JPH02170354A - Manufacture of positive electrode active material for nonaqueous solvent secondary cell - Google Patents

Manufacture of positive electrode active material for nonaqueous solvent secondary cell

Info

Publication number
JPH02170354A
JPH02170354A JP63324595A JP32459588A JPH02170354A JP H02170354 A JPH02170354 A JP H02170354A JP 63324595 A JP63324595 A JP 63324595A JP 32459588 A JP32459588 A JP 32459588A JP H02170354 A JPH02170354 A JP H02170354A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63324595A
Other languages
Japanese (ja)
Inventor
Takumi Uchida
内田 卓美
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63324595A priority Critical patent/JPH02170354A/en
Publication of JPH02170354A publication Critical patent/JPH02170354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make it possible to obtain a positive electrode active material consisting of manganese lithium oxide generating few crystal lattice defects due to the charge and the discharge by mixing lithium compounds to lower manganese oxide of roasted manganese sulfate and heating and roasting the mixture. CONSTITUTION:A lower manganese oxide mainly composed of Mn2O3 is made by roasting manganese sulfate crystal obtained by heating and condensing a manganese sulfate solution, then lithium compounds are added to the lower manganese oxide, and the mixture is heated and roasted to produce a spinel type lithium manganese oxide as a positive electrode active material. In the crystal structure of this lithium manganese oxide, lattice vacancies in which Li<+> ion can be inserted are connected three dimensionally, so that the insertion or the ejection of lithium ions, the negative electrode active material, into or from the positive electrode active material can be carried out smoothly at the time of the charge and the discharge in a nonaqueous solvent secondary cell. Thereby a positive electrode active material consisting of manganese lithium oxide generating few crystal lattice defects due to the charge and the discharge can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非水溶媒二次電池に用いられる正極活物質の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a positive electrode active material used in a non-aqueous solvent secondary battery.

[従来の技術及び課8] 近年、電子機器の発達に(fい小形で軽量かつエネルギ
ー密度が高く、更に繰返し充放電可能な二次電池の開発
が要望されている。この種の二次電池としては、負極活
物質としてリチウム又はリチウム合金を用い、正極活物
質としてモリブデン、バナジウム、チタン、ニオブなど
の酸化物、硫化物、セレン化物などが検討されている。
[Prior Art and Lesson 8] In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be charged and discharged repeatedly. As a negative electrode active material, lithium or a lithium alloy is used, and as a positive electrode active material, oxides, sulfides, selenides, etc. of molybdenum, vanadium, titanium, niobium, etc. are being considered.

一方、二酸化マンガンは高エネルギー密度、高電圧を有
する正極活物質として非水溶媒−次電池に用いられ、実
用化されている。二酸化マンガンは、トンネル構造を有
しており、−次電池においては電池が放電することによ
ってLi+イオンが前記トンネル内に侵入し、これによ
ってMnO2結晶構造は膨脹する。このトンネル内のア
ルカリ金属イオンは容易に移動できる状態であるため、
この電池を充電状態にすると、トンネル内のL1+が放
出され、それに伴ってMnO2結晶構造が収縮する。こ
のように従来の非水溶媒−次電池で使用されるMnO2
をそのまま二次電池の正極活物質として用いると、電池
の充放電に伴って結晶構造の収縮・膨脹が繰返され、こ
れによってMnO2のトンネル構造が崩れてしまい、充
放電サイクルの進行につれて充放電容量の劣化が著しく
なるという問題があった。
On the other hand, manganese dioxide is used as a positive electrode active material having high energy density and high voltage in non-aqueous solvent-based batteries, and has been put into practical use. Manganese dioxide has a tunnel structure, and in a secondary battery, when the battery discharges, Li+ ions enter the tunnel, thereby expanding the MnO2 crystal structure. Since the alkali metal ions in this tunnel are easily mobile,
When this battery is brought into a charged state, L1+ in the tunnel is released, and the MnO2 crystal structure contracts accordingly. In this way, the MnO2 used in conventional nonaqueous solvent-secondary batteries
If MnO2 is used as a positive electrode active material in a secondary battery, the crystal structure will repeatedly contract and expand as the battery is charged and discharged, and this will cause the tunnel structure of MnO2 to collapse, causing the charge and discharge capacity to decrease as the charge and discharge cycle progresses. There was a problem that the deterioration of the

このようなことから、硫酸マンガンを電解酸化して得ら
れる電解二酸化マンガンにリチウム化合物(例えばL1
2C05)を加え、加熱焙焼することにより製造された
リチウムマンガン酸化物を正極活物質とした非水溶媒二
次電池が知られている。しかしながら、かかる正極活物
質を用いた二次電池においても充放電サイクルの進行に
つれて充放電容量の劣化が生じるという問題があった。
For this reason, lithium compounds (for example, L1
A non-aqueous solvent secondary battery is known in which a positive electrode active material is lithium manganese oxide produced by adding 2C05) and heating and roasting it. However, even in a secondary battery using such a positive electrode active material, there is a problem in that the charge/discharge capacity deteriorates as the charge/discharge cycle progresses.

本発明は、上記従来の課題を解決するためになされたも
ので、トンネル構造を有し、非水溶媒二次電池に組込ん
だ後の充放電、つまりアルカリ金属イオンの侵入・放出
に伴う結晶構造の崩れの小さいマンガンリチウム酸化物
からなる正極活物質を製造し得る方法を提供しようとす
るものである。
The present invention has been made to solve the above-mentioned conventional problems, and has a tunnel structure. The present invention aims to provide a method for producing a positive electrode active material made of manganese lithium oxide with minimal structural collapse.

[課題を解決するための手段] 本発明は、硫酸マンガンを焙焼して得られる低級酸化マ
ンガン(Mn 2O3 )にリチウム化合物を添加して
加熱焙焼せしめることを特徴とする非水溶媒二次電池用
正極活物質の製造方法である。
[Means for Solving the Problems] The present invention provides a non-aqueous solvent secondary characterized in that a lithium compound is added to lower manganese oxide (Mn2O3) obtained by roasting manganese sulfate and the mixture is heated and roasted. This is a method for producing a positive electrode active material for batteries.

上記低級酸化マンガン(三二酸化マンガン)(Mn2O
3)は、硫酸マンガン(MnSO4)溶液を加熱濃縮し
て硫酸マンガン結晶を得、これを空気雰囲気又は空気よ
り酸素分圧の大きい酸素雰囲気中にて800〜1100
℃、10分間以上の条件で焙焼することにより、硫酸マ
ンガンを分解してMn3O4又はMn2O3を主成分と
するマンガン酸化物を調製する。ここでMn3O4を主
成分とするマンガン酸化物の場合は、例えばロータリー
キルン等により700〜950℃で焙焼してMn 2O
3を主成分とする低級酸化マンガンとする。
The above lower manganese oxide (manganese sesquioxide) (Mn2O
3) Heat and concentrate a manganese sulfate (MnSO4) solution to obtain manganese sulfate crystals, which are then heated to a concentration of 800 to 1100 in an air atmosphere or an oxygen atmosphere with a higher oxygen partial pressure than air.
By roasting at ℃ for 10 minutes or more, manganese sulfate is decomposed to prepare manganese oxide containing Mn3O4 or Mn2O3 as a main component. Here, in the case of manganese oxide whose main component is Mn3O4, it is roasted at 700 to 950°C in a rotary kiln, etc. to produce Mn2O.
It is a lower manganese oxide whose main component is 3.

上記リチウム化合物としては、例えば炭酸リチウム(L
l 2 CO3)  硝酸リチウム(LiNO2)等を
挙げることができる。これらいずれのリチウム塩とMn
2O3との加熱焙焼後の生成物は、スピネル型のリチウ
ムマンガン化合物(L I Mn 2O4 )のみ得ら
れる。また、前記リチウム化合物の上記低級酸化マンガ
ン(Mn2O3)への添加割合は、夫々L1及びMn換
算でMn:LIが2 : 0.8〜2 : 1.2の範
囲とすることが望ましい。この理由は、Llの配合比を
0.8未満にすると加熱焙焼後に得られたリチウムマン
ガン酸化物中に未反応のMn2O3又はMn3O4が生
成され、一方Llの配合比が!、2を越えると加熱焙焼
後に得られたリチウムマンガン酸化物中にLj2Oが生
成され、いずれの場合もサイクル特性の劣化を招く恐れ
があるからである。
As the lithium compound, for example, lithium carbonate (L
l 2 CO3), lithium nitrate (LiNO2), and the like. Any of these lithium salts and Mn
The product after heating and roasting with 2O3 is only a spinel-type lithium manganese compound (L I Mn 2O4 ). Further, the addition ratio of the lithium compound to the lower manganese oxide (Mn2O3) is preferably such that Mn:LI is in the range of 2:0.8 to 2:1.2 in terms of L1 and Mn, respectively. The reason for this is that if the blending ratio of Ll is less than 0.8, unreacted Mn2O3 or Mn3O4 will be produced in the lithium manganese oxide obtained after heating and roasting, while on the other hand, if the blending ratio of Ll is less than 0.8, , 2, Lj2O will be produced in the lithium manganese oxide obtained after heating and roasting, and in either case there is a risk of deterioration of cycle characteristics.

上記加熱焙焼温度は、540〜950℃のの温度範囲す
ることが望ましい。この理由は、540 ”C未満にす
ると得られたリチウムマンガン酸化物中にLi 2 c
o3が残り、一方950℃を越えるとMn 304が生
成されてサイクル特性の劣化を招く恐れがあるからであ
る。
The heating and roasting temperature is preferably in the range of 540 to 950°C. The reason for this is that when the temperature is lower than 540"C, Li 2 c
This is because if o3 remains and the temperature exceeds 950° C., Mn 304 is generated, which may lead to deterioration of cycle characteristics.

[作用] 本発明によれば、硫酸マンガンを焙焼して得られる特定
の低級酸化マンガン(Mn2O3)にリチウム化合物を
添加して加熱焙焼せしめることによって、正極活物質と
してのスピネル型リチウムマンガン酸化物を製造できる
。このリチウムマンガン酸化物は、結晶構造内にL++
イオンが侵入できる空格子点が三次元的に連なっている
ことと、電解二酸化マンガンを出発原料とすることによ
り、比表面積と孔容積が大きくなるため、該正極活物質
を導電材及び結着材に配合して得た正極を組込んだ非水
溶媒二次電池の充放電時において負極活物質であるリチ
ウムイオンの該正極の正極活物質への侵入・放出がスム
ーズに行われ、なおかつ充放電を繰返すことによる結晶
構造の崩壊を抑制できる。その結果、充放電サイクルに
よる容量劣化の少ない高寿命の非水溶媒二次電池を得る
ことができる。
[Function] According to the present invention, by adding a lithium compound to a specific lower manganese oxide (Mn2O3) obtained by roasting manganese sulfate and roasting it, spinel-type lithium manganese oxide as a positive electrode active material is produced. Can manufacture things. This lithium manganese oxide has L++ in its crystal structure.
Due to the three-dimensional series of vacancies into which ions can penetrate and the use of electrolytic manganese dioxide as a starting material, the specific surface area and pore volume are increased. During charging and discharging of a non-aqueous solvent secondary battery incorporating a positive electrode obtained by blending with the above, lithium ions, which are the negative electrode active material, smoothly enter and release from the positive electrode active material of the positive electrode, and the charging and discharging process is smooth. It is possible to suppress the collapse of the crystal structure due to repeated steps. As a result, a long-life non-aqueous solvent secondary battery with little capacity deterioration due to charge/discharge cycles can be obtained.

[実施例] 以下、本発明を第1図を参照して詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to FIG.

実施例1 まず、硫酸マンガン(MnSO,+)溶液を加熱濃縮し
て硫酸マンガン結晶を得、これを空気雰囲気にて900
℃、10分間の条件で焙焼することにより、硫酸マンガ
ンを分解してM13Q4又はMn 2 o3を主成分と
するマンガン酸化物を調製する。ここでMn3O4を主
成分とするマンガン酸化物の場合は、ロータリーキルン
により800℃で焙焼してMn2O3を主成分とする低
級酸化マンガンとした。
Example 1 First, manganese sulfate crystals were obtained by heating and concentrating a manganese sulfate (MnSO,
By roasting at ℃ for 10 minutes, manganese sulfate is decomposed to prepare manganese oxide containing M13Q4 or Mn2O3 as a main component. In the case of manganese oxide containing Mn3O4 as the main component, it was roasted at 800° C. in a rotary kiln to produce a lower manganese oxide containing Mn2O3 as the main component.

次いで、前記三二酸化マンガン(Mn2O3)60gと
Li 2 C0314g (モル比率でMn:Ll−2
:I)にて混合・粉砕し、空気中850℃、1時間加熱
焙焼し、冷却した後、再び混合・粉砕し、再度空気中で
850℃、2時間加熱焙焼した。この反応生成物は、青
色粉末であり、X線回折パターンを調べたところ第2図
に示す回折パターンとなり、ASTM  NO,18−
736のLiMn2O4のデータと一致した。
Next, 60 g of the manganese sesquioxide (Mn2O3) and 314 g of Li 2 C0 (in a molar ratio of Mn:Ll-2
:I), heated and roasted in air at 850°C for 1 hour, cooled, mixed and crushed again, and heated and roasted again in air at 850°C for 2 hours. This reaction product is a blue powder, and when examined for its X-ray diffraction pattern, the diffraction pattern shown in Figure 2 was obtained, and it conformed to ASTM No. 18-
736 LiMn2O4 data.

次いで、前記正極活物質としての Li Mn 2O490重量部に導電剤としてのアセチ
レンブラック10重量部及び結若剤としてのポリテトラ
フルオロエチレン5重量部とを混合して正極合剤とし、
この合剤を圧力約2トン/ cdの条件で加圧成形し、
更に12O℃で真空中で乾燥して直径15 、7 mm
の正極を製造した。
Next, 10 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binding agent are mixed with 490 parts by weight of Li Mn 2 O as the positive electrode active material to prepare a positive electrode mixture,
This mixture was pressure-molded at a pressure of about 2 tons/cd,
It was further dried in vacuum at 120°C to a diameter of 15.7 mm.
A positive electrode was manufactured.

次いで、前記正極を用いて第1図に示す外径2Omm、
厚さ2.4龍の寸法を有するボタン彫型水溶媒二次電池
を組立てた。即ち、図中の1はステンレス鋼製の正極容
器であり、この容器l内には集電体2を介して前記方法
で製造した正極3が収納されている。この正極3上には
、ポリプロピレン不織布からなるセパレータ4及び金属
リチウムからなる直径15+i曹の負極5が載置されて
いる。前記セパレータ4には、プロピレンカーボネート
と1.2−ジメトキシエタンの混合溶媒(重量比でl 
:1)に過塩素酸リチウムを0.5モル/flの濃度で
溶解した電解液が含浸保持されている。前記正極容器l
の開口部にはバッキング6を介して負極容器7が設けら
れており、該負極容器7のかしめ加工により正極容器1
、負極容器7内に前記正極3、セパレータ4及び負極5
が密閉されている。
Next, using the positive electrode, an outer diameter of 20 mm as shown in FIG.
A button-shaped water-solvent secondary battery having a thickness of 2.4 mm was assembled. That is, numeral 1 in the figure is a positive electrode container made of stainless steel, and the positive electrode 3 manufactured by the above method is housed in the container 1 with a current collector 2 interposed therebetween. On this positive electrode 3, a separator 4 made of a polypropylene nonwoven fabric and a negative electrode 5 made of metallic lithium and having a diameter of 15 + i carbon dioxide are placed. The separator 4 contains a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (l by weight).
:1) is impregnated with an electrolytic solution in which lithium perchlorate is dissolved at a concentration of 0.5 mol/fl. The positive electrode container l
A negative electrode container 7 is provided through the backing 6 at the opening of the negative electrode container 7, and the positive electrode container 1 is closed by caulking the negative electrode container 7.
, the positive electrode 3, separator 4 and negative electrode 5 are placed in the negative electrode container 7.
is sealed.

実施例2 実施例1と同様な三二酸化マンガン (kin 2O3 ) 60gと水酸化リチウム8gを
モル比率でMn : Ll =2 :1にて混合・粉砕
し、空気中650℃、1時間加熱焙焼し、冷却した後、
再び混合・粉砕し、再度空気中で650℃、3時間加熱
焙焼した。この反応生成物は、前述した第2図と同様な
回折パターンとなり、ASTMNo、 18−738の
LiMn2O4のデータと一致した。
Example 2 60 g of manganese sesquioxide (kin2O3) similar to Example 1 and 8 g of lithium hydroxide were mixed and pulverized at a molar ratio of Mn:Ll = 2:1, and roasted in air at 650°C for 1 hour. and after cooling,
The mixture was mixed and pulverized again, and heated and roasted again in the air at 650°C for 3 hours. This reaction product had a diffraction pattern similar to that shown in FIG. 2 described above, which matched the data for LiMn2O4 of ASTM No. 18-738.

この反応生成物を実施例1と同様な処理を施して正極を
製造し、この正極を用いて第1図と同構造のボタン型非
水溶媒二次電池を組立てた。
This reaction product was treated in the same manner as in Example 1 to produce a positive electrode, and a button-type nonaqueous solvent secondary battery having the same structure as that shown in FIG. 1 was assembled using this positive electrode.

比較例1 硫酸マレガンを電解酸化して得られる電解二酸化マンガ
ンとLi2CO3とをモル比率にてMn:Lj−2:l
にて混合・粉砕し、空気中850℃、1時間加熱焙焼し
、冷却した後、再び混合・粉砕し、再度空気中で850
℃、2時間加熱焙焼して得たリチウムマンガン酸化物(
LiMnO,+)を正極活物質として用いた以外、実施
例1と同様なボタン型非水溶媒二次電池を組立てた。
Comparative Example 1 Electrolytic manganese dioxide obtained by electrolytically oxidizing maleganese sulfate and Li2CO3 in a molar ratio of Mn:Lj-2:l
Mixed and pulverized in the air, heated and roasted at 850°C for 1 hour, cooled, mixed and pulverized again, and roasted again in the air at 850°C.
Lithium manganese oxide obtained by heating and roasting at ℃ for 2 hours (
A button-type non-aqueous solvent secondary battery was assembled in the same manner as in Example 1 except that LiMnO, +) was used as the positive electrode active material.

比較例2 電解二酸化マンガンを600℃で8時間0、加熱焙焼し
て得たMn2O3とLi OHとをモル比率にてMn 
: Li=2 :1にて混合・粉砕し、空気中550℃
、1時間加熱焙焼し、冷却した後、再び混合・粉砕し、
再度空気中で550℃、3時間加熱焙焼して得たリチウ
ムマンガン酸化物(LiMnO4)を正極活物質として
用いた以外、実施例1と同様なボタン型非水溶媒二次電
池を組立てた。
Comparative Example 2 Mn2O3 obtained by heating and roasting electrolytic manganese dioxide at 600°C for 8 hours and LiOH in a molar ratio
: Mixed and pulverized at Li=2:1 and heated to 550°C in air.
After heating and roasting for 1 hour, cooling, mixing and grinding again,
A button-type nonaqueous solvent secondary battery was assembled in the same manner as in Example 1, except that lithium manganese oxide (LiMnO4) obtained by heating and roasting in air at 550° C. for 3 hours was used as the positive electrode active material.

しかして、本実施例1.2及び比較例1.2の電池につ
いて、3.5V〜2.OVの間にて0.5mAの定電流
で充放電を繰返し、各サイクルにおける容量維持率をA
I定した結果、第3図に示す特性図を得た。なお、第3
図中のAは本実施例1の電池における特性線、Bは本実
施例2の電池における特性線、Cは比較例1の電池にお
ける特性線、Dは比較例2の電池における特性線である
Therefore, for the batteries of Example 1.2 and Comparative Example 1.2, the voltage was 3.5V to 2.5V. Charge and discharge are repeated at a constant current of 0.5 mA during OV, and the capacity retention rate in each cycle is A.
As a result of the determination, the characteristic diagram shown in FIG. 3 was obtained. In addition, the third
In the figure, A is the characteristic line of the battery of Example 1, B is the characteristic line of the battery of Example 2, C is the characteristic line of the battery of Comparative Example 1, and D is the characteristic line of the battery of Comparative Example 2. .

第3図から明らかなように、本実施例の非水溶媒二次電
池は比較例の電池に比べて充放電サイクルでの容量維持
率が極めて高いことがわかる。
As is clear from FIG. 3, it can be seen that the non-aqueous solvent secondary battery of this example has an extremely high capacity retention rate during charge/discharge cycles compared to the battery of the comparative example.

なお、上記実施例では負極活物質としてリチウムを用い
たが、ナトリウム、カリウム、カルシウム、マグネシウ
ム、アルミニウム等の他の軽金属を用いてもよい。
Although lithium was used as the negative electrode active material in the above embodiments, other light metals such as sodium, potassium, calcium, magnesium, and aluminum may also be used.

上記実施例では電解液としてプロピレンカーボネートと
1.2−ジメトキシエタンの混合溶媒に過塩素酸リチウ
ムを溶解したものを用いたが、γ−ブチロラクトン、テ
トラヒドロフラン、ジオキソラン等の非水有機溶媒に過
塩素酸リチウム、ホウフッ化リチウム、塩化リチウム等
の電解質を0.2〜1.5モル/g溶解せしめたものを
使用してもよい。
In the above example, an electrolyte in which lithium perchlorate was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used. An electrolyte such as lithium, lithium borofluoride, lithium chloride, etc. dissolved in an amount of 0.2 to 1.5 mol/g may be used.

上記実施例では結着剤としてポリテトラフルオロエチレ
ンを用いたが、その他ポリアクリル酸、その塩類を用い
てもよい。
In the above embodiment, polytetrafluoroethylene was used as the binder, but polyacrylic acid and its salts may also be used.

上記実施例では、ボタン型非水溶媒二次電池を例にして
説明したが、電極がスパイラル構造を有する円筒型非水
溶媒二次電池等にも同様に適用できる。
Although the above embodiments have been described using a button-type non-aqueous solvent secondary battery as an example, the present invention can be similarly applied to a cylindrical-type non-aqueous solvent secondary battery whose electrodes have a spiral structure.

[発明の効果] 以上詳述した如く、本発明によればトンネル構造を有し
、非水溶媒二次電池に組込んだ後の充放電、つまりアル
カリ金属イオンの侵入・放出に伴う結晶構造の崩れの小
さいマンガンリチウム酸化物からなる正極活物質を製造
でき、ひいては該正極活物質を用いることにより充放電
サイクルでの容量劣化の少ない高寿命、高性能の非水溶
媒二次電池を得ることができる等顕著な効果を奏する。
[Effects of the Invention] As detailed above, the present invention has a tunnel structure, and the crystal structure changes during charging and discharging after being incorporated into a non-aqueous solvent secondary battery, that is, due to the entry and release of alkali metal ions. It is possible to produce a positive electrode active material made of manganese lithium oxide that does not crumble easily, and by using this positive electrode active material, it is possible to obtain a long-life, high-performance non-aqueous solvent secondary battery with little capacity deterioration during charge/discharge cycles. It has remarkable effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すボタン型非水溶媒二次
電池の断面図、第2図は本実施例で製造されたリチウム
マンガン酸化物のX線回折パターンを示す線図、第3図
は本実施例1.2及び比較例1.2の電池における充放
電サイクル数に対する容量維持率を示す特性図である。 ■・・・正極容器、3・・・正極、4・・・セパレータ
、5・・・負極、7・・・負極容器。 出願人代理人  弁理士 鈴江武彦 第1図 2e(Feにα) 第2図 @mdJ!剪@+−ド
FIG. 1 is a cross-sectional view of a button-type non-aqueous solvent secondary battery showing an example of the present invention, FIG. 2 is a diagram showing an X-ray diffraction pattern of lithium manganese oxide produced in this example, and FIG. FIG. 3 is a characteristic diagram showing the capacity retention rate with respect to the number of charge/discharge cycles in the batteries of Example 1.2 and Comparative Example 1.2. ■... Positive electrode container, 3... Positive electrode, 4... Separator, 5... Negative electrode, 7... Negative electrode container. Applicant's agent Patent attorney Takehiko Suzue Figure 1 2e (α to Fe) Figure 2 @mdJ! Scissor @+-do

Claims (1)

【特許請求の範囲】[Claims]  硫酸マンガンを焙焼して得られる低級酸化マンガン(
Mn_2O_3)にリチウム化合物を添加して加熱焙焼
せしめることを特徴とする非水溶媒二次電池用正極活物
質の製造方法。
Lower manganese oxide obtained by roasting manganese sulfate (
A method for producing a positive electrode active material for a non-aqueous solvent secondary battery, which comprises adding a lithium compound to Mn_2O_3) and heating and roasting the mixture.
JP63324595A 1988-12-22 1988-12-22 Manufacture of positive electrode active material for nonaqueous solvent secondary cell Pending JPH02170354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324595A JPH02170354A (en) 1988-12-22 1988-12-22 Manufacture of positive electrode active material for nonaqueous solvent secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324595A JPH02170354A (en) 1988-12-22 1988-12-22 Manufacture of positive electrode active material for nonaqueous solvent secondary cell

Publications (1)

Publication Number Publication Date
JPH02170354A true JPH02170354A (en) 1990-07-02

Family

ID=18167571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324595A Pending JPH02170354A (en) 1988-12-22 1988-12-22 Manufacture of positive electrode active material for nonaqueous solvent secondary cell

Country Status (1)

Country Link
JP (1) JPH02170354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269468A (en) * 1991-02-25 1992-09-25 Japan Storage Battery Co Ltd Lithium secondary battery
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269468A (en) * 1991-02-25 1992-09-25 Japan Storage Battery Co Ltd Lithium secondary battery
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JPH1064516A (en) Lithium battery
JPH10294099A (en) Non-aqueous electrolyte secondary cell
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
JPH02170354A (en) Manufacture of positive electrode active material for nonaqueous solvent secondary cell
JP3025695B2 (en) Non-aqueous secondary battery
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JP2001093527A (en) Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2002187722A (en) Non-aqueous electrolyte secondary cell, positive electrode active material thereof and manufacturing method thereof
JPS632247A (en) Secondary battery
JP2575993B2 (en) Non-aqueous electrolyte secondary battery
JPH02170353A (en) Manufacture of positive electrode active material for nonaqueous solvent secondary cell
JPH03222265A (en) Recharging type electrochemical battery having lithium anode
JPH07101727A (en) Lithium manganese double oxide, its production and application
JPH0963583A (en) Lithium secondary battery
JPH02139863A (en) Non-aqueous electrolyte secondary battery
JP3103103B2 (en) Lithium secondary battery and method of manufacturing the same