy such as light irradiation. . However, the CVD method is inferior in the controllability of the orientation state of the molecules in the organic thin film, and the obtained thin film is often an amorphous thin film having no molecular orientation or crystallinity. There was also a problem in that

【0006】この発明は、このような問題点を解決する
ためになされたもので、構造制御性に優れているために
高機能を発現し、かつ重合体となっているため安定性に
優れた有機薄膜材料及びその製造方法を得ることを目的
とする。
The present invention has been made in order to solve such problems, and since it has excellent structure controllability, it exhibits a high function, and since it is a polymer, it has excellent stability. An object is to obtain an organic thin film material and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】この発明の請求項第1項
に係る発明は、分子内に少なくとも1個のラジカル発生
基を有する芳香族化合物と、分子内に少なくとも1個の
不飽和結合を有する芳香族化合物とを10-6Torr以下
の真空下で基板に蒸着し、光照射によって光化学反応さ
せて得られたものである。
The invention according to claim 1 of the present invention comprises an aromatic compound having at least one radical generating group in the molecule and at least one unsaturated bond in the molecule. It is obtained by vapor-depositing the aromatic compound contained therein on a substrate under a vacuum of 10 −6 Torr or less, and causing a photochemical reaction by light irradiation.

【0008】この発明の請求項第2項に係る発明は、請
求項第1項における少なくとも1個のラジカル発生基を
有する芳香族化合物を、末端又は両末端にチオール基を
有する次の構造式(1)で表される化合物としたもので
ある。
According to a second aspect of the present invention, an aromatic compound having at least one radical-generating group according to the first aspect of the present invention has the following structural formula ( It is a compound represented by 1).

【0009】[0009]

【化4】 [Chemical 4]

【0010】この発明の請求項第3項に係る発明は、請
求項第1項における少なくとも1個の不飽和結合を有す
る芳香族化合物を、末端又は両末端にエチニル基を有す
る次の構造式(2)で表される化合物としたものであ
る。
The invention according to claim 3 of the present invention comprises the aromatic compound having at least one unsaturated bond in claim 1 having the following structural formula (Ethynyl group) It is a compound represented by 2).

【0011】[0011]

【化5】 Embedded image

【0012】この発明の請求項第4項に係る発明は、1
つの分子内に少なくとも1個のラジカル発生基と少なく
とも1個の不飽和結合とを有する芳香族化合物を10-6
Torr以下の真空下で基板に蒸着し、光照射によって光
化学反応させて得られたものである。
The invention according to claim 4 of this invention is 1
One of the at least one radical generating group in the molecule at least one aromatic compound having an unsaturated bond 10-6
It was obtained by vapor deposition on a substrate under a vacuum of Torr or lower and photochemical reaction by light irradiation.

【0013】この発明の請求項第5項に係る発明は、請
求項第4項における芳香族化合物を、次の構造式(3)
で表される化合物としたものである。
According to a fifth aspect of the present invention, an aromatic compound according to the fourth aspect is obtained by converting the aromatic compound into the following structural formula (3):
Is a compound represented by.

【0014】[0014]

【化6】 [Chemical 6]

【0015】この発明の請求項第6項に係る発明は、請
求項第1項ないし第5項における芳香族化合物を基板へ
真空蒸着する際に、同時に光照射するものである。
According to a sixth aspect of the present invention, when the aromatic compound according to the first to fifth aspects is vacuum-deposited on a substrate, light is simultaneously irradiated.

【0016】この発明の請求項第7項に係る発明は、分
子内に少なくとも1個のラジカル発生基を有する芳香族
化合物と、分子内に少なくとも1個の不飽和結合を有す
る芳香族化合物とを10-6Torr以下の真空下で基板に
蒸着し、光照射によって光化学反応させて製造するもの
である。
The invention according to claim 7 of the present invention comprises an aromatic compound having at least one radical-generating group in the molecule and an aromatic compound having at least one unsaturated bond in the molecule. It is manufactured by vapor deposition on a substrate under a vacuum of 10 −6 Torr or less and photochemical reaction by light irradiation.

【0017】この発明の請求項第8項に係る発明は、1
つの分子内に少なくとも1個のラジカル発生基と少なく
とも1個の不飽和結合とを有する芳香族化合物を10-6
Torr以下の真空下で基板に蒸着し、光照射によって光
化学反応させて製造するものである。
The invention according to claim 8 of this invention is 1
One of the at least one radical generating group in the molecule at least one aromatic compound having an unsaturated bond 10-6
It is manufactured by vapor deposition on a substrate under a vacuum of Torr or lower, and photochemical reaction by light irradiation.

【0018】この発明の請求項第9項に係る発明は、請
求項第7項又は第8項における芳香族化合物を基板へ真
空蒸着する際に、同時に光照射するものである。
The invention according to claim 9 of the present invention is such that the aromatic compound according to claim 7 or 8 is simultaneously irradiated with light when vacuum-depositing the aromatic compound onto the substrate.

【0019】[0019]

【作用】この発明の請求項第1項においては、光励起に
よってラジカルを発生する基を少なくとも1個有する芳
香族化合物と、不飽和結合を少なくとも1個有する芳香
族化合物とを10-6Torr以下の真空下で基板に蒸着す
ることにより、分子配向や結晶性などの構造が制御され
た薄膜が得られる。この薄膜に光照射を行い光化学反応
させることによって重合させ、高分子とすることにより
安定化し、高機能で安定な有機薄膜材料を得る。
According to the first aspect of the present invention, an aromatic compound having at least one group capable of generating a radical by photoexcitation and an aromatic compound having at least one unsaturated bond have a concentration of 10 -6 Torr or less. By depositing on a substrate under vacuum, a thin film having a controlled structure such as molecular orientation and crystallinity can be obtained. This thin film is irradiated with light to cause photochemical reaction to polymerize it, and when it is made into a polymer, it is stabilized to obtain a highly functional and stable organic thin film material.

【0020】この発明の請求項第2項においては、末端
又は両末端にチオール基を有する上記構造式(1)で表
される芳香族化合物と、分子内に少なくとも1個の不飽
和結合を有する芳香族化合物とを用いることにより、光
照射を行ったときにチオール基と不飽和結合の間での重
付加反応が誘起され重合が進行する。このようにして高
機能で安定な有機薄膜材料を得る。
In the second aspect of the present invention, the aromatic compound represented by the above structural formula (1) having a thiol group at the terminal or both terminals and at least one unsaturated bond in the molecule. By using an aromatic compound, a polyaddition reaction between a thiol group and an unsaturated bond is induced when the light irradiation is performed, and the polymerization proceeds. Thus, a highly functional and stable organic thin film material is obtained.

【0021】この発明の請求項第3項においては、分子
内に少なくとも1個のラジカル発生基を有する材料と、
末端又は両末端にエチニル基を有する上記構造式(2)
で表される芳香族化合物とを用いることにより、光照射
を行ったときにラジカル発生基と不飽和結合の間での重
付加反応が誘起され重合が進行する。このようにして高
機能で安定な有機薄膜材料を得る。
In the third aspect of the present invention, a material having at least one radical-generating group in the molecule,
The above structural formula (2) having an ethynyl group at the terminal or both terminals
By using the aromatic compound represented by the formula (9), a polyaddition reaction between the radical-generating group and the unsaturated bond is induced when the light is irradiated, and the polymerization proceeds. Thus, a highly functional and stable organic thin film material is obtained.

【0022】この発明の請求項第4項においては、1つ
の分子内に少なくとも1個のラジカル発生基と少なくと
も1個の不飽和結合とを有する芳香族化合物を10-6
orr以下の真空下で基板に蒸着することにより、分子配
向や結晶性などの構造が制御された薄膜が得られ、光照
射によって光化学反応させて重合することにより高機能
で安定な有機薄膜材料を得る。
In the fourth aspect of the present invention, an aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is 10 -6 T.
By depositing on a substrate under a vacuum of orr or less, a thin film whose structure such as molecular orientation and crystallinity is controlled can be obtained, and a high-performance and stable organic thin film material can be obtained by photochemical reaction by light irradiation and polymerization. obtain.

【0023】この発明の請求項第5項においては、上記
構造式(3)で表される芳香族化合物を用いることによ
り、光照射を行ったときにラジカル発生基と不飽和結合
の間での重付加反応が誘起され重合が進行する。このよ
うにして高機能で安定な有機薄膜材料を得る。
In the fifth aspect of the present invention, by using the aromatic compound represented by the above structural formula (3), the radical-generating group and the unsaturated bond between the radical-generating group and the unsaturated bond when irradiated with light are used. A polyaddition reaction is induced and the polymerization proceeds. Thus, a highly functional and stable organic thin film material is obtained.

【0024】この発明の請求項第6項においては、請求
項第1項ないし第5項における芳香族化合物を基板へ真
空蒸着する際に、同時に光照射することによって、薄膜
の組成や重合度が均一で高機能で安定な有機薄膜材料を
得たり、また、照射光が透過しないような厚さのある薄
膜も得られる。
According to a sixth aspect of the present invention, when the aromatic compound according to the first to fifth aspects is vacuum-deposited on a substrate, light irradiation is performed at the same time so that the composition and the degree of polymerization of the thin film can be improved. It is possible to obtain a uniform, highly functional and stable organic thin film material, and also to obtain a thin film having a thickness that does not transmit irradiation light.

【0025】この発明の請求項第7項においては、分子
内に少なくとも1個のラジカル発生基を有する芳香族化
合物と、分子内に少なくとも1個の不飽和結合を有する
芳香族化合物とを10-6Torr以下の真空下で基板に蒸
着することにより、分子配向や結晶性などの構造が制御
され、光照射によって光化学反応を誘起して蒸着膜を重
合させることにより、高機能で安定な有機薄膜材料を製
造する。
[0025] In the claims section 7 of the present invention, an aromatic compound having at least one radical generating group in the molecule, an aromatic compound having at least one unsaturated bond in the molecule 10 - By depositing on a substrate under a vacuum of 6 Torr or less, the structure such as molecular orientation and crystallinity is controlled, and a photochemical reaction is induced by light irradiation to polymerize the deposited film, resulting in a highly functional and stable organic thin film. Manufacture materials.

【0026】この発明の請求項第8項においては、1つ
の分子内に少なくとも1個のラジカル発生基と少なくと
も1個の不飽和結合を有する芳香族化合物を10-6Tor
r以下の真空下で基板に蒸着することによって、分子配
向や結晶性などの構造が制御され、光照射によって光化
学反応を誘起して蒸着膜を重合させることにより、高機
能で安定な有機薄膜材料を製造する。
In the eighth aspect of the present invention, an aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is 10 -6 Tor.
Structures such as molecular orientation and crystallinity are controlled by vapor deposition on a substrate under a vacuum of r or less, and a photochemical reaction is induced by light irradiation to polymerize the vapor deposited film, resulting in a highly functional and stable organic thin film material. To manufacture.

【0027】この発明の請求項第9項においては、請求
項第7項又は第8項における芳香族化合物を基板へ真空
蒸着する際に、同時に光照射することによって、薄膜の
組成や重合度が均一で高機能で安定な有機薄膜材料を得
たり、また、照射光が透過しないような厚さのある薄膜
も製造する。
According to claim 9 of the present invention, when the aromatic compound according to claim 7 or 8 is vacuum-deposited on the substrate, light irradiation is performed at the same time so that the composition and the degree of polymerization of the thin film can be improved. A uniform, highly functional and stable organic thin film material is obtained, and a thin film having a thickness that does not transmit irradiation light is manufactured.

【0028】[0028]

【実施例】この発明では、分子内に少なくとも1個のラ
ジカル発生基を有する芳香族化合物と、分子内に少なく
とも1個の不飽和結合を有する芳香族化合物とを用い
る。これらの化合物を10-6Torr以下の真空度を有す
る真空チャンバー中の加熱源に装填する。次に、上記両
芳香族化合物を独立に加熱、蒸発させて薄膜を作製する
が、加熱温度、シャッター動作、堆積速度制御などによ
り任意の混合比の混合膜や、任意の膜厚を有する積層膜
を作製することができる。また、これらの条件及び基板
の種類、処理温度などの制御により、薄膜中の分子配向
や結晶性などの高次構造を制御することができる。この
ようにして作製した薄膜に光照射を行うことによって、
ラジカル発生基がラジカル化し、不飽和結合部分に重付
加反応することにより重合して高分子化する。これによ
り、薄膜の構造が安定化し、長期に亙って劣化の少ない
薄膜が得られる。
EXAMPLES In the present invention, an aromatic compound having at least one radical-generating group in the molecule and an aromatic compound having at least one unsaturated bond in the molecule are used. These compounds are loaded into a heating source in a vacuum chamber having a vacuum of 10 -6 Torr or less. Next, the above aromatic compounds are independently heated and evaporated to form a thin film. A mixed film having an arbitrary mixing ratio or a laminated film having an arbitrary film thickness is controlled by heating temperature, shutter operation, deposition rate control, and the like. Can be produced. Further, by controlling these conditions, the type of substrate, the processing temperature, and the like, it is possible to control the higher-order structure such as molecular orientation and crystallinity in the thin film. By irradiating the thin film prepared in this way with light,
The radical-generating group is converted into a radical and undergoes a polyaddition reaction with the unsaturated bond portion to polymerize and become a polymer. As a result, the structure of the thin film is stabilized, and a thin film with little deterioration over a long period of time can be obtained.

【0029】このとき、ラジカル発生基は芳香族化合物
の分子内に少なくとも1個あればよいが、1個の場合に
は他の一つの分子と反応後、さらに他の分子との反応が
進行しなくなるので2量体で反応が終了する。より高分
子量化を進めるためには、2個以上のラジカル発生基を
有することが望ましい。また、作製した薄膜の高次構造
を維持しながら光化学反応を誘起して重合するために
は、反応する相手分子である不飽和結合を有する芳香族
化合物の不飽和結合部分と空間的に近い状態にあること
が望ましい。具体的には、ラジカル発生基は芳香族化合
物の末端にあることが望ましい。
At this time, it is sufficient that at least one radical-generating group is present in the molecule of the aromatic compound, but in the case of one, the reaction with another molecule proceeds after the reaction with another molecule. Since it disappears, the reaction ends with the dimer. In order to further increase the molecular weight, it is desirable to have two or more radical generating groups. Further, in order to induce a photochemical reaction and polymerize while maintaining the higher-order structure of the prepared thin film, a state spatially close to the unsaturated bond portion of the aromatic compound having an unsaturated bond which is a reacting partner molecule Is desirable. Specifically, it is desirable that the radical-generating group is located at the end of the aromatic compound.

【0030】上述と同様に、ラジカル発生基と反応する
不飽和結合を分子内に少なくとも1個有する芳香族化合
物についても、薄膜全体で高分子量化させるためには2
個以上の不飽和結合を有していることが望ましい。作製
した薄膜の高次構造を維持しながら光化学反応を誘起し
て重合するためには、反応する相手分子であるラジカル
発生基を有する分子のラジカル発生基部分と空間的に近
い状態にあることが必要であり、具体的には、不飽和結
合は芳香族化合物の末端にあることが望ましい。
In the same manner as described above, even for an aromatic compound having at least one unsaturated bond which reacts with a radical-generating group in the molecule, it is necessary to increase the amount of the aromatic compound to 2 in order to make the entire thin film have a high molecular weight.
It is desirable to have one or more unsaturated bonds. In order to induce a photochemical reaction and polymerize while maintaining the higher-order structure of the produced thin film, it is necessary to be in a state spatially close to the radical-generating group portion of the molecule having the radical-generating group that is a reacting partner molecule. It is necessary, and specifically, it is desirable that the unsaturated bond is located at the end of the aromatic compound.

【0031】また、分子内に少なくとも1個のラジカル
発生基を有する芳香族化合物と分子内に少なくとも1個
の不飽和結合を有する芳香族化合物とを基板に蒸着して
薄膜を作製する場合、これらの芳香族化合物の組成比は
モル比で0.5から2の範囲に設定するのが好ましい。
この範囲外であると光化学反応が効率よく進まず、安定
な薄膜が得られないためである。
When an aromatic compound having at least one radical-generating group in the molecule and an aromatic compound having at least one unsaturated bond in the molecule are vapor-deposited on a substrate to form a thin film, The composition ratio of the aromatic compound is preferably set in the range of 0.5 to 2 in terms of molar ratio.
If it is out of this range, the photochemical reaction does not proceed efficiently and a stable thin film cannot be obtained.

【0032】分子内に少なくとも1個のラジカル発生基
を有する芳香族化合物におけるラジカル発生基として
は、特に制限はないが、水酸基(−OH)、アミノ基
(−NH)、一置換アミノ基(−NHR)、二置換ア
ミノ基(−NR)、カルボキシル基(−COO
H)、カルボニル基(−CO−)、酸無水物基(−CO
−O−CO−)、酸塩化物基(−COCl,−SO
l)、イソシアネート基(−NCO)、チオール基(−
SH)、などが挙げられる。ここで、−R、−R、−
はアルキル基、アリール基、メトキシ基、エトキシ
基、ブトキシ基、ハロゲン基などの置換基である。
The radical-generating group in the aromatic compound having at least one radical-generating group in the molecule is not particularly limited, but it may be a hydroxyl group (-OH), an amino group (-NH 2 ), a monosubstituted amino group ( -NHR), disubstituted amino group (-NR 1 R 2), a carboxyl group (-COO
H), carbonyl group (-CO-), acid anhydride group (-CO
-O-CO-), an acid chloride group (-COCl, -SO 2 C
l), isocyanate group (-NCO), thiol group (-
SH), and the like. Here, -R, -R 1 ,-
R 2 is a substituent such as an alkyl group, an aryl group, a methoxy group, an ethoxy group, a butoxy group and a halogen group.

【0033】分子内に少なくとも1個の不飽和結合を有
する芳香族化合物における不飽和結合としては、特に制
限はないが、例えばエチニル基(−C≡CH)、一置換
エチニル基(−C≡CR)、ビニル基(−CH=C
)、一置換ビニル基(−CR=CH、−CH≡C
HR)、二置換ビニル基(−CR=CHR、−CH
=CR)、三置換ビニル基(−CR=CR
)などが挙げられる。ここで、−R、−R、−R
はアルキル基、アリール基、メトキシ基、エトキシ基、
ブトキシ基、ハロゲン基などの置換基である。
The unsaturated bond in the aromatic compound having at least one unsaturated bond in the molecule is not particularly limited, and examples thereof include an ethynyl group (-C≡CH) and a mono-substituted ethynyl group (-C≡CR). ), Vinyl group (-CH = C
H 2 ), monosubstituted vinyl group (-CR = CH 2 , -CH≡C
HR), disubstituted vinyl group (-CR 1 = CHR 2, -CH
= CR 1 R 2), trisubstituted vinyl group (-CR 1 = CR 2 R
3 ) and the like. Here, -R, -R 1 , -R 2
Is an alkyl group, an aryl group, a methoxy group, an ethoxy group,
It is a substituent such as a butoxy group and a halogen group.

【0034】また、1つの分子内に少なくとも1個のラ
ジカル発生基と少なくとも1個の不飽和結合とを有する
芳香族化合物も用いられる。この芳香族化合物における
ラジカル発生基と不飽和結合としては、特に制限はない
が、上述したような官能基が挙げられる。このような芳
香族化合物を10-6Torr以下の真空度を有する真空チ
ャンバー中の加熱源に装填する。次いでこの芳香族化合
物を加熱、蒸発させ薄膜を作製する。この時、加熱温
度、シャッター動作、堆積速度制御などを調節すること
により任意の膜厚を有する薄膜を作製することができ
る。
Aromatic compounds having at least one radical-generating group and at least one unsaturated bond in one molecule are also used. The radical-generating group and the unsaturated bond in this aromatic compound are not particularly limited, and examples thereof include the functional groups described above. Such an aromatic compound is loaded into a heating source in a vacuum chamber having a vacuum degree of 10 −6 Torr or less. Next, this aromatic compound is heated and evaporated to form a thin film. At this time, a thin film having an arbitrary film thickness can be produced by adjusting the heating temperature, shutter operation, deposition rate control, and the like.

【0035】また、これらの条件及び基板の種類、処理
温度などを制御することにより、薄膜中の分子配向や結
晶性などの高次構造を制御することができる。このよう
にして作製した薄膜に光照射を行うことによって、ラジ
カル発生基がラジカル化し、不飽和結合部分に重付加反
応することにより重合して高分子化する。これにより、
薄膜の構造が安定化し、長期に亙って劣化の少ない薄膜
が得られる。
By controlling these conditions, the type of substrate, the processing temperature, etc., it is possible to control higher order structures such as molecular orientation and crystallinity in the thin film. By irradiating the thin film thus produced with light, radical-generating groups are converted into radicals, and polyaddition reaction occurs in the unsaturated bond portion to polymerize and polymerize. This allows
The structure of the thin film is stabilized, and a thin film with little deterioration over a long period of time can be obtained.

【0036】また、この発明においては、上述した薄膜
を作製した後、光を照射する場合が通常であるが、薄膜
を作製しながら同時に光照射を行うこともできる。この
とき、薄膜作製後の光照射では光が充分に薄膜内部まで
届かない場合でも、最初から光照射を行うことによって
充分な厚さの膜を形成することができる。
Further, in the present invention, it is usual to irradiate light after the above-mentioned thin film is formed, but it is also possible to perform light irradiation simultaneously while forming the thin film. At this time, even if light does not sufficiently reach the inside of the thin film by light irradiation after forming the thin film, a film having a sufficient thickness can be formed by performing light irradiation from the beginning.

【0037】この発明で用いられる光照射のための光源
としては、特に制限はなく、水銀ランプ、ハロゲンラン
プなどの各種ランプ、YAGレーザ、エキシマレーザ、
銅蒸気レーザなど各種のレーザ、さらに、X線を発生さ
せるシンクロトロン放射光など種々の光源が用いられ
る。ただし、波長に関しては材料の光化学反応を誘起さ
せることが必要であるので、有機材料に適した波長の光
源を選択しなければならない。有機材料の場合、そのよ
うな吸収領域は紫外域にあるので、エキシマレーザは適
した光源の一つである。以下、この発明を実施例1〜1
0及び比較例1〜10に基づいて説明するが、この発明
はこれらの実施例のみに限定されるものではない。
The light source for light irradiation used in the present invention is not particularly limited, and various lamps such as a mercury lamp and a halogen lamp, a YAG laser, an excimer laser,
Various lasers such as a copper vapor laser, and various light sources such as synchrotron radiation for generating X-rays are used. However, since it is necessary to induce a photochemical reaction of the material with respect to the wavelength, it is necessary to select a light source having a wavelength suitable for the organic material. In the case of organic materials, excimer lasers are one of the suitable light sources because such absorption region is in the ultraviolet region. Hereinafter, the present invention will be described in Examples 1 to 1.
0 and Comparative Examples 1 to 10 will be described, but the present invention is not limited to these Examples.

【0038】実施例1.到達真空度10-9Torrの真空
チャンバーが設けられ、2本のクヌードセンセルを備え
た真空蒸着装置を用いた。2本のクヌードセンセルに
は、図1に示す構造式のペリレンチオール化合物とペリ
レンエチレン化合物とをそれぞれ装填し、加熱蒸発させ
て薄膜を作製した。このとき、各セルの温度を制御する
ことにより、モル比1:1の混合薄膜を作製した。膜厚
は1000〜2000Åであった。薄膜を作製した後、
薄膜をチャンバーから取り出し、光照射用のチャンバー
にセットして10-3Torr以下までの真空に減圧した
後、エキシマレーザを照射した。ガスにはKrF系のガ
スを用いて、発振波長248nmとした。照射強度は4
mJ/cmに調整し、250ショット(全照射量1J
/cm)照射した。光照射前と光照射後のFTIRス
ペクトルを比較検討することにより、光照射によってチ
オール基の強度が減少、エチレン基の強度が減少してい
ることがわかった。これから、ペリレンチオール化合物
とペリレンエチレン化合物の間で重合反応が進んでいる
ことがわかった。
Example 1. A vacuum chamber having an ultimate vacuum of 10 −9 Torr was provided, and a vacuum deposition apparatus equipped with two Knudsen cells was used. The two Knudsen cells were loaded with the perylenethiol compound and the peryleneethylene compound having the structural formulas shown in FIG. 1, respectively, and were heated and evaporated to form a thin film. At this time, the temperature of each cell was controlled to prepare a mixed thin film having a molar ratio of 1: 1. The film thickness was 1000 to 2000Å. After making the thin film,
The thin film was taken out of the chamber, set in a chamber for light irradiation, decompressed to a vacuum of 10 −3 Torr or less, and then irradiated with an excimer laser. A KrF-based gas was used as the gas, and the oscillation wavelength was set to 248 nm. Irradiation intensity is 4
Adjusted to mJ / cm 2 , 250 shots (total irradiation 1J
/ Cm 2 ) irradiation. By comparing and examining the FTIR spectra before and after the light irradiation, it was found that the light irradiation reduced the intensity of the thiol group and the intensity of the ethylene group. From this, it was found that the polymerization reaction proceeded between the perylene thiol compound and the perylene ethylene compound.

【0039】比較例1.実施例1と同様にペリレンチオ
ール化合物とペリレンエチレン化合物の混合薄膜を作製
し、光照射を行わない試料を比較例1とした。実施例1
と比較例1の経時安定性を可視光の透過量で評価した。
試料作製直後の吸収スペクトルは図2中の実線で示して
おり、実施例1、比較例1ともに同じスペクトルを示
す。試料を作製して1カ月経過後に可視吸収スペクトル
を測定すると、実施例1では20日後でも変化がないの
に対して、比較例1は図2中の破線で示すように全波長
範囲にわたって吸収が増えており、特に短波長側で大き
く変化があった。比較例1の試料を偏光顕微鏡で観察す
ることにより、試料作製直後にはなかった凝集構造が現
れており、比較例1では時間の経過とともに分子の配向
などの構造が乱れて凝集が起こり、不安定であることが
わかった。
Comparative Example 1. A mixed thin film of a perylene thiol compound and a perylene ethylene compound was prepared in the same manner as in Example 1, and a sample without light irradiation was set as Comparative Example 1. Example 1
And the temporal stability of Comparative Example 1 were evaluated by the amount of visible light transmitted.
The absorption spectrum immediately after the preparation of the sample is shown by the solid line in FIG. 2, and both Example 1 and Comparative Example 1 show the same spectrum. When a visible absorption spectrum was measured 1 month after the sample was prepared, there was no change in Example 1 even after 20 days, whereas in Comparative Example 1, absorption was observed over the entire wavelength range as shown by the broken line in FIG. The number is increasing, and there is a big change especially on the short wavelength side. By observing the sample of Comparative Example 1 with a polarizing microscope, an aggregated structure that did not appear immediately after the sample was produced appears, and in Comparative Example 1, the structure such as the orientation of the molecules is disturbed with the lapse of time, causing aggregation, and It turned out to be stable.

【0040】実施例2〜6、比較例2〜6.表1に示す
2種の材料を組み合わせて、実施例1と同様の方法で混
合薄膜を作製した。それぞれの試料で実施例1と同様の
光照射をおこなったものを実施例2〜6とし、光照射を
行わないものを比較例2〜6とした。
Examples 2-6, Comparative Examples 2-6. A mixed thin film was prepared in the same manner as in Example 1 by combining the two kinds of materials shown in Table 1. Each sample was subjected to the same light irradiation as in Example 1 as Examples 2 to 6, and those not subjected to light irradiation were referred to as Comparative Examples 2 to 6.

【0041】[0041]

【表1】 [Table 1]

【0042】これらの実施例及び比較例に対応する試料
の作製直後と1ケ月経過後の吸収スペクトルを比較し
た。その結果、実施例1と比較例1との比較と同様に、
実施例2〜6ではスペクトルに変化はなく安定であるの
に対して、比較例2〜6では分子の凝集化が起こり、光
の散乱によって吸収が増大していたことがわかった。
The absorption spectra of the samples corresponding to these Examples and Comparative Examples were compared immediately after the preparation and after one month. As a result, similar to the comparison between Example 1 and Comparative Example 1,
It was found that in Examples 2 to 6 the spectra were stable with no change, whereas in Comparative Examples 2 to 6, molecular agglomeration occurred and absorption was increased due to light scattering.

【0043】実施例7.原料の芳香族化合物としてチオ
フェン環が6個直鎖状に連結したα−セクシチェニルを
骨格としたセクシチェニレンジチオールとセクシチェニ
レンジエチニルを用いて、実施例1と同様にして薄膜を
作製した。このとき、セル温度とシャッターの動作を制
御することにより、一層ごとに両者の化合物が繰り返さ
れる構造に成膜した。また、基板への堆積速度は1Å/
min(分)程度になるようにして成膜を行ったため、
それぞれの分子は垂直に配向するように配列した。
Example 7. A thin film was prepared in the same manner as in Example 1 by using sexexienylenedithiol and sexichenylenediethynyl having α-sexicenyl as a skeleton in which 6 thiophene rings were linearly linked as the aromatic compound as a raw material. At this time, by controlling the cell temperature and the operation of the shutter, a film was formed in a structure in which both compounds were repeated layer by layer. The deposition rate on the substrate is 1Å /
Since the film was formed so as to be about min (minute),
The respective molecules were arranged so as to be vertically oriented.

【0044】薄膜を作製した後、実施例1と同様にして
エキシマレーザを照射することにより、薄膜を高分子化
した。重合反応の進行は赤外スペクトルの測定によって
確認した。この試料に対して、入射光が45゜の角度で
入射するときの偏光吸収スペクトルを測定した。測定の
結果、図3に示すように、P偏光で大きい吸収ピークが
現れ(エネルギー3.5eV近傍)、チオフェン環から
なる分子鎖が基板に対して垂直に配向していることがわ
かった。この試料の分子配向の状態を摸式的に示すと図
4(a)のようになる。図4(a)は、実施例7におけ
る試料の分子配向の状態を模式的に示している。図中、
1はチオール基(−SH)、2はセクシチェニレン骨
格、3はエチニル基と結合したチオール基、4はチオー
ル基と結合したエチニル基、5はエチニル基(−C≡C
H)、6は基板をそれぞれ示している。
After the thin film was formed, it was irradiated with an excimer laser in the same manner as in Example 1 to polymerize the thin film. The progress of the polymerization reaction was confirmed by measuring the infrared spectrum. The polarized light absorption spectrum when incident light was incident on the sample at an angle of 45 ° was measured. As a result of the measurement, as shown in FIG. 3, a large absorption peak appeared in P-polarized light (energy near 3.5 eV), and it was found that the molecular chain composed of the thiophene ring was oriented perpendicular to the substrate. The state of molecular orientation of this sample is schematically shown in FIG. 4 (a). FIG. 4A schematically shows the state of molecular orientation of the sample in Example 7. In the figure,
1 is a thiol group (-SH), 2 is a succinylene skeleton, 3 is a thiol group bonded to an ethynyl group, 4 is an ethynyl group bonded to a thiol group, and 5 is an ethynyl group (-C≡C).
H) and 6 indicate substrates, respectively.

【0045】比較例7.実施例7と同様にして、セクシ
チェニレンジチオールとセクシチェニレンジエチニルを
用いて薄膜を作製した。実施例7と全く同じ条件で薄膜
を作製し、光照射を行わない試料を比較例7−1とし
た。この場合、得られる吸収スペクトルや分子配向は実
施例7とほぼ同じであった。薄膜の分子配向の状態を図
4(b)に示す。
Comparative Example 7. In the same manner as in Example 7, a thin film was prepared by using sexualitynylenedithiol and sexualitynylenediethynyl. A thin film was prepared under exactly the same conditions as in Example 7, and a sample without light irradiation was set as Comparative Example 7-1. In this case, the obtained absorption spectrum and molecular orientation were almost the same as in Example 7. The state of molecular orientation of the thin film is shown in FIG.

【0046】また、別の試料として基板への堆積速度は
50Å/minになるようにして成膜を行った薄膜を作
製した。堆積速度が速いため、薄膜中のチオフェン環は
ランダムな方向を向き、また積層構造の観点においても
その層構造が乱れており、全体としてアモルファス膜と
なった。この試料を比較例7−2とした。この場合の分
子配向状態の模式図を図4(c)に示す。吸収スペクト
ルは図3とは異なり、偏光依存性を示さず、ブロードな
形状となった。
As another sample, a thin film was prepared by forming a film on the substrate at a deposition rate of 50 Å / min. Due to the high deposition rate, the thiophene rings in the thin film were oriented in random directions, and the layer structure was disturbed from the viewpoint of the laminated structure, and the film was an amorphous film as a whole. This sample was designated as Comparative Example 7-2. A schematic diagram of the molecular orientation in this case is shown in FIG. Unlike the absorption spectrum shown in FIG. 3, the absorption spectrum does not show polarization dependence and has a broad shape.

【0047】実施例7と比較例7−1、及び比較例7−
2に対してTHGメーカフリンジ法による非線形光学定
数X(3)の測定を行った。実施例7及び比較例7−1で
は、いずれも垂直方向のX(3)が存在し、X(3)の垂直成
分の値は5×10-11esuであった。一方、比較例7
−2では、アモルファス状態であるため、X(3)の垂直
成分は存在せず、面内成分だけが存在した。その値は2
×10-12esuと実施例7より小さく、高次構造制御
が薄膜の高機能化に有利であることがわかった。
Example 7 and Comparative Example 7-1 and Comparative Example 7-
For No. 2, the non-linear optical constant X (3) was measured by the THG maker fringe method. In both Example 7 and Comparative Example 7-1, X (3) in the vertical direction was present, and the value of the vertical component of X (3) was 5 × 10 −11 esu. On the other hand, Comparative Example 7
In -2, since it was in an amorphous state, the vertical component of X (3) did not exist, but only the in-plane component existed. Its value is 2
It was found to be × 10 -12 esu, which is smaller than that of Example 7, and that higher-order structure control is advantageous for higher functionality of the thin film.

【0048】また、これらの試料の2カ月経過後の特性
を再測定したところ、実施例7では経時変化はなかった
が、比較例7−1は特性が劣化し、X(3)値は2×10
-12esuと比較例7−2と同じ程度であった。このよ
うに堆積速度を制御した薄膜作製を行うことにより、高
機能でしかも安定な有機薄膜材料を得ることができる。
When the characteristics of these samples after two months were re-measured, there was no change with time in Example 7, but in Comparative Example 7-1, the characteristics deteriorated and the X (3) value was 2 × 10
-12 esu and Comparative Example 7-2. By thus forming a thin film having a controlled deposition rate, a highly functional and stable organic thin film material can be obtained.

【0049】実施例8.芳香族分子団として4個のチオ
フェン環からなるチオフェン4量体を有し、両末端にア
ミノ基とエチレン基が結合した材料を原料として、実施
例1と同様に真空蒸着膜を作製した。堆積速度は1Å/
minに制御して行った。薄膜作製後、実施例1と同様
にしてエキシマレーザ照射による光化学反応を誘起して
重合させた。蒸着後の吸収スペクトルからは、実施例7
と同様に分子が垂直に配向していることがわかった。
Example 8. A vacuum-deposited film was prepared in the same manner as in Example 1 using a material having a thiophene tetramer having four thiophene rings as an aromatic molecular group and having an amino group and an ethylene group bonded to both ends as a raw material. Deposition rate is 1Å /
It was performed by controlling to min. After the thin film was formed, the photochemical reaction by excimer laser irradiation was induced and polymerized in the same manner as in Example 1. From the absorption spectrum after vapor deposition, Example 7
It was found that the molecules were vertically oriented as in the above.

【0050】比較例8.実施例8と同様にして薄膜を作
製し、光照射を行わない試料を比較例8とした。実施例
7と比較例8との試料の電気伝導度を比較した。電気伝
導度の測定は、作製した試料薄膜に平行配置された金電
極パターンを蒸着して形成して行った。電気伝導度は、
実施例8では10-2S/cmであったが、比較例8では
10-5S/cmであり、重合化によって電気伝導度が向
上していることがわかった。また、試料を作製して2カ
月経過後に行った測定では、実施例8ではほとんど変化
がなく安定性にも優れた材料が得られた。これに対し
て、比較例8の試料では電気伝導度が2桁低くなってお
り、安定性が劣ることがわかった。
Comparative Example 8. A thin film was prepared in the same manner as in Example 8, and a sample without light irradiation was set as Comparative Example 8. The electrical conductivity of the samples of Example 7 and Comparative Example 8 were compared. The electrical conductivity was measured by vapor deposition of a gold electrode pattern arranged in parallel with the produced sample thin film. The electrical conductivity is
In Example 8, it was 10 -2 S / cm, but in Comparative Example 8, it was 10 -5 S / cm, and it was found that the electrical conductivity was improved by polymerization. In addition, in the measurement performed two months after the sample was prepared, in Example 8, there was almost no change, and a material having excellent stability was obtained. On the other hand, in the sample of Comparative Example 8, the electrical conductivity was reduced by two digits, and it was found that the stability was poor.

【0051】実施例9.芳香族分子団としてオリゴチェ
ニレンビニレンを有し、両末端にチオール基とエチニル
基が結合した材料を原料として、実施例1と同様に真空
蒸着膜を作製した。堆積速度は1Å/minに制御して
行った。薄膜作製後、実施例1と同様にしてエキシマレ
ーザ照射による光化学反応を誘起して重合させた。蒸着
後の吸収スペクトルから、実施例7と同様に分子が垂直
に配向していることがわかった。
Example 9. A vacuum-deposited film was prepared in the same manner as in Example 1 using a material having oligochenylene vinylene as an aromatic molecular group and having a thiol group and an ethynyl group bonded at both ends as a raw material. The deposition rate was controlled at 1Å / min. After the thin film was formed, the photochemical reaction by excimer laser irradiation was induced and polymerized in the same manner as in Example 1. From the absorption spectrum after vapor deposition, it was found that the molecules were vertically aligned as in Example 7.

【0052】比較例9.実施例9と同様の材料及び条件
で薄膜を作製し、光照射を行わない試料を比較例9とし
た。実施例9と比較例9の試料の電気伝導度を比較し
た。電気伝導度の測定は、作製した試料薄膜に平行配置
された電極を蒸着して行った。ここでは、金電極を用い
た。電気伝導度は、実施例9では10-0S/cmであっ
たが、比較例9では10-3S/cmであり、重合化によ
って電気伝導度が向上していることがわかった。また、
試料を作製して2カ月経過後の測定では、実施例9では
ほとんど変化がなく、安定性にも優れた材料が得られ
た。これに対して、比較例9の試料では電気伝導度が2
桁低くなっており、安定性が劣ることがわかった。
Comparative Example 9. A thin film was prepared with the same materials and conditions as in Example 9, and a sample not irradiated with light was used as Comparative Example 9. The electrical conductivity of the samples of Example 9 and Comparative Example 9 was compared. The electric conductivity was measured by vapor-depositing electrodes arranged in parallel with the produced sample thin film. Here, a gold electrode was used. The electric conductivity was 10 −0 S / cm in Example 9, but was 10 −3 S / cm in Comparative Example 9, and it was found that the electric conductivity was improved by the polymerization. Also,
When two months passed after the sample was manufactured, there was almost no change in Example 9, and a material excellent in stability was obtained. On the other hand, the sample of Comparative Example 9 has an electric conductivity of 2
It was lower by an order of magnitude, and the stability was inferior.

【0053】実施例10.ペリレンチオール及びペリレ
ンエチニルを実施例1と同様に基板に真空蒸着したが、
蒸着を行っている間、同時に光照射を行って重合反応を
起こさせながら膜厚5μmの厚膜の有機薄膜材料を得
た。
Example 10. Perylene thiol and perylene ethynyl were vacuum deposited on the substrate as in Example 1,
While vapor deposition was performed, light irradiation was simultaneously performed to cause a polymerization reaction to obtain a thick organic thin film material having a thickness of 5 μm.

【0054】比較例10.実施例10と同様にして光照
射薄膜を作製した。膜厚は5μmに統一して膜形成を行
った。蒸着終了後、光照射を行い重合させた。実施例1
0の試料と比較例10の試料の赤外スペクトルを比較す
ると、実施例10の試料ではチオール基とエチニル基の
反応が進行しているのに対して、比較例10の試料では
未反応の官能基が多く残っていることがわかった。この
実施例10及び比較例10の試料を導波路として用い
た。導波路特性はプリズムカップリング法にて評価し
た。実施例10及び比較例10ともに作製直後の導波特
性はほぼ同じであった。試料作製から2カ月経過後の特
性を再測定したところ、実施例10では試料作製直後と
ほぼ同じ特性が得られたが、比較例10では分子の凝集
が起こって散乱が増加しており、導波特性が低下してい
た。
Comparative Example 10. A light irradiation thin film was prepared in the same manner as in Example 10. The film was formed with a uniform film thickness of 5 μm. After the completion of vapor deposition, light irradiation was carried out to polymerize. Example 1
When the infrared spectra of the sample of No. 0 and the sample of Comparative Example 10 are compared, the reaction of the thiol group and the ethynyl group is progressing in the sample of Example 10, while the unreacted functional group of the sample of Comparative Example 10 is unreacted. It turned out that many groups remained. The samples of Example 10 and Comparative Example 10 were used as the waveguide. The waveguide characteristics were evaluated by the prism coupling method. In both Example 10 and Comparative Example 10, the waveguide characteristics immediately after fabrication were almost the same. When the characteristics were re-measured after 2 months from the sample preparation, almost the same characteristics as those obtained immediately after the sample preparation were obtained in Example 10, but in Comparative Example 10, aggregation of molecules occurred and scattering was increased. Wave characteristics were degraded.

【0055】[0055]

【発明の効果】以上説明したとおり、この発明の請求項
第1項は、分子内に少なくとも1個のラジカル発生基を
有する芳香族化合物と、分子内に少なくとも1個の不飽
和結合を有する芳香族化合物とを10-6Torr以下の真
空下で基板に蒸着し、光照射によって光化学反応させて
得られたので、高次構造が制御されているため高機能
で、しかも安定な有機薄膜材料を得ることができるとい
う効果を奏する。
As described above, the first aspect of the present invention provides the aromatic compound having at least one radical-generating group in the molecule and the aromatic compound having at least one unsaturated bond in the molecule. It was obtained by vapor-depositing a group compound with a substrate under a vacuum of 10 -6 Torr or less and photochemically reacting it with light irradiation, so a highly functional and stable organic thin film material is obtained because the higher order structure is controlled. There is an effect that can be obtained.

【0056】この発明の請求項第2項は、請求項第1項
における少なくとも1個のラジカル発生基を有する芳香
族化合物を、末端又は両末端にチオール基を有する上述
した構造式(1)で表される化合物としたので、チオー
ル基と不飽和結合との間で重付加反応が誘発されて重合
が進行し、高機能で安定な有機薄膜材料を得ることがで
きるという効果を奏する。
According to claim 2 of the present invention, the aromatic compound having at least one radical-generating group according to claim 1 is represented by the above structural formula (1) having a thiol group at the terminal or both terminals. Since the compound represented is used, a polyaddition reaction is induced between the thiol group and the unsaturated bond, polymerization is advanced, and a highly functional and stable organic thin film material can be obtained.

【0057】この発明の請求項第3項は、請求項第1項
における少なくとも1個の不飽和結合を有する芳香族化
合物を、末端又は両末端にエチニル基を有する上述した
構造式(2)で表される化合物としたので、ラジカル発
生基と不飽和結合との間で重付加反応が誘発されて重合
が進行し、高機能で安定な有機薄膜材料を得ることがで
きるという効果を奏する。
According to claim 3 of the present invention, the aromatic compound having at least one unsaturated bond in claim 1 is represented by the above structural formula (2) having an ethynyl group at the terminal or both terminals. Since the compound is represented, the polyaddition reaction is induced between the radical-generating group and the unsaturated bond, the polymerization proceeds, and it is possible to obtain a highly functional and stable organic thin film material.

【0058】この発明の請求項第4項は、1つの分子内
に少なくとも1個のラジカル発生基と少なくとも1個の
不飽和結合とを有する芳香族化合物を、10-6Torr以
下の真空下で基板に蒸着し、光照射によって光化学反応
させて得られたものであるので、分子配向や結晶性など
の構造が制御された薄膜が得られ、高機能で安定な有機
薄膜材料を得ることができるという効果を奏する。
According to the fourth aspect of the present invention, an aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is prepared under a vacuum of 10 -6 Torr or less. Since it was obtained by vapor deposition on a substrate and photochemical reaction by light irradiation, a thin film with a controlled structure such as molecular orientation and crystallinity can be obtained, and a highly functional and stable organic thin film material can be obtained. Has the effect.

【0059】この発明の請求項第5項は、請求項第4項
における芳香族化合物を、上述した構造式(3)で表さ
れる化合物としたので、ラジカル発生基と不飽和結合の
間で重付加反応が誘発されて重合が進行し、高機能で安
定な有機薄膜材料を得ることができるという効果を奏す
る。
According to the fifth aspect of the present invention, the aromatic compound in the fourth aspect is the compound represented by the above structural formula (3). Therefore, between the radical-generating group and the unsaturated bond. There is an effect that a polyaddition reaction is induced and polymerization proceeds to obtain a highly functional and stable organic thin film material.

【0060】この発明の請求項第6項は、請求項第1項
ないし第5項における芳香族化合物を基板に真空蒸着す
る際に同時に光照射するので、薄膜の組成や重合度が均
一で高機能かつ安定な有機薄膜材料が得られると共に、
照射光が透過しないような厚さのある薄膜も製造可能と
なる有機薄膜材料が得られるという効果を奏する。
According to the sixth aspect of the present invention, since the aromatic compound according to the first to fifth aspects is simultaneously irradiated with light when vacuum-depositing on the substrate, the composition and degree of polymerization of the thin film are uniform and high. In addition to obtaining a functional and stable organic thin film material,
It is possible to obtain an organic thin film material that enables production of a thin film having a thickness such that irradiation light is not transmitted.

【0061】この発明の請求項第7項は、分子内に少な
くとも1個のラジカル発生基を有する芳香族化合物と、
分子内に少なくとも1個の不飽和結合を有する芳香族化
合物とを10-6Torr以下の真空下で基板に蒸着し、光
照射によって光化学反応させて製造するので、分子配向
や結晶性などの構造が制御された薄膜が得られ、高機能
で安定な有機薄膜材料を製造することができるという効
果を奏する。
A seventh aspect of the present invention is an aromatic compound having at least one radical generating group in the molecule,
Aromatic compounds having at least one unsaturated bond in the molecule are vapor-deposited on a substrate under a vacuum of 10 -6 Torr or less, and photochemical reaction is performed by light irradiation to produce a structure such as molecular orientation and crystallinity. It is possible to obtain a thin film in which the temperature is controlled, and it is possible to produce a highly functional and stable organic thin film material.

【0062】この発明の請求項第8項は、1つの分子内
に少なくとも1個のラジカル発生基と少なくとも1個の
不飽和結合とを有する芳香族化合物を10-6Torr以下
の真空下で基板に蒸着し、光照射によって光化学反応さ
せて製造するので、分子配向や結晶性などの構造が制御
された薄膜が得られ、高機能で安定な有機薄膜材料を製
造することができるという効果を奏する。
According to claim 8 of the present invention, an aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is used as a substrate under a vacuum of 10 -6 Torr or less. It is vapor-deposited on and produced by photochemical reaction by light irradiation, so that it is possible to obtain a thin film in which the structure such as molecular orientation and crystallinity is controlled, and it is possible to produce a highly functional and stable organic thin film material. .

【0063】この発明の請求項第9項は、請求項第7項
又は第8項における芳香族化合物を基板に真空蒸着する
際に同時に光照射するので、薄膜の組成や重合度が均一
で高機能かつ安定な有機薄膜材料を製造できると共に、
照射光が透過しないような厚さのある薄膜も製造可能と
なる有機薄膜材料が得られるという効果を奏する。
According to claim 9 of the present invention, since the aromatic compound according to claim 7 or 8 is irradiated with light at the same time when vacuum-depositing the aromatic compound on the substrate, the composition and degree of polymerization of the thin film are uniform and high. Along with being able to produce functional and stable organic thin film materials,
It is possible to obtain an organic thin film material that enables production of a thin film having a thickness such that irradiation light is not transmitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1において使用したペリレ
ンチオール化合物及びペリレンエチレン化合物を示す構
造式である。
FIG. 1 is a structural formula showing a perylenethiol compound and a peryleneethylene compound used in Example 1 of the present invention.

【図2】 この発明の実施例1及び比較例1における試
料の吸収スペクトルを示す線図である。
FIG. 2 is a diagram showing absorption spectra of samples in Example 1 and Comparative Example 1 of the present invention.

【図3】 この発明の実施例7及び比較例7における試
料の吸収スペクトルを示す線図である。
FIG. 3 is a diagram showing absorption spectra of samples in Example 7 and Comparative Example 7 of the present invention.

【図4】 この発明の実施例及び比較例における試料の
分子配向の状態を示す模式図である。
FIG. 4 is a schematic diagram showing a state of molecular orientation of samples in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 チオール基、2 セクシチェニレン骨格、3 エチ
ニル基と結合したチオール基、4 チオール基と結合し
たエチニル基、5 エチニル基、6 基板。
1 thiol group, 2 sexcenylene skeleton, 3 ethynyl group-bonded thiol group, 4 thiol group-bonded ethynyl group, 5 ethynyl group, 6 substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜野 浩司 尼崎市塚口本町八丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 久保田 繁 尼崎市塚口本町八丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Koji Hamano 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Material Devices Research Center (72) Inventor Shigeru Kubota 8-1-1 Tsukaguchi Honcho, Amagasaki Mitsubishi Electric Device Co., Ltd. Material Device Research Center

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 分子内に少なくとも1個のラジカル発生
基を有する芳香族化合物と、分子内に少なくとも1個の
不飽和結合を有する芳香族化合物とを10-6Torr以下
の真空下で基板に蒸着し、光照射によって光化学反応さ
せて得られたものであることを特徴とする有機薄膜材
料。
1. An aromatic compound having at least one radical-generating group in the molecule and an aromatic compound having at least one unsaturated bond in the molecule are placed on a substrate under a vacuum of 10 −6 Torr or less. An organic thin film material obtained by vapor deposition and photochemical reaction by light irradiation.
【請求項2】 少なくとも1個のラジカル発生基を有す
る芳香族化合物は、末端又は両末端にチオール基を有す
る次の構造式(1)で表される化合物であることを特徴
とする請求項第1項記載の有機薄膜材料。 【化1】
2. The aromatic compound having at least one radical-generating group is a compound represented by the following structural formula (1) having a thiol group at the terminal or both terminals. The organic thin film material according to item 1. Embedded image
【請求項3】 少なくとも1個の不飽和結合を有する芳
香族化合物は、末端又は両末端にエチニル基を有する次
の構造式(2)で表される化合物であることを特徴とす
る有機薄膜材料。 【化2】
3. An organic thin film material characterized in that the aromatic compound having at least one unsaturated bond is a compound represented by the following structural formula (2) having an ethynyl group at a terminal or both terminals. . Embedded image
【請求項4】 1つの分子内に少なくとも1個のラジカ
ル発生基と少なくとも1個の不飽和結合とを有する芳香
族化合物を10-6Torr以下の真空下で基板に蒸着し、
光照射によって光化学反応させて得られたものであるこ
とを特徴とする有機薄膜材料。
4. An aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is vapor-deposited on a substrate under a vacuum of 10 −6 Torr or less,
An organic thin film material characterized by being obtained by a photochemical reaction by light irradiation.
【請求項5】 芳香族化合物は、次の構造式(3)で表
される化合物であることを特徴とする請求項第4項記載
の有機薄膜材料。 【化3】
5. The organic thin film material according to claim 4, wherein the aromatic compound is a compound represented by the following structural formula (3). Embedded image
【請求項6】 芳香族化合物を基板へ真空蒸着する際
に、同時に光照射することを特徴とする請求項第1項な
いし第5項のいずれかに記載の有機薄膜材料。
6. The organic thin film material according to claim 1, wherein light irradiation is performed at the same time when the aromatic compound is vacuum-deposited on the substrate.
【請求項7】 分子内に少なくとも1個のラジカル発生
基を有する芳香族化合物と、分子内に少なくとも1個の
不飽和結合を有する芳香族化合物とを10-6Torr以下
の真空下で基板に蒸着し、光照射によって光化学反応さ
せて製造することを特徴とする有機薄膜材料の製造方
法。
7. An aromatic compound having at least one radical generating group in the molecule and an aromatic compound having at least one unsaturated bond in the molecule are placed on a substrate under a vacuum of 10 −6 Torr or less. A method for producing an organic thin film material, comprising vapor deposition and photochemical reaction by light irradiation.
【請求項8】 1つの分子内に少なくとも1個のラジカ
ル発生基と少なくとも1個の不飽和結合とを有する芳香
族化合物を、10-6Torr以下の真空下で基板に蒸着
し、光照射によって光化学反応させて製造することを特
徴とする有機薄膜材料の製造方法。
8. An aromatic compound having at least one radical-generating group and at least one unsaturated bond in one molecule is vapor-deposited on a substrate under a vacuum of 10 −6 Torr or less and irradiated with light. A method for producing an organic thin film material, which comprises producing by photochemical reaction.
【請求項9】 芳香族化合物を基板へ真空蒸着する際に
同時に光照射することを特徴とする請求項第7項又は第
8項記載の有機薄膜材料の製造方法。
9. The method for producing an organic thin film material according to claim 7, wherein light irradiation is performed simultaneously with vacuum deposition of the aromatic compound on the substrate.
JP15752394A 1994-07-08 1994-07-08 Organic thin film material and method for producing the same Expired - Fee Related JP2980521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15752394A JP2980521B2 (en) 1994-07-08 1994-07-08 Organic thin film material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15752394A JP2980521B2 (en) 1994-07-08 1994-07-08 Organic thin film material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0820650A true JPH0820650A (en) 1996-01-23
JP2980521B2 JP2980521B2 (en) 1999-11-22

Family

ID=15651539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15752394A Expired - Fee Related JP2980521B2 (en) 1994-07-08 1994-07-08 Organic thin film material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2980521B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085846A1 (en) * 2001-04-17 2002-10-31 Japan Science And Technology Corporation Polymercaptopolyphenyls and method for synthesis thereof
US6682782B2 (en) * 2000-07-03 2004-01-27 Korea Research Institute Of Chemical Technology Organic compound having an acetylene group, vacuum deposition polymerization thereof, deposited polymerized thin film, and electroluminescence device containing same
KR100462712B1 (en) * 2000-08-10 2004-12-20 마쯔시다덴기산교 가부시키가이샤 Organic electronic device, method of producing the same, method of operating the same and display device using the same
JP2012502147A (en) * 2008-09-11 2012-01-26 ユニヴェルシテート ビーレフェルト Highly cross-linked, chemically structured monolayer
JP2014189752A (en) * 2013-03-28 2014-10-06 Dic Corp Polymerizable compounds, polymer compounds using the same, and polymerizable compositions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682782B2 (en) * 2000-07-03 2004-01-27 Korea Research Institute Of Chemical Technology Organic compound having an acetylene group, vacuum deposition polymerization thereof, deposited polymerized thin film, and electroluminescence device containing same
KR100462712B1 (en) * 2000-08-10 2004-12-20 마쯔시다덴기산교 가부시키가이샤 Organic electronic device, method of producing the same, method of operating the same and display device using the same
WO2002085846A1 (en) * 2001-04-17 2002-10-31 Japan Science And Technology Corporation Polymercaptopolyphenyls and method for synthesis thereof
US7053173B2 (en) * 2001-04-17 2006-05-30 Japan Science And Technology Agency Polymercaptopolyphenyl and process for preparation thereof
JP2012502147A (en) * 2008-09-11 2012-01-26 ユニヴェルシテート ビーレフェルト Highly cross-linked, chemically structured monolayer
JP2014189752A (en) * 2013-03-28 2014-10-06 Dic Corp Polymerizable compounds, polymer compounds using the same, and polymerizable compositions

Also Published As

Publication number Publication date
JP2980521B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
Li et al. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials
Qashou et al. The promotion of Indeno [1, 2-b] flourene-6, 12 dione thin film to be changed into stable aromatic compound under the effect of annealing treatment
Miyadera et al. Highly controlled codeposition rate of organolead halide perovskite by laser evaporation method
JPH0820650A (en) Organic thin film material and its production
Pei et al. 2D Metal‐Organic Complex Luminescent Crystals
JP2000122068A (en) Material for organic molecule oriented thin film and production of organic molecule oriented thin film
JPH0987849A (en) Production of conjugated polymer film and conjugated organic polymer film
Rutkis et al. Langmuir–Blodgett films of indandione‐1, 3 pyridinium betaine. I: Preparation, electronic structure, optical properties
Shimomura et al. Molecular Orientation of Vacuum-Deposited Thin Films of Poly (dimethylsilane)
JP3015221B2 (en) Organic thin film manufacturing method
JP2692644B2 (en) Fullerene thin film manufacturing method
Zhang et al. A‐site Cation Exchange Enables a High‐performance CsPbBr3 Photodetector for Laser Eavesdropping Systems
Tsibouklis et al. Functionalised diarylalkynes: a new class of Langmuir-Blodgett film materials for nonlinear optics
JP4302822B2 (en) Carbon-based composite structure and manufacturing method thereof
JP3105169B2 (en) Organic nonlinear optical material, organic conductive material and method of manufacturing the same
JPS633031A (en) Electrically conductive metal phthalocyanine film and method for forming same
JPH0580370A (en) Organic functional thin film and its production
Young et al. Structure of evaporated films of arsenic trisulphide
JPS6277455A (en) Production of vapor deposited phthalocyanine film absorbing near infrared ray
Kobryanskii et al. Structure and optical properties of vacuum-deposited polyparaphenylene films with high efficiency of luminescence
JP2755272B2 (en) Organic film fabrication method
KOBRYANSKII et al. IR-SPECTROSCOPY STUDY TO PROVE QUINOID FRAGMENT
JPH09241356A (en) Thin organic molecularly oriented film and its production
Sarkisov et al. Optical spectroscopy and nonlinear transmittance study of fullerene C 60 in mixtures with 2-cyclooctylamino-5-nitropyridine (COANP)
JPH08260146A (en) Nitride rhenium phthalocyanine thin film, its formation and organic device using the thin film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees