JPH02167895A - Method for growing compound semiconductor - Google Patents

Method for growing compound semiconductor

Info

Publication number
JPH02167895A
JPH02167895A JP32506188A JP32506188A JPH02167895A JP H02167895 A JPH02167895 A JP H02167895A JP 32506188 A JP32506188 A JP 32506188A JP 32506188 A JP32506188 A JP 32506188A JP H02167895 A JPH02167895 A JP H02167895A
Authority
JP
Japan
Prior art keywords
layer
growth
grown
crystal
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32506188A
Other languages
Japanese (ja)
Other versions
JP2845464B2 (en
Inventor
Kuninori Kitahara
邦紀 北原
Nobuyuki Otsuka
信幸 大塚
Masato Funakura
船蔵 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32506188A priority Critical patent/JP2845464B2/en
Publication of JPH02167895A publication Critical patent/JPH02167895A/en
Application granted granted Critical
Publication of JP2845464B2 publication Critical patent/JP2845464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To grow a semiconductor epitaxial layer having flat growth surface and excellent crystallizability of growth layer on a substrate having different lattice constant by growing AlAs molecular layer on a specific ground crystal and then growing compound semiconductor of the group III-V being within 5% in deviation of lattice constant to AlAs. CONSTITUTION:As Layer 3 having about 1 atom layer is grown on a ground crystal 1 consisting of either one of GaAs, InP, GaP, InXGaPX-1As (x<=0.02), mixed crystal thereof, Si and Ge. Then an Al layer 5 having about one atom layer is grown on the layer 3 and a buffer layer 7 of AlAs or aimed compound semiconductor of the group III-V, wherein the above-mentioned semiconductor has stacking fault being within + or -5% based on lattice constant of AlAs and contains crystal, on the Al layer 5. Thereafter, a layer 9 of the aimed compound semiconductor of the group III-V is grown in required thickness.

Description

【発明の詳細な説明】 [概要] 格子定数の異なる物質の基板上に化合物半導体を成長さ
せる方法に関し、 成長面が平坦で成長層の結晶性が優れた化合物事運休の
エピタキシャル層を格子定数の異なる基板上に成長する
ことができる化合物半導体の成長方法を提供することを
目的とし、 GaAs、InP 、 GaP 、 xが0.02以下
のInxGa1−x As、これらの混晶のSi、Ge
、いずれかからなる下地結晶の上にAsを分子または水
素化物の形で供給してASiを形成する第1準備工程と
、次にAlを分子または有機金属ガスの形で供給してA
l層を形成する第2準備工程と、その後、下地結晶と異
なる格子定数で^IAsの格子定数に対して±5%以内
の格子不整を持つ■−v族化族化合物半金体長する成長
工程とを含むように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for growing compound semiconductors on substrates of substances with different lattice constants, an epitaxial layer of a compound semiconductor with a flat growth surface and excellent crystallinity of the growth layer is grown with a different lattice constant. The purpose is to provide a method for growing compound semiconductors that can be grown on different substrates.
, a first preparation step in which As is supplied in the form of molecules or hydride to form ASi on a base crystal consisting of any one of the following;
A second preparation step of forming an l layer, followed by a growth step of growing a ■-v group compound semimetal body having a lattice constant different from that of the underlying crystal and having a lattice mismatch within ±5% with respect to the lattice constant of ^IAs. Configure it to include.

[産業上の利用分野] 本発明はエピタキシャル結晶成長に関し、特に格子定数
の異なる物質の基板上に化合物半導体を成長させる方法
に関する。
[Industrial Application Field] The present invention relates to epitaxial crystal growth, and more particularly to a method for growing compound semiconductors on substrates of materials having different lattice constants.

近年化合物半導体デバイスの進歩に伴い、結晶材料の大
口径化、価格の低下、新しい機能を実現する結晶構造な
どが要求されている。このため、基板と成長層の格子定
数が異なるヘテロエピタキシャル結晶の成長技術が要求
されている。その代表といえるのがSi基板の上にGa
Asを成長する技術で、一般にGaAs  on  S
iと呼ばれる。しかし、このようなヘテロエピタキシャ
ル結晶を作ろうとすると、格子定数の違いを克服するた
めに、成長初期に特殊な工夫をする必要がある。
In recent years, with the progress of compound semiconductor devices, there has been a demand for larger diameter crystal materials, lower prices, and crystal structures that realize new functions. Therefore, a technique for growing a heteroepitaxial crystal in which the substrate and the growth layer have different lattice constants is required. A representative example of this is Ga on a Si substrate.
A technique for growing As, generally GaAs on S.
It is called i. However, when attempting to create such a heteroepitaxial crystal, special measures must be taken at the initial stage of growth to overcome the difference in lattice constants.

[従来の技術] 以下上としてSi基板上のGaAsのエピタキシャル成
長を例として説明する。
[Prior Art] The epitaxial growth of GaAs on a Si substrate will be described below as an example.

従来のSi基板上のGaAsのエピタキシャル成長技術
としてMOCVDやMBEを改良した2段階成長と呼ば
れるものがある9例えば、ジャパニーズジャーナル オ
ブ アプライド フィジックスにアキャマ池が発表した
方法(14,Akiyama et al、、Jl)n
、J、AI)I)1.PhVS、 23 (1984)
1843)は以下のようなものである。
As a conventional epitaxial growth technique for GaAs on Si substrates, there is a technique called two-step growth, which is an improved version of MOCVD and MBE.9 For example, the method published by Akiyama Ike in the Japanese Journal of Applied Physics (14, Akiyama et al., Jl.) n
, J, AI) I) 1. PhVS, 23 (1984)
1843) is as follows.

第2図(A)に示すように、まず基板温度を通常の単結
晶成長温度〈600〜850°C)よりも低い温度、例
えば400〜450℃に保って、薄いアモルファスまた
は多結晶のGaAsバッフγ層23全23する。厚さは
例えばば約10n11程度である。この段階ではバッフ
ァ層23はアモルファス相または多結晶相であってエピ
タキシャル成長層ではない。
As shown in Figure 2 (A), first, the substrate temperature is maintained at a temperature lower than the normal single crystal growth temperature (600-850°C), for example, 400-450°C, and a thin amorphous or polycrystalline GaAs buffer is grown. γ layer 23 total 23. The thickness is, for example, about 10n11. At this stage, the buffer layer 23 is in an amorphous phase or a polycrystalline phase and is not an epitaxially grown layer.

次に、基板温度を昇温し、通常の単結晶成長温度、例え
ば700℃前後にする。すると、第2図(B)に示すよ
うにアモルファス相または多結晶相であったバッファN
l23内で固相成長が進み、エピタキシャルな単結晶相
に変化する。
Next, the substrate temperature is raised to a normal single crystal growth temperature, for example, around 700°C. Then, as shown in FIG. 2(B), the buffer N, which was in an amorphous phase or a polycrystalline phase,
Solid phase growth progresses within l23, changing to an epitaxial single crystal phase.

バッファ層23が単結晶化した後、第2図(C)に示す
ように、その上に必要な厚さのGaASエピタキシャル
層25全25する。
After the buffer layer 23 is made into a single crystal, a GaAS epitaxial layer 25 of a required thickness is formed thereon, as shown in FIG. 2(C).

Si基板上に直接GaA3層を成長しようとすると、油
が水を弾くような島状の成長が起こり、平坦な面を持つ
成長が困難であることが知られている。
It is known that when a GaA three layer is grown directly on a Si substrate, island-like growth occurs, as if oil repels water, and growth with a flat surface is difficult.

上述の二段1ra成長は、初めにアモルファス相または
多結晶相のバッファ層を成長することで平坦な成長面を
実現するものである。
The above-mentioned two-stage 1RA growth realizes a flat growth surface by first growing a buffer layer of an amorphous phase or a polycrystalline phase.

ところが、二段階成長を用いても、最初の成長層が単結
晶でないためか、良質の結晶を作ることが容易でなく、
高密度の転位が発生したり、成長層表面の平坦化が悪化
したりする。
However, even if two-step growth is used, it is not easy to produce high-quality crystals, perhaps because the first growth layer is not a single crystal.
High-density dislocations may occur, and flattening of the surface of the grown layer may deteriorate.

[発明が解決しようとする課題] 電子デバイス用結晶としては表面が平坦で結晶性の優れ
た結晶層が望ましい6表面が平坦でな、いと加工プロセ
スに問題を生じ易く、結晶性が悪いとキャリア寿命の低
下等を起こしてその材料本来の性能を十分引き出すこと
が難しく、デバイスの寿命、信頼性も低下させ易い。
[Problems to be solved by the invention] A crystal layer with a flat surface and excellent crystallinity is desirable as a crystal for electronic devices.6 If the surface is not flat, problems tend to occur in the processing process, and if the crystallinity is poor, the carrier This causes a reduction in the lifespan, making it difficult to fully bring out the original performance of the material, and also easily reducing the lifespan and reliability of the device.

上述のように、従来のへテロエピタキシャル結晶成長技
術で得られる成長層は、成長面の平坦性、成長層の結晶
性の点で必ずしも十分なものではなかった。
As mentioned above, the growth layer obtained by the conventional heteroepitaxial crystal growth technique is not necessarily sufficient in terms of the flatness of the growth surface and the crystallinity of the growth layer.

従って、この結晶を材料としたデバイスの特性を良くす
ることができず、特に発光デバイスは寿命が短いといっ
た問題を生じていた。
Therefore, it is not possible to improve the characteristics of devices using this crystal as a material, and the lifespan of light-emitting devices in particular is short.

本発明の目的は、成長面が平坦で成長層の結晶性が優れ
た化合物半導体のエピタキシャル層を格子定数の異なる
基板上に成長することができる化合物半導体の成長方法
を提供することである。
An object of the present invention is to provide a method for growing a compound semiconductor that can grow an epitaxial layer of a compound semiconductor with a flat growth surface and excellent crystallinity on a substrate having a different lattice constant.

新たな結晶成長システムを利用することにより、Si上
のGaASを初めとする格子定数の異なる基板上の化合
物半導体エピタキシャル層の品質、例えば転位密度を向
上させることを意図する。
By utilizing a new crystal growth system, it is intended to improve the quality, such as dislocation density, of compound semiconductor epitaxial layers on substrates with different lattice constants, such as GaAS on Si.

[課題を解決するための手段] 本発明によれば、: (1)基板上に目的とする化合物半導体を直接成長する
のではなく、まず八1^Sを成長する。
[Means for Solving the Problems] According to the present invention: (1) Instead of directly growing a target compound semiconductor on a substrate, 81^S is first grown.

(2)この八1^Sの戒長において、第1層にAs、第
2層に八)をほぼ1原子層ずつ近付ける用に成長原料を
基板に供給する。
(2) In this 81^S prerequisite, a growth material is supplied to the substrate in order to bring As in the first layer and 8) in the second layer approximately one atomic layer at a time.

第1図(A)〜(D)に本発明の原理説明図を示す。FIGS. 1(A) to 1(D) are diagrams illustrating the principle of the present invention.

第1図(A)において、GaAs、 InP 、 Ga
P 、 xが0.02以下のInxGa、、 As、こ
れらの混晶、Si、 Geのいずれかからなる下地結晶
1の上にAs層3を約1原子層戒長する。この工程で下
地結晶1の表面はほぼ隠れる。
In FIG. 1(A), GaAs, InP, Ga
An As layer 3 of about one atomic layer is formed on a base crystal 1 made of InxGa, As, a mixed crystal thereof, Si, or Ge with P and x of 0.02 or less. In this step, the surface of the base crystal 1 is almost hidden.

次に第1図(B)に示すように43層3の上にへ1層5
を約l原子層成長する。
Next, as shown in Figure 1 (B), layer 5 is placed on top of layer 3.
is grown to about 1 atomic layer.

次に第1図(C)に示すように41層5の上に^1^S
または戒長させたい目的物の■−v族化合物半導体のバ
ッファ層7を成長する。ここで目的物の■−v族化合物
半導体とは^IAsの格子定数に対して±5%以内の格
子不整を持つ■−V族化合物半導体であり、混晶を含む
、目的物の■−v族化合物半導体がAsを含まないもの
である場合はバッファ層成長の冒頭にASををl原子層
成長するのが好ましい。
Next, as shown in Figure 1(C), ^1^S is applied on the 41st layer 5.
Alternatively, a buffer layer 7 of a ①-V group compound semiconductor, which is the target to be improved, is grown. Here, the target ■-v group compound semiconductor is a ■-V group compound semiconductor that has a lattice mismatch within ±5% with respect to the lattice constant of ^IAs, and includes mixed crystals. When the group compound semiconductor does not contain As, it is preferable to grow 1 atomic layer of AS at the beginning of growing the buffer layer.

また、As原子層の成長とAl原子層の成長とのサイク
ルを複数回繰り返すことが好ましい。
Further, it is preferable to repeat the cycle of growing an As atomic layer and growing an Al atomic layer multiple times.

この後、第1図(D)に示すように目的とする■−v族
化合物半導体の119を必要な厚さ成長する。
Thereafter, as shown in FIG. 1(D), the desired thickness of the target ■-v group compound semiconductor 119 is grown.

なお、不純物をドープしたい場合は例えば成長と同時に
不純物元素を添加すればよい。
Note that if it is desired to dope an impurity, the impurity element may be added, for example, at the same time as the growth.

また目的とする■−V族化合物半専体とは■−V族化合
物半導体の混晶も含むものとする。
Furthermore, the intended semi-exclusive (1)-V group compound shall also include mixed crystals of (1)-V group compound semiconductors.

[作用] 格子定数の異なる下地結晶上にまずAIAS分子層を成
長し、その後、Al^Sに対して格子定数のずれが5%
以内の■−v族化合物半導体を成長することにより、格
子不整の影響が緩和される。
[Operation] First, an AIAS molecular layer is grown on a base crystal with a different lattice constant, and then the lattice constant deviation is 5% with respect to Al^S.
The influence of lattice misalignment can be alleviated by growing a compound semiconductor of the 1-v group within the range of .

また、異種物質上に■−V族化合物半導体の結晶を戒長
する際は、一般に島状の成長が起こり易い、特に、下地
結晶がSi、 Geのような単元素半導体の場合は、基
板内は無極性の共有結合のみであり、その上にイオン性
を持つ■−v族化合物半導体層を全面に均一に成長する
ことは難しい、下地結晶上にまずASの1原子層を戒長
し、次にAlの1原子層を成長する場合は非常に優れた
面の被覆度を得やすい、これにより島状成長が起こりに
くくなり、その上に平坦な面を持つエピタキシャル層が
成長しやすい。
In addition, when crystals of ■-V group compound semiconductors are grown on foreign materials, island-like growth is generally likely to occur, especially when the underlying crystal is a single element semiconductor such as Si or Ge. has only non-polar covalent bonds, and it is difficult to uniformly grow an ionic ■-V group compound semiconductor layer over the entire surface.First, one atomic layer of AS is grown on the underlying crystal. Next, when growing a single atomic layer of Al, it is easy to obtain a very good surface coverage, which makes island-like growth less likely to occur, and makes it easier to grow an epitaxial layer with a flat surface thereon.

下地結晶と成長、]ホどの格子不整の程度等に応じて適
当にバッファ層7を設けるのが好ましい。
It is preferable to provide the buffer layer 7 appropriately depending on the degree of lattice misalignment between the underlying crystal and the growth layer.

従来の2段階成長と異なり、下地基板上に直接単結晶相
の■−V族化合物半導体層を成長することができる。
Unlike conventional two-step growth, a single-crystal phase ■-V group compound semiconductor layer can be grown directly on a base substrate.

[実施例] 第3図(A)〜(H)を参照して、31基板上にGaA
Sエピタキシャル層を成長する実施例を説明する。
[Example] Referring to FIGS. 3(A) to (H), GaA was deposited on the 31 substrate.
An example of growing an S epitaxial layer will be described.

まず、第3図(A)に示すように、下地結晶として(1
00)面または(100)面から10度以内傾いた面が
表面に出る基板11を用意する。
First, as shown in FIG. 3(A), as a base crystal (1
A substrate 11 having a surface that is inclined within 10 degrees from the 00) plane or the (100) plane is prepared.

結晶成長は、原子層成長(ATE)と有機金属気相エピ
タキシャル成長(MOCVD)のできる装置を用い、全
て気相で行った。用いた原料ガスは、^S原子がアルシ
ン(AsH3:水素でl 0%に希釈) 、Ga原子が
トリメチルガリウム(T M G )^1原子がトリメ
チルアルミニウム(TMA>である。
All crystal growth was performed in the vapor phase using equipment capable of atomic layer epitaxy (ATE) and metal organic vapor phase epitaxial growth (MOCVD). The raw material gases used include arsine (AsH3: diluted to 10% with hydrogen) as the S atom, trimethylgallium (TM G ) as the Ga atom, and trimethylaluminum (TMA) as the Ga atom.

単原子層の成長は、加熱した基板11上に例えば単一の
V族元素の原料ガスを選択的に流し、停止後反応管内を
水素で置換し、その後側の■族元素の原料ガスを流し、
再び反応管内を水素で置換するサイクルを繰り返して行
った。
To grow a monoatomic layer, for example, a single source gas of a group V element is selectively flowed onto the heated substrate 11, and after stopping, the inside of the reaction tube is replaced with hydrogen, and the source gas of a group (I) element on the rear side is flowed. ,
The cycle of replacing the inside of the reaction tube with hydrogen was repeated.

結晶成長の手順を以下により詳細に説明する。The crystal growth procedure will be explained in more detail below.

(1)第3図(A)に示すようなSi基板11を原子層
成長(ATE)と有機金属気相堆積(MOCVD)とを
選択的に実行できる成長装置に収納し、水素気流中で約
20分間、約i ooo℃で加熱する。これによりSi
基板11の表面の清浄化を行う。
(1) A Si substrate 11 as shown in FIG. 3(A) is placed in a growth apparatus that can selectively perform atomic layer epitaxy (ATE) and metal organic chemical vapor deposition (MOCVD), and is placed in a hydrogen gas flow for approximately 10 minutes. Heat for 20 minutes at about iooo<0>C. As a result, Si
The surface of the substrate 11 is cleaned.

清浄化後基板温度を500°Cに降温する。After cleaning, the substrate temperature is lowered to 500°C.

(2)第3図(B)に示すようにAs源としてのアルシ
ンを約10秒間供給し、その後アルシンの供給を停止し
、水素を約10秒間供給する。これにより約1原子層の
As層13が成長し、反応管内のアルシンないし^Sは
パージされる。
(2) As shown in FIG. 3(B), arsine as an As source is supplied for about 10 seconds, then the supply of arsine is stopped, and hydrogen is supplied for about 10 seconds. As a result, an As layer 13 of approximately one atomic layer grows, and arsine or ^S in the reaction tube is purged.

(3)次に第3図(C)に示すように、Al源としての
TMAを約7秒間供給し、その後、TMAの供給を停止
し、水素を約10秒間供給する。これによりAl層15
が成長し、反応管内のTMAないしAlはパージされる
(3) Next, as shown in FIG. 3(C), TMA as an Al source is supplied for about 7 seconds, then the supply of TMA is stopped, and hydrogen is supplied for about 10 seconds. As a result, the Al layer 15
grows, and TMA or Al in the reaction tube is purged.

ところで、As原子層13上の^1原子層15は第3図
(D)に模式的に示すように、下地As層と較べて約2
倍の面内密度を有する。このため潰れた面被覆率が達成
されると考えられる。
By the way, as schematically shown in FIG. 3(D), the ^1 atomic layer 15 on the As atomic layer 13 has a thickness of about 2 compared to the underlying As layer.
It has twice the in-plane density. It is considered that for this reason, a flat surface coverage is achieved.

(4)この2倍密度の^1原子層の上に、第3図(B)
と同様の工程で次のAS層を成長させる。すると、Al
原子は少なくとも1層の上下は自由に動き回ると考えら
れるので、AlAsが結合するに従い、下の2倍密度の
Al7115から上に旧が供給されると考えられる。す
なわち元のAl層15は本来の密度になり、上に65層
13−2、AI層15−2、^S層13−3が成長する
1、すなわち、第3図(C)と(E)の2工程1サイク
ルで2分子層が成長することになる。
(4) On top of this double-density ^1 atomic layer, Figure 3 (B)
The next AS layer is grown in the same process as above. Then, Al
Since atoms are considered to move freely up and down at least one layer, it is thought that as AlAs is bonded, old atoms are supplied from the lower double density Al7115 to the upper layer. In other words, the original Al layer 15 has its original density, and the 65 layer 13-2, the AI layer 15-2, and the ^S layer 13-3 are grown on it. Two molecular layers are grown in one cycle of two steps.

(5)さらに第3図(C)と同様の工程によって、第3
図(F)に示すようにTMAを供給して41層を成長さ
せると2倍の面密度の41層15−3が成長する。
(5) Further, the third
As shown in Figure (F), when 41 layers are grown by supplying TMA, 41 layers 15-3 with twice the areal density are grown.

(6)このようにして、As原子層と^1原子層を交互
に約50サイクル戒長して、第3図(G)に示すような
AlAsのバッファ層17を成長する。
(6) In this way, the As atomic layer and the ^1 atomic layer are alternately grown for about 50 cycles to grow an AlAs buffer layer 17 as shown in FIG. 3(G).

ここで反応管内圧力は20 torr、流量はAsH3
が4805CCII、 T M Gが40 SCi、全
流量が251mになるように水素の流量を調整する。
Here, the pressure inside the reaction tube is 20 torr, and the flow rate is AsH3.
The hydrogen flow rate is adjusted so that the total flow rate is 4805 CCII, TMG is 40 SCi, and the total flow rate is 251 m.

このような原子層エピタキシについては、例えば、オゼ
キ他の発表(H,0zaki et al、、Exte
ndedAbstracts of the 19th
 Conf、 on 5olid 5tate Dev
ices  and  Materials、  To
kyo、  1987.D、  475)  を参照す
ることができる。
Regarding such atomic layer epitaxy, for example, the publication by Ozaki et al.
Abstracts of the 19th
Conf, on 5olid 5tate Dev
ices and materials, To
kyo, 1987. D, 475).

(7)次に温度を650℃に上げて第3図(H)に示す
ようにGaAsをMOCVDで成長してエピタキシャル
成長層1つを得る。ここで反応管内圧力は20torr
、流量は”T’ M Gが25cc1. AsH3が4
0SCCIである。MOCVDによる成長層1つの厚さ
がデバイスの必要なM(例えば3μm)に達したら成長
を停止する。
(7) Next, raise the temperature to 650° C. and grow GaAs by MOCVD to obtain one epitaxial growth layer as shown in FIG. 3(H). Here, the pressure inside the reaction tube is 20 torr.
, the flow rate is "T' MG is 25cc1. AsH3 is 4
0SCCI. Growth is stopped when the thickness of one layer grown by MOCVD reaches the required M of the device (for example, 3 μm).

このようにして得たエピタキシャル成長層は優れた結晶
性を示した。従来の2段階成長で108(Il/cn2
台あった転位密度が本実施例のサンプルの場合、106
1[Al/C1B”台に減少した。また表面の平坦性が
大1幅に向上した。
The epitaxially grown layer thus obtained showed excellent crystallinity. Conventional two-step growth yields 108 (Il/cn2
In the case of the sample of this example, the dislocation density was 106
1 [Al/C1B" level. Also, the surface flatness was greatly improved.

第4図に本発明の別の実施例を示す、上述の実施例では
最初にAlAsを100分子層成長しているが、AlA
sを2分子層成長した後はGaAsの原子層エピタキシ
に移行してもよい、第4図において、11は(100)
面51基板であり、この上にAs原子層、旧原子層、A
s原子層を成長させると上述のようにAIAS2分子層
14とさらに1つのAs原子層が成長する。その後はこ
のAs原子層上にGa原子層、As原子層と交互に成長
させることにより、原子層生長によるGaAsバッファ
層16が得られる。ある程度のバッファ層16を原子層
成長した後は、温度を上げMOCVDで必要な厚さのG
aAs層19を成長させる。  GaASやAlAsを
原子層オーダで制御しながら成長できる方法は上述のよ
うな原子層エピタキシに限らない、目的とする原子層の
成長ができる方法であれば良く、ρ1えばMBEを変形
したマイグレーション増進エピタキシ(li(lrat
ion enhanced epitaxy)(Y、H
orikoshi et al、:Jpn、J、 Ap
pl。
FIG. 4 shows another embodiment of the present invention. In the embodiment described above, 100 molecular layers of AlAs are grown first, but
After growing two molecular layers of GaAs, you may proceed to atomic layer epitaxy of GaAs. In Figure 4, 11 is (100).
It is a plane 51 substrate, on which an As atomic layer, a old atomic layer, and an A
When the s atomic layer is grown, the AIAS bilayer 14 and one As atomic layer are grown as described above. Thereafter, by growing Ga atomic layers and As atomic layers alternately on this As atomic layer, a GaAs buffer layer 16 is obtained by atomic layer growth. After growing a certain amount of buffer layer 16 by atomic layer, the temperature is raised and G is grown to the required thickness by MOCVD.
An aAs layer 19 is grown. Methods that can grow GaAS and AlAs while controlling it on the order of atomic layers are not limited to the atomic layer epitaxy described above, but any method that can grow the desired atomic layer can be used, such as migration-enhanced epitaxy, which is a modification of MBE. (li(lrat
ion enhanced epitaxy) (Y, H
orikoshi et al.: Jpn, J. Ap.
pl.

Phys、 25(1986)L868)やMOCVD
を変形した流量変調エピタキシ(flow−rate 
1odufated epitaxy)(N、にoba
yashi et al、:JDn、J、^pp1.P
hys、25(1986) 1513)等でも、同様な
成長ができる。また、通常のMOCVDやMBBの装置
でも原理的には実施できる。これらの成長方法の差は、
1原子層成長に対する完全性であり、この点に関して現
在の技術レベルでは原子層エピタキシが最も優れてぃる
ので結晶成長上好ましい。
Phys, 25 (1986) L868) and MOCVD
Flow-rate epitaxy is a modified form of flow-rate epitaxy.
1odufated epitaxy) (N, ni oba
Yashi et al.: JDn, J, ^pp1. P
hys, 25 (1986) 1513) etc., similar growth can be achieved. Further, in principle, it can be carried out using ordinary MOCVD or MBB equipment. The difference between these growth methods is
It is perfect for one atomic layer growth, and atomic layer epitaxy is the best at the current technological level in this respect and is therefore preferable for crystal growth.

原子層成長の際不純物を添加することもできる。Impurities can also be added during atomic layer growth.

例えばAl層中にSiを添加してn型にしたり、ASN
I中にSiを添加してp型にしたりしてもよい。
For example, adding Si to the Al layer to make it n-type, or
Si may be added to I to make it p-type.

また成長層の成長らMOCVDに限らず、液相、気相の
種々の方法を利用できる。
Furthermore, the growth of the growth layer is not limited to MOCVD, and various liquid phase and gas phase methods can be used.

ところで31上のGaAsを例として述べてきたが、他
の下地結晶、成長結晶を用いることもできる。
By the way, although GaAs on 31 was described as an example, other base crystals and grown crystals can also be used.

本発明の最も特徴的な点はAs原子層上に約2倍の面密
度を持つAl原子層を成長し、この上に成長を続けるこ
とである。
The most characteristic feature of the present invention is that an Al atomic layer having about twice the areal density is grown on the As atomic layer, and growth is continued on this.

GaAsを成長させる場合、AlAsはほぼGaAsと
格子整合する物質であり、Siは約4%位GaAsより
小さい格子定数を持つ、一方1nPは約4%位GaAs
より大きい格子定数を持つ、このInPを下地結晶とし
てGaAsエピタキシャル結晶を成長させる場合は、ま
ず^S原子層を成長し、次にAl原子層を成長する。
When growing GaAs, AlAs is a material that is almost lattice matched to GaAs, Si has a lattice constant about 4% smaller than GaAs, while 1nP has a lattice constant about 4% smaller than GaAs.
When growing a GaAs epitaxial crystal using InP, which has a larger lattice constant, as a base crystal, first a ^S atomic layer is grown, and then an Al atomic layer is grown.

その後は適当にGaAsがAIASを原子層成長で成長
してバッファ層を得、続いてMOCVD等の結晶成長を
必要な厚さ分行う。
Thereafter, a buffer layer is obtained by appropriately growing GaAs and AIAS by atomic layer growth, and then crystal growth is performed by MOCVD or the like to a required thickness.

Siの上にInPを成長する場合は、Si基板の上に2
分子層以上のAlAs分子層を付け、次にGaAsを例
えば1μm成長した後、InPを所定の厚みまで成長す
る。
When growing InP on Si, two layers are grown on the Si substrate.
After applying a molecular layer of AlAs or more, GaAs is grown to a thickness of, for example, 1 μm, and then InP is grown to a predetermined thickness.

その他、下地結晶としては、GaP 、 GaAs、 
InxG a 1− x A S (x≦0.02)、
GO等を用いることができる。
Other base crystals include GaP, GaAs,
InxG a 1- x A S (x≦0.02),
GO etc. can be used.

また成長層は、AlAs分子層とのなじみがよい、AI
ASとの格子不整が5%以下の閃亜鉛型結晶楕遣を持つ
■−V族化合物半導体(混晶を含む〉を成長することが
できる。
In addition, the growth layer is made of AI, which has good compatibility with the AlAs molecular layer.
It is possible to grow a -V group compound semiconductor (including mixed crystals) having a zincblende crystal ellipse with a lattice mismatch with AS of 5% or less.

[発明の効果] 以上説明したように、本発明によれば基板と成長層の格
子定数が異なるヘテロエピタキシャル結晶の成長に対し
て最初から単結晶が成長できる。
[Effects of the Invention] As described above, according to the present invention, a single crystal can be grown from the beginning in contrast to the growth of a heteroepitaxial crystal in which the lattice constants of the substrate and the growth layer are different.

このため、成長層の品質を向上させる効果があり、これ
を材料としたデバイスの性能向上に寄与するところが大
きい。
Therefore, it has the effect of improving the quality of the grown layer, and greatly contributes to improving the performance of devices using it as a material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(D)は本発明の原理説明図であり、そ
れぞれ結晶の断面図、 第2図(A)〜(C)は従来技術の2段階成長によるS
1上のGaAS成長を説明する断面図、第3図(A)〜
(H)は本発明の実施例によるS1上のGaAs成長を
説明する断面図、第4図は本発明の池の実施例によるS
i上のGaAs成長を説明する断面図である。 バ・177層内のAl層 バッファ層 エピタキシャル成長層 旧^S2分子層 GaAsバッファ層 81基板 GaAsバッファ層 GaAS単結晶 図において、 下地結晶 As層 41層 へ1八Sまなは目的1勿のバッファ層 目的物の層 Si基板 へS層 Al層 バッファ層内の^si (A)As約1原子層成長 (B)At約1原子層tc長 (C)バッファ;11tc畏 (D)厚!!!を長 第3図 (A)GaAsバッファ層の低温成長 (B)昇温によるバッファ層の再認晶化(C)GaAs
単結晶のエピタキシャル成長従来技術の2段it長によ
る Si上のGaAsの成長 第2図 本発明の他の実施例によるSi上のGaAst長第4図
Figures 1 (A) to (D) are explanatory diagrams of the principle of the present invention, and Figures 2 (A) to (C) are cross-sectional views of crystals, respectively, and Figures 2 (A) to (C) are S
Cross-sectional view illustrating GaAS growth on 1, FIG. 3(A) ~
(H) is a cross-sectional view illustrating GaAs growth on S1 according to the embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view illustrating the growth of GaAs on i. Al layer in the 177th layer Buffer layer Epitaxially grown layer Old ^S2 Molecular layer GaAs buffer layer 81 Substrate GaAs buffer layer In the GaAs single crystal diagram, base crystal As layer 41 layer 18 S Minah purpose 1 Na buffer layer purpose (A) Growth of approximately 1 atomic layer of As (B) Approximately 1 atomic layer of At (tc length) (C) Buffer; 11 tc (D) thickness! ! ! Figure 3 (A) Low-temperature growth of GaAs buffer layer (B) Recrystallization of buffer layer by increasing temperature (C) GaAs
Epitaxial Growth of Single CrystalsGrowth of GaAs on Si by Two Step IT Length of Conventional TechnologyFig. 2Growth of GaAs on Si according to Another Embodiment of the Present InventionFig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)、GaAs、InP、GaP、xが0.02以下
のIn_xGa_1_−_xAs、これらの混晶のSi
、Ge、いずれかからなる下地結晶(1)の上にAsを
分子または水素化物の形で供給してAs層(3)を形成
する第1準備工程と、 次にAlを分子または有機金属ガスの形で供給してAl
層(5)を形成する第2準備工程と、その後、下地結晶
と異なる格子定数でAlAsの格子定数に対して±5%
以内の格子不整を持つIII−V族化合物半導体(9)を
成長する成長工程と を含む化合物半導体の成長方法。
(1), GaAs, InP, GaP, In_xGa_1_-_xAs where x is 0.02 or less, Si of these mixed crystals
, Ge, a first preparatory step of supplying As in the form of molecules or hydride to form an As layer (3) on the base crystal (1) consisting of any of the following; Al is supplied in the form of
A second preparation step of forming a layer (5), followed by a layer (5) with a lattice constant different from that of the underlying crystal, with a lattice constant of ±5% relative to the lattice constant of AlAs.
a growth step of growing a III-V compound semiconductor (9) having a lattice mismatch within the range of lattice misalignment.
(2)、前記第2準備工程に続いて、さらにAsを分子
または水素化物の形で供給し、下地結晶上にストイキオ
メトリ以上に付着していたAlと2分子層のAlAs層
を作る工程を含む請求項1記載の化合物半導体の成長方
法。
(2) Following the second preparation step, a step of further supplying As in the form of molecules or hydrides to form a bimolecular layer of AlAs with Al adhering to the base crystal at a stoichiometry or higher level. 2. The method for growing a compound semiconductor according to claim 1.
(3)、前記第1準備工程と第2準備工程との対を1準
備サイクルとし、複数回の準備サイクルを行つた後、前
記成長工程に移る請求項1記載の化合物半導体の成長方
法。
(3) The method for growing a compound semiconductor according to claim 1, wherein the pair of the first preparation step and the second preparation step is one preparation cycle, and the step of proceeding to the growth step is performed after performing a plurality of preparation cycles.
JP32506188A 1988-12-20 1988-12-20 Compound semiconductor growth method Expired - Fee Related JP2845464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32506188A JP2845464B2 (en) 1988-12-20 1988-12-20 Compound semiconductor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32506188A JP2845464B2 (en) 1988-12-20 1988-12-20 Compound semiconductor growth method

Publications (2)

Publication Number Publication Date
JPH02167895A true JPH02167895A (en) 1990-06-28
JP2845464B2 JP2845464B2 (en) 1999-01-13

Family

ID=18172718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32506188A Expired - Fee Related JP2845464B2 (en) 1988-12-20 1988-12-20 Compound semiconductor growth method

Country Status (1)

Country Link
JP (1) JP2845464B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221196A (en) * 1989-02-21 1990-09-04 Nec Corp Formation of thin film of iii-v compound semiconductor
EP0450228A2 (en) * 1990-03-30 1991-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on a silicon substrate or a silicon layer and methods of making the same
JP2003101140A (en) * 2000-09-21 2003-04-04 Ricoh Co Ltd Surface emitting semiconductor laser element, its manufacturing method, surface emitting semiconductor laser array, light transmitting module, light transmitting and receiving module and optical communication system
JP2009206520A (en) * 2001-09-21 2009-09-10 Ricoh Co Ltd Semiconductor light-emitting device, method of manufacturing the same, optical transmission module, optical exchanging device, and optical transmission system
US7968362B2 (en) 2001-03-27 2011-06-28 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221196A (en) * 1989-02-21 1990-09-04 Nec Corp Formation of thin film of iii-v compound semiconductor
EP0450228A2 (en) * 1990-03-30 1991-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on a silicon substrate or a silicon layer and methods of making the same
JPH03284834A (en) * 1990-03-30 1991-12-16 Mitsubishi Electric Corp Semiconductor device
US5136347A (en) * 1990-03-30 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor structure
JP2003101140A (en) * 2000-09-21 2003-04-04 Ricoh Co Ltd Surface emitting semiconductor laser element, its manufacturing method, surface emitting semiconductor laser array, light transmitting module, light transmitting and receiving module and optical communication system
US7968362B2 (en) 2001-03-27 2011-06-28 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US8293555B2 (en) 2001-03-27 2012-10-23 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
JP2009206520A (en) * 2001-09-21 2009-09-10 Ricoh Co Ltd Semiconductor light-emitting device, method of manufacturing the same, optical transmission module, optical exchanging device, and optical transmission system

Also Published As

Publication number Publication date
JP2845464B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
US7435608B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US6864160B2 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
DE60037996T2 (en) Manufacturing method for a III-V nitride layer and for a substrate
JPH04297023A (en) Crystal growth method of gallium nitride compound semiconductor
JPH01289108A (en) Heteroepitaxy
JPH05291140A (en) Growth method of compound semiconductor thin film
EP0241204B1 (en) Method for forming crystalline deposited film
JPH02170413A (en) Compound semiconductor device
JPH02167895A (en) Method for growing compound semiconductor
JP5647997B2 (en) Epitaxial crystal substrate manufacturing method, epitaxial crystal substrate, and semiconductor device manufactured using the same
JP3369304B2 (en) Method for growing compound semiconductor crystal layer
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
EP2695180B1 (en) Method for producing a iii/v si template
JP3270945B2 (en) Heteroepitaxial growth method
JPH02221196A (en) Formation of thin film of iii-v compound semiconductor
JPH0529234A (en) Epitaxial crowing method
JP2743351B2 (en) Vapor phase epitaxy growth method
KR20000056002A (en) Method for growing GaN crystalline using lateral epitaxy growth
JPH01290221A (en) Semiconductor vapor growth method
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPS6211221A (en) Molecular-beam epitaxial growth method
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JPH0214513A (en) Formation of compound semiconductor layer
JPH02239614A (en) Hetero-epitaxial growth method
JPH01272108A (en) Growth of compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees