JPH02167891A - Gas-phase synthetic device of diamond film - Google Patents

Gas-phase synthetic device of diamond film

Info

Publication number
JPH02167891A
JPH02167891A JP32128088A JP32128088A JPH02167891A JP H02167891 A JPH02167891 A JP H02167891A JP 32128088 A JP32128088 A JP 32128088A JP 32128088 A JP32128088 A JP 32128088A JP H02167891 A JPH02167891 A JP H02167891A
Authority
JP
Japan
Prior art keywords
plasma
diamond film
gas
beam source
plasma beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32128088A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshino
吉野 信幸
Takanori Minamitani
南谷 孝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP32128088A priority Critical patent/JPH02167891A/en
Publication of JPH02167891A publication Critical patent/JPH02167891A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly form a diamond film on a substrate of large area at low temperature of substrate in synthesis of diamond film by gas-phase synthesis, by using plasma generated in a hollow cathode type plasma beam. CONSTITUTION:Pressure in a vacuum chamber 22 is reduced to about 10<-6>Torr by vacuum exhaust through an exhaust system 24 and an introduced gas consisting essentially of hydrogen gas is discharged in a plasma beam source 10 to form a plasma zone 18 between the plasma source 10 and an opposing electrode 12 to which positive voltage based on the plasma beam source is applied. A carbon source compound such as methane gas is introduced from a gas inlet 28 simultaneously with the operation, the vacuum chamber 22 is maintained under 1-10 Torr degree of vacuum and a diamond film is formed on a substrate 16 set in the plasma zone 18.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相合成法によるタ゛イヤモンド膜形成装置、
さらに詳しくはダイヤモンド膜を大面積にわたり均一に
形威し、また形成時の基板温度の低温化を可能とするダ
イヤモンド膜気相合成装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diamond film forming apparatus using a vapor phase synthesis method;
More specifically, the present invention relates to a diamond film vapor phase synthesis apparatus that can uniformly form a diamond film over a large area and lower the substrate temperature during formation.

〔従来技術とその課題〕[Conventional technology and its issues]

低圧気相合成法によるダイヤモンド合成が可能となって
以来、種々のダイヤモンド膜気相合成装置および方法が
提案されている。以下に代表的なダイヤモンド膜合戒装
置および方法について説明する。
Since it became possible to synthesize diamond by low-pressure vapor phase synthesis, various devices and methods for vapor phase synthesis of diamond films have been proposed. A typical diamond film gathering device and method will be described below.

熱フイラメントCVD法は、ダイヤモンドの低圧気相合
成法の代表的な方法の一つであり、例えば特公昭59−
27753号公報に記載されているように、この装置の
特徴は試料基板近傍に温度2000℃以上に加熱される
フィラメントが置かれている。このフィラメントによっ
て、反応室へ尋人された水素とメタンなどの炭素を含む
原料ガスが分解され、原子状水素および炭化水素ラジカ
ルをはじめとする活性種が生成し、これらの活性種が基
板上に拡散しダイヤモンドが析出、成長する。
The hot filament CVD method is one of the typical low-pressure vapor phase synthesis methods for diamond, and is
As described in Japanese Patent No. 27753, a feature of this device is that a filament heated to a temperature of 2000° C. or higher is placed near the sample substrate. This filament decomposes the raw material gas containing hydrogen and carbon such as methane introduced into the reaction chamber, producing active species including atomic hydrogen and hydrocarbon radicals, and these active species are transferred onto the substrate. Diffusion occurs, and diamond precipitates and grows.

この熱フイラメントCVD法の装置構成は、非常に簡素
ではあるが、 ■反応時間とともにフィラメントが炭化、変形し、再現
性に優れたダイヤモンドの合成ができない。
Although the apparatus configuration of this hot filament CVD method is very simple, (1) the filament carbonizes and deforms with the reaction time, making it impossible to synthesize diamond with excellent reproducibility.

■ダイヤモンドの形成される領域が、フィラメントの大
きさと位置に依存するため、広い面積にわたってタ゛イ
ヤモンド膜を均一に形成することが困難である、などの
問題点を抱えている。
(2) Since the area where diamond is formed depends on the size and position of the filament, there are problems such as the difficulty of uniformly forming a diamond film over a wide area.

マイクロ波プラズマCVD法の装置は、例えば特公昭6
1−3320号公報に記載されているようにマイクロ波
発振電源(2,45GHz )、その出力を反応管に導
く導波管、反応管内の圧力を減圧に保持する真空系、反
応ガス供給系から構成されており、試料基板は反応管々
らびに導波管の中央部付近に設置され、マイクロ波によ
って発生させたプラズマによって原料ガスと水素ガスの
分解を行う。この時、マイクロ波は、電源より導波管を
用いて反応部に導入されるが、導波管のサイズによって
放電領域が決まってしまうため、ダイヤモンド膜形成領
域に限界があり、あまり大きな試料基板全面にダイヤモ
ンド膜を形成することが困難であるという問題がある。
The equipment for microwave plasma CVD method is, for example,
As described in Publication No. 1-3320, from a microwave oscillation power source (2.45 GHz), a waveguide that guides the output to the reaction tube, a vacuum system that maintains the pressure inside the reaction tube at reduced pressure, and a reaction gas supply system. The sample substrate is placed near the center of the reaction tubes and waveguide, and source gas and hydrogen gas are decomposed by plasma generated by microwaves. At this time, microwaves are introduced into the reaction area from a power source using a waveguide, but since the discharge area is determined by the size of the waveguide, there is a limit to the diamond film formation area, and the sample substrate is too large. There is a problem in that it is difficult to form a diamond film over the entire surface.

アークプラズマ法は、高周波電源、例えばS。The arc plasma method uses a high frequency power source, such as S.

Matsumoto、 M、 Hino and T、
 Kobayashi ; Appl、 phys。
Matsumoto, M., Hino and T.
Kobayashi; Appl, phys.

Lett、51(10)、(1987−9)、737あ
るいは直流電源、例えばK 、 Kurihara 、
 K 、 5asaki 、 M 、 Kawarad
aand N、 Koshino;  Appl、 P
hys  Lett、 52(6)+ (1988−2
)y437を用いて、高温のアークプラズマを発生し、
ダイヤモンド膜を合成する方法である。このアークプラ
ズマ法では、ダイヤモンドの成長速度は非常に速いが、
成膜可能面積が小さいこと、基板温度が高温になること
、基板温度の制御が困難であるなどの問題点がある。
Lett, 51(10), (1987-9), 737 or a DC power supply, such as K. Kurihara,
K., 5asaki, M., Kawarad.
aand N, Koshino; Appl, P
hys Lett, 52(6)+ (1988-2
)y437 to generate high temperature arc plasma,
This is a method for synthesizing diamond films. With this arc plasma method, the growth rate of diamond is very fast, but
There are problems such as a small area where a film can be formed, a high substrate temperature, and difficulty in controlling the substrate temperature.

その他の方法として、熱フィラメントCvD法を改良し
た電子衝撃CVD法として例えば、A。
Other methods include electron impact CVD, which is an improved version of hot filament CVD, such as A.

Sawabe et al、、 Appl、 Phys
、 Lett、、 46−2 (1985−1)146
やDCプラズマCVD法、例えばに、 5uzukie
t al、、 Appl、 Phys、 Lett、、
 50.728(1987)あるいは燃焼炎法、例えば
広瀬、近藤、第35回応用物理学関係連合講演会予稿集
、(1988)、P2S5などσ)方法および装置が提
案されているが、いずれもダイヤモンド膜を大面積にわ
たり均一に形成し、同時に試料基板温度の低温化をも可
能にする方法および装置は開発されていないのが現状で
ある。
Sawabe et al., Appl, Phys.
, Lett, 46-2 (1985-1) 146
or DC plasma CVD method, for example,
tal,, Appl, Phys, Lett,,
50.728 (1987) or the combustion flame method, for example, Hirose, Kondo, Proceedings of the 35th Applied Physics Association Conference, (1988), P2S5, etc.) methods and devices have been proposed, but none of them use diamond. At present, no method or apparatus has been developed that enables uniform formation of a film over a large area and at the same time lowers the temperature of the sample substrate.

本発明の目的は、気相合成法におけるダイヤモンド膜合
成において、ダイヤモンド膜を大面積にわたって均一に
形成し、さらに従来法より試料基板温度がより低温でダ
イヤモンド膜形成が可能なダイヤモンド膜気相合成装置
を提供することにある。
An object of the present invention is to provide a diamond film vapor phase synthesis apparatus that can uniformly form a diamond film over a large area in diamond film synthesis using a vapor phase synthesis method, and furthermore, can form a diamond film at a lower sample substrate temperature than the conventional method. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明のダイヤモンド膜気相
合成装置は、排気系およびガス導入口を有する真空室内
に中空陰極型のプラズマビーム源とこのプラズマビーム
源と対向配置しかつこのプラズマビーム源に対して正の
電圧が印加される対向電極を設置し、プラズマビーム源
で発生する原子状水素を含むプラズマを真空室とプラズ
マビーム源の圧力勾配と対向電極に印加する正電圧によ
って真空室に引き出し、このプラズマビーム源と対向電
極との間に形成されたプラズマ領域中に試料基板を設置
することによって構成される。
In order to achieve the above object, the diamond film vapor phase synthesis apparatus of the present invention includes a hollow cathode type plasma beam source disposed in a vacuum chamber having an exhaust system and a gas inlet, and facing the plasma beam source. A counter electrode to which a positive voltage is applied is installed, and the plasma containing atomic hydrogen generated in the plasma beam source is transferred to the vacuum chamber by the pressure gradient between the vacuum chamber and the plasma beam source and the positive voltage applied to the counter electrode. The sample substrate is placed in a plasma region formed between the plasma beam source and the counter electrode.

〔実施例〕〔Example〕

以下に図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

第1図は、本発明のダイヤモンド膜気相合成装置の装置
要部の側面配置を示す断面図である。
FIG. 1 is a sectional view showing the side arrangement of the main parts of the diamond film vapor phase synthesis apparatus of the present invention.

排気系24を備えた真空室22の壁面にプラズマビーム
源10と、このプラズマビーム源1oに対向配置する水
冷可能な対向電極12とを設ける。
A plasma beam source 10 and a water-coolable counter electrode 12 disposed opposite the plasma beam source 1o are provided on the wall of a vacuum chamber 22 equipped with an exhaust system 24.

ダイヤモンド膜合成の原料ガスであるメタン、−酸化炭
素をはじめとする炭素化合物ガスを導入するためのガス
導入口28は、プラズマビーム源10内部の電極の炭化
を防ぐため、真空室22の壁面に設ける。試料基板16
は、プラズマビーム源10と対向電極120間に発生さ
せるプラズマ領域18中に配置する。試料基板16は、
基板支持体14に設置された加熱源によって加熱するこ
とが可能である。また、マグネットコイル26は、プラ
ズマを閉じこめるように構成する。
A gas inlet 28 for introducing carbon compound gases such as methane and carbon oxide, which are raw material gases for diamond film synthesis, is provided on the wall of the vacuum chamber 22 to prevent carbonization of the electrode inside the plasma beam source 10. establish. Sample substrate 16
is placed in a plasma region 18 generated between the plasma beam source 10 and the counter electrode 120. The sample substrate 16 is
Heating can be done by a heating source placed on the substrate support 14. Further, the magnet coil 26 is configured to confine plasma.

第2図は第1図に示したプラズマビーム源1゜の構成を
示す断面図である。プラズマビーム源10は、水冷ボッ
クス40を貫通してガス樽入口を兼ねるタンクルパイプ
からなる補助陰極62と円板状の六硼化ランタン(La
Ba)からなる主陰極64とタングステンから紅る円板
状の熱板66と、モリブデンからなる外筒42およびキ
ャップ68と中間電極30とから構成される。
FIG. 2 is a sectional view showing the configuration of the plasma beam source 1° shown in FIG. The plasma beam source 10 includes an auxiliary cathode 62 consisting of a tank pipe that penetrates a water-cooled box 40 and also serves as an inlet for a gas barrel, and a disk-shaped lanthanum hexaboride (La
It is composed of a main cathode 64 made of Ba), a disc-shaped hot plate 66 made of tungsten, an outer cylinder 42 and a cap 68 made of molybdenum, and an intermediate electrode 30.

プラズマの発生は、真空室22内の圧力を排気系24に
よって、10”” Torr程度の真空度に真空排気し
た後、プラズマビーム源1o内において、補助陰極32
と中間電極60との間で水素ガスを主成分とする導入ガ
スを放電させ、この放電により主陰極34が加熱され高
温になると、次に主陰極64と中間電極60との間の放
電に移行する。
Plasma is generated by evacuating the pressure inside the vacuum chamber 22 to a degree of vacuum of about 10'' Torr using the exhaust system 24, and then injecting the auxiliary cathode 32 into the plasma beam source 1o.
The introduced gas containing hydrogen gas as a main component is discharged between the main cathode 64 and the intermediate electrode 60, and when the main cathode 34 is heated to a high temperature by this discharge, the discharge then shifts to between the main cathode 64 and the intermediate electrode 60. do.

この放電により高温の主陰極64から、大量の熱電子が
放出され、中間電極30により加速される。
Due to this discharge, a large amount of thermoelectrons are emitted from the high temperature main cathode 64 and are accelerated by the intermediate electrode 30.

この時、補助陰極32から4人した水素ガスの解離によ
って、タ゛イヤモンド形成において非ダイヤモンド成分
のエツチング効果に有効な原子状水素を含む高密度のプ
ラズマが生成され、プラズマ領域18をプラズマビーム
源10に対して正の電圧が印加されかつ水冷された対向
′電極12との間に形成する。この時、プラズマの放電
を安定させるためアルゴン ヘリウムなどの不活性ガス
を添加しても良い。
At this time, due to the dissociation of the hydrogen gas from the auxiliary cathode 32, a high-density plasma containing atomic hydrogen, which is effective for etching non-diamond components in diamond formation, is generated, and the plasma region 18 is connected to the plasma beam source 10. On the other hand, a positive voltage is applied to the opposite electrode 12, which is water-cooled. At this time, an inert gas such as argon helium may be added to stabilize plasma discharge.

上記の操作と平行して、ガス導入口28からメタンガス
を導入し、真空室22の真空度をITorr〜10 T
orr、およびプラズマビーム源10内の真空度ヲ10
 Torr〜100 Torrに保持する。この圧力差
の保持は、プラズマビーム源1oと!空室22間の開口
部の大きさを調節することによって可能であるが、プラ
ズマビーム源10と真空室22との間に中間排気室を設
けても良い。本実施例では、真空室22内部の真空度を
5 Torr、プラズマビーム源1o内部の真空度を4
0 Torrの圧力に保持した。ダイヤモンド膜を形成
するためには、真空室22内の混合ガス中の炭素化合物
ガス濃度を0.1%〜10%程度にするが、結晶性の優
れたダイヤモンド膜を析出させるためには1%前後が最
適であった。
In parallel with the above operation, methane gas is introduced from the gas inlet 28, and the degree of vacuum in the vacuum chamber 22 is set to ITorr ~ 10 T.
orr, and the degree of vacuum in the plasma beam source 10 is 10
Maintain at Torr to 100 Torr. This pressure difference is maintained between the plasma beam source 1o! Although this is possible by adjusting the size of the opening between the cavities 22, an intermediate evacuation chamber may be provided between the plasma beam source 10 and the vacuum chamber 22. In this embodiment, the degree of vacuum inside the vacuum chamber 22 is 5 Torr, and the degree of vacuum inside the plasma beam source 1o is 4 Torr.
A pressure of 0 Torr was maintained. In order to form a diamond film, the carbon compound gas concentration in the mixed gas in the vacuum chamber 22 is set to about 0.1% to 10%, but in order to deposit a diamond film with excellent crystallinity, it is set at 1%. Before and after was the best.

本発明による装置を用いてダイヤモンドの核発生密度を
増加させるため、あらかじめ研摩用タ゛イヤモンド粒子
を使って傷付は処理を行った直径6インチのシリコンウ
ェハー全面に大面積かつ均一プラズマにより、均−tよ
ダイヤモンド膜を形成できることが確認された。この時
、ダイヤモンド膜が形成可能な試料基板160面積は、
発生するプラズマ領域の大きさに、依存するため、マグ
ネットコイル26の制御によるプラズマ領域の拡大、さ
らには真空室22およびプラズマビーム源1oをスケー
ルアップすることにより、より大面積の基板に均一にダ
イヤモンド膜を形成することが可能である。
In order to increase the density of diamond nucleation using the apparatus according to the present invention, a large area and uniform plasma is applied to the entire surface of a 6-inch diameter silicon wafer, which has been previously scratched using abrasive diamond particles. It was confirmed that it is possible to form a diamond film. At this time, the area of the sample substrate 160 on which a diamond film can be formed is:
Since it depends on the size of the plasma region generated, by expanding the plasma region by controlling the magnet coil 26 and further scaling up the vacuum chamber 22 and plasma beam source 1o, diamond can be uniformly spread over a larger area of the substrate. It is possible to form a film.

また本発明のダイヤモンド膜気相合成装置は、試料基板
の配置位置が原子状水素を含むプラズマを発生するプラ
ズマビーム源1oから離れており、さらに従来のダイヤ
モンド気相合成法では数十Torr以上のガス圧力を必
要としたが、本装置では高密度プラズマを用いるため、
10 Torr以下のガス圧力域でもダイヤモンドの形
成が可能であることから、試料基板温度の低温化が達成
できる。
In addition, in the diamond film vapor phase synthesis apparatus of the present invention, the sample substrate is located far from the plasma beam source 1o that generates plasma containing atomic hydrogen, and the conventional diamond film vapor phase synthesis method Although gas pressure was required, this device uses high-density plasma, so
Since diamond can be formed even in a gas pressure range of 10 Torr or less, the temperature of the sample substrate can be lowered.

本発明による装置では、基板温度500℃という従来の
気相合成法よりも200°C〜300’C低い試料基板
温度においてダイヤモンド膜形成が可能である。
With the apparatus according to the present invention, it is possible to form a diamond film at a sample substrate temperature of 500°C, which is 200°C to 300'C lower than in the conventional vapor phase synthesis method.

さらに試料基板をプラズマビーム源に対して正電圧を印
加すると、基板への電子線照射によって、試料基板近傍
で炭素化合物ガスから生成される活性種密度が高くなり
、タ°イヤモンド膜の生長速度が増加、さらにはダイヤ
モンドの核発生密度も増加するという効果がある。
Furthermore, when a positive voltage is applied to the sample substrate with respect to the plasma beam source, the density of active species generated from carbon compound gas near the sample substrate increases due to electron beam irradiation to the substrate, and the growth rate of the diamond film increases. This has the effect of increasing the nucleation density of diamond.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明にょる夕。 As is clear from the above description, the present invention is useful.

イヤモンド膜気相合成装置は、中空陰極型のプラズマビ
ーム源で発生するプラズマを利用することにより、大面
積基板に均一にダイヤモンド膜を形成することが可能で
あり、さらに従来例と比較しより低温の試料基板温度に
おいてダイヤモンド膜形成が可能とkる効果をもつ。
Diamond film vapor phase synthesis equipment uses plasma generated by a hollow cathode type plasma beam source to uniformly form a diamond film on a large area substrate, and also at a lower temperature than conventional methods. This has the effect of making it possible to form a diamond film at a sample substrate temperature of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるタ゛イヤモンド膜気相
合成装置を示す側面からの断面図、第2凶は本発明のタ
゛イヤモンド膜気相合或装置に用いるプラズマビーム源
を示す断面図である。 10・・・・・・プラズマビーム源、 12・・・・・・対向電極、 4・・・・・・基板支持体、 6・・・・・・試料基板、 8・・・・・・プラズマ領域、 2・・・・・・真空室。 第2図
FIG. 1 is a sectional view from the side showing a diamond film vapor phase synthesis apparatus according to an embodiment of the present invention, and the second figure is a sectional view showing a plasma beam source used in the diamond film vapor phase synthesis apparatus of the present invention. DESCRIPTION OF SYMBOLS 10... Plasma beam source, 12... Counter electrode, 4... Substrate support, 6... Sample substrate, 8... Plasma Area, 2... Vacuum chamber. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 排気系およびガス導入口を有する真空室内に、中空陰極
型のプラズマビーム源と、該プラズマビーム源と対向配
置しかつ前記プラズマビーム源に対して正の電圧が印加
される対向電極を設置し、前記プラズマビーム源と対向
電極との間に発生するプラズマ領域中に試料基板を設置
することを特徴とするダイヤモンド膜気相合成装置。
A hollow cathode type plasma beam source and a counter electrode placed opposite to the plasma beam source and to which a positive voltage is applied to the plasma beam source are installed in a vacuum chamber having an exhaust system and a gas inlet, A diamond film vapor phase synthesis apparatus characterized in that a sample substrate is placed in a plasma region generated between the plasma beam source and a counter electrode.
JP32128088A 1988-12-20 1988-12-20 Gas-phase synthetic device of diamond film Pending JPH02167891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32128088A JPH02167891A (en) 1988-12-20 1988-12-20 Gas-phase synthetic device of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32128088A JPH02167891A (en) 1988-12-20 1988-12-20 Gas-phase synthetic device of diamond film

Publications (1)

Publication Number Publication Date
JPH02167891A true JPH02167891A (en) 1990-06-28

Family

ID=18130801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32128088A Pending JPH02167891A (en) 1988-12-20 1988-12-20 Gas-phase synthetic device of diamond film

Country Status (1)

Country Link
JP (1) JPH02167891A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205684A (en) * 1989-02-02 1990-08-15 Nippon Sheet Glass Co Ltd Method and device for coating of film
US5342660A (en) * 1991-05-10 1994-08-30 Celestech, Inc. Method for plasma jet deposition
US5551983A (en) * 1994-11-01 1996-09-03 Celestech, Inc. Method and apparatus for depositing a substance with temperature control
US5616373A (en) * 1990-09-14 1997-04-01 Balzers Aktiengesellschaft Plasma CVD method for producing a diamond coating
US5679404A (en) * 1995-06-07 1997-10-21 Saint-Gobain/Norton Industrial Ceramics Corporation Method for depositing a substance with temperature control
US6173672B1 (en) 1997-06-06 2001-01-16 Celestech, Inc. Diamond film deposition on substrate arrays
US6406760B1 (en) 1996-06-10 2002-06-18 Celestech, Inc. Diamond film deposition on substrate arrays
KR20040022639A (en) * 2002-09-09 2004-03-16 주식회사 네오바이오텍 The generation method of thin coating film by carbon system material
KR100765630B1 (en) * 2006-10-26 2007-10-09 기아자동차주식회사 Wiper blade and manufacturing method of it for vehicle
DE10149588B4 (en) * 2001-10-08 2017-09-07 Oerlikon Trading Ag, Trübbach Process for diamond coating of substrates

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205684A (en) * 1989-02-02 1990-08-15 Nippon Sheet Glass Co Ltd Method and device for coating of film
US5616373A (en) * 1990-09-14 1997-04-01 Balzers Aktiengesellschaft Plasma CVD method for producing a diamond coating
US5342660A (en) * 1991-05-10 1994-08-30 Celestech, Inc. Method for plasma jet deposition
US5551983A (en) * 1994-11-01 1996-09-03 Celestech, Inc. Method and apparatus for depositing a substance with temperature control
US5683759A (en) * 1994-11-01 1997-11-04 Celestech, Inc. Method for depositing a substance with temperature control
US5679404A (en) * 1995-06-07 1997-10-21 Saint-Gobain/Norton Industrial Ceramics Corporation Method for depositing a substance with temperature control
US6099652A (en) * 1995-06-07 2000-08-08 Saint-Gobain Industrial Ceramics, Inc. Apparatus and method for depositing a substance with temperature control
US6406760B1 (en) 1996-06-10 2002-06-18 Celestech, Inc. Diamond film deposition on substrate arrays
US6173672B1 (en) 1997-06-06 2001-01-16 Celestech, Inc. Diamond film deposition on substrate arrays
DE10149588B4 (en) * 2001-10-08 2017-09-07 Oerlikon Trading Ag, Trübbach Process for diamond coating of substrates
KR20040022639A (en) * 2002-09-09 2004-03-16 주식회사 네오바이오텍 The generation method of thin coating film by carbon system material
KR100765630B1 (en) * 2006-10-26 2007-10-09 기아자동차주식회사 Wiper blade and manufacturing method of it for vehicle

Similar Documents

Publication Publication Date Title
US4973494A (en) Microwave enhanced CVD method for depositing a boron nitride and carbon
JPH02167891A (en) Gas-phase synthetic device of diamond film
JPH04959B2 (en)
US5270029A (en) Carbon substance and its manufacturing method
JPH0420984B2 (en)
JPS644591B2 (en)
JPH0543393A (en) Method for preparing carbon material
RU2792526C1 (en) Diamond coating device
JPH04346218A (en) Device for growing nitride compound semiconductor film
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPS63145782A (en) Formation of thin film
JP3124422B2 (en) Method of forming highly oriented diamond thin film
JP3039880B2 (en) Carbon film formation method
JP2660244B2 (en) Surface treatment method
JP3190100B2 (en) Carbon material production equipment
JP2726149B2 (en) Thin film forming equipment
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JP2975971B2 (en) Carbon film formation method
JPH05311429A (en) Thin film forming device
JPH0532489A (en) Synthesis of diamond using plasma
Matsumoto Development of CVD diamond synthesis techniques
JPS63185891A (en) Production of diamond thin film or diamond-like thin film
JP3359475B2 (en) Thin film forming method and thin film forming apparatus
JPS63129099A (en) Production of diamond thin film or diamondlike thin film