JPH02159762A - Manufacture of photodetector - Google Patents

Manufacture of photodetector

Info

Publication number
JPH02159762A
JPH02159762A JP63315629A JP31562988A JPH02159762A JP H02159762 A JPH02159762 A JP H02159762A JP 63315629 A JP63315629 A JP 63315629A JP 31562988 A JP31562988 A JP 31562988A JP H02159762 A JPH02159762 A JP H02159762A
Authority
JP
Japan
Prior art keywords
electrode
receiving element
light receiving
insulating film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63315629A
Other languages
Japanese (ja)
Inventor
Mikio Mori
毛利 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63315629A priority Critical patent/JPH02159762A/en
Publication of JPH02159762A publication Critical patent/JPH02159762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:Not only to reduce the occurrence of a short circuit in probability but also to improve an image sensor in yield by a method wherein an insulating film is formed on a first electrode section outside a pixel region through an anodic oxidation treatment. CONSTITUTION:An insulating film 44 is formed through an anodic oxidation on a first electrode 34, which is located outside a pixel region, formed of one or two kinds of metal selected from a group composed of aluminum, magnesium, tantalum, titanium, and zirconium. As mentioned above, a photodetector 30 is provided with the insulating film 44 formed on the first electrode section 34 of a region outside the pixel region 42, so that the electrical contact between the first 34 and a second electrode 33 and a wiring electrode 40 through the pinholes of a photoconductive film 36 can be reduced in probability in the region where these electrodes are opposed to each other. By this setup, the occurrence of a bit defect can be reduced in probability to improve an image sensor of this design in yield.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は受光素子の製造方法、特に完全密着型イメー
ジセンサの受光素子として用いて好適な受光素子の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a light receiving element, and particularly to a method of manufacturing a light receiving element suitable for use as a light receiving element of a complete contact type image sensor.

(従来の技術) 従来より、原稿等の情報媒体の光学的な読取りを行なう
ための種々の構造のイメージセンサか提案されており、
例えば密着型センサヤ完全密着型センサか掃案されてい
る。密着型センサは原稿からの反射光を集光して受光部
に入射するためにロッドレンズアレイを必要とするか、
完全密着型イメージセンサは原稿を受光部に直接密着さ
せて走行させ読取りを行なうのでロッドレンズアレイを
不要とし従って小型化及び低価格化が図れるという利点
を有する。
(Prior Art) Image sensors of various structures have been proposed in the past for optically reading information media such as manuscripts.
For example, a close-contact type sensor or a completely close-contact type sensor is used. Does a close-contact sensor require a rod lens array to collect the reflected light from the document and input it to the light receiving section?
The complete contact type image sensor has the advantage of being able to reduce the size and cost of the original because it runs and reads the original in direct contact with the light receiving section, eliminating the need for a rod lens array.

第3図は従来の完全密着型イメージセンサの一単位の受
光素子の構造を概略的に示す要部断面図である。
FIG. 3 is a sectional view of a main part schematically showing the structure of a light receiving element of one unit of a conventional complete contact type image sensor.

同図において受光素子8は基板10上に第一電極12及
び光電変換膜14を順次に備え、そして光電変換膜14
上に第一電極12に対して対向1百される第一電極16
とこの電極16に電気的(こ接続された配線電極18と
を備える。
In the same figure, the light receiving element 8 includes a first electrode 12 and a photoelectric conversion film 14 in sequence on a substrate 10, and a photoelectric conversion film 14.
A first electrode 16 is arranged above and opposite to the first electrode 12.
and a wiring electrode 18 electrically connected to this electrode 16.

光電変換膜14ヲアモルファスシリコン層(881層)
とし、第二電極16を配線電極18ヲ介してドライバI
Cにワイヤボンドしている。
Photoelectric conversion film 14 amorphous silicon layer (881 layers)
The second electrode 16 is connected to the driver I via the wiring electrode 18.
Wire bonded to C.

そして基板10及び第二電極16ヲ透明な材料てま1.
:第一電極1涜1光性を有する材料で形成し、第一電極
12、光電変換膜14及び第二電極16に導光窓20を
設ける。
The substrate 10 and the second electrode 16 are made of transparent material.
: The first electrode 1 is made of a material having optical properties, and the first electrode 12, the photoelectric conversion film 14, and the second electrode 16 are provided with a light guiding window 20.

このような構造ては、基板10ヲはさんで受光素子8と
は反対側に配置した発光素子22からの出射光L1か基
板10、導光窓20ヲ順次に通過して原稿24に達し、
そして原稿24からの反射光L2か第電極16を通過し
て光電変換膜14(こ入射され光電変換される。
In such a structure, the light L1 emitted from the light emitting element 22 disposed on the opposite side of the light receiving element 8 across the substrate 10 passes through the substrate 10 and the light guiding window 20 in order and reaches the original 24.
Then, the reflected light L2 from the original 24 passes through the first electrode 16, enters the photoelectric conversion film 14, and is photoelectrically converted.

(発明か解決しようとする課題) しかしなから上述した従来の受光素子では発光素子22
からの光か直接に光電変換膜14に入射するのを防止す
るため、充分に巾広い第一電極12を形成しなければな
らす、従って第一電極12と第二電極16及び配線電極
18とか対向する領域日(オバーラップ早頁1或日)か
広くなる。
(Problem to be solved by the invention) However, in the conventional light receiving element described above, the light emitting element 22
In order to prevent light from directly entering the photoelectric conversion film 14, the first electrode 12 must be formed sufficiently wide. The area becomes wider (overlap early page 1 day).

ところか光導電層14ua−siとした場合、電極12
及び電極16.18の間の短絡の原因となるピンホール
かないa −S i層を形成することは現在の技術では
非常に困難であり、これかため領域日を広くするのに応
じて、短絡発生の確率か高まる。
However, when the photoconductive layer 14ua-si is used, the electrode 12
It is very difficult with current technology to form an a-Si layer with pinholes that cause short circuits between the electrodes 16 and 18, and this makes short circuits difficult as the area increases. The probability of occurrence increases.

短絡発生によってイメージセンサのビット欠陥を生し、
従って短絡発生の確率か高まる結果イメジセンサの歩留
りを向上できない。
Short circuits can cause bit defects in the image sensor,
As a result, the probability of short circuit occurrence increases, making it impossible to improve the yield of image sensors.

この発明の目的は、上述した従来の問題点を解決する1
とめ、短絡発生の確率を低減できしかも製造工程を簡略
化できる構造の受光素子の製造方法を提供することにあ
る。
The purpose of this invention is to solve the above-mentioned conventional problems.
Another object of the present invention is to provide a method for manufacturing a light receiving element having a structure that can reduce the probability of short circuit occurrence and simplify the manufacturing process.

(課題を解決するための手段) この目的の達成を図るため、この発明の受光素子の製造
方法は、基板上に第一電極及び光電変換膜を順次に備え
、この光電変換膜上に第一電極に対して対向配置される
第二電極と第二電極に電気的に接続される配線電極とを
備えて成る受光素子を製造するに当り、画素領域の外側
の領域の第電極部分に、陽極酸化によって絶縁膜を形成
することを特徴とする。
(Means for Solving the Problems) In order to achieve this object, the method for manufacturing a light receiving element of the present invention includes sequentially providing a first electrode and a photoelectric conversion film on a substrate, and disposing a first electrode on the photoelectric conversion film. In manufacturing a light-receiving element comprising a second electrode disposed opposite to the electrode and a wiring electrode electrically connected to the second electrode, an anode is placed on the first electrode portion in the area outside the pixel area. It is characterized by forming an insulating film by oxidation.

この発明の実施に当り、第一電極を、アルミラム、マグ
ネシウム、タンタル、チタン及びジルコニウムの群から
選ばれた一種又は二種以上を用いで形成するのか好適で
ある。
In carrying out this invention, it is preferable to form the first electrode using one or more selected from the group of aluminum, magnesium, tantalum, titanium, and zirconium.

(作用) このような受光素子の製造方法によれば、画素領域の外
側の領域の第一電極部分(こ、陽極酸化によって絶縁膜
を形成する。
(Function) According to such a method of manufacturing a light-receiving element, an insulating film is formed on the first electrode portion (this part) outside the pixel area by anodic oxidation.

陽極酸化によって絶縁膜を形成するので、電極上に例え
ばスパッタやプラズマCVDによって結縛物質を堆積さ
せることによって絶縁膜を形成する場合よりも、絶縁膜
の形成工程ヲ簡略化できる。
Since the insulating film is formed by anodic oxidation, the process for forming the insulating film can be simplified compared to the case where the insulating film is formed by depositing a binding substance on the electrode by sputtering or plasma CVD, for example.

またこの製造方法によって製造された受光素子は画素領
域の外側の領域の第一電極部分に絶縁膜を備えるので、
第一電極と第二電極及び配線電極との対向する領域にお
いでこれら電極が光導電膜のどンホールを介して電気的
に接触する確率を低減できる。
Furthermore, since the light receiving element manufactured by this manufacturing method includes an insulating film on the first electrode portion in the area outside the pixel area,
In areas where the first electrode, second electrode, and wiring electrode face each other, the probability that these electrodes come into electrical contact through holes in the photoconductive film can be reduced.

(実施例) 以下、この発明の実施例につき説明する。尚、図面はこ
れら発明か理解できる程度に概略的に示されているにす
ぎず、従って各構成成分の形状、寸法及び配設位Mを図
示例に限定するものではない。
(Examples) Examples of the present invention will be described below. Note that the drawings are merely shown schematically to the extent that these inventions can be understood, and therefore the shapes, dimensions, and arrangement positions M of each component are not limited to the illustrated examples.

〈受光素子の構造〉 この発明の詳細な説明に先立ち、まず実施例で製造され
る受光素子の構造の一例につき簡単に説明する。
<Structure of Light-Receiving Element> Prior to a detailed description of the present invention, an example of the structure of a light-receiving element manufactured in Examples will be briefly described.

第1図(A)及び(B)はこの、発明の実施例で製造さ
れる受光素子の構造の一例を概略的に示す図であり、図
(A)は図(B)にあけるIA−IA線に治って取った
一単位の受光素子の構造を示す断面図、また図(B)は
イメージセンサにおける受光素子を平面的にみたときの
構造を階段状に切り欠いて示す平面図である。
FIGS. 1(A) and 1(B) are diagrams schematically showing an example of the structure of a light receiving element manufactured in this embodiment of the invention, and FIG. 1(A) is a diagram showing an IA-IA diagram in FIG. A cross-sectional view showing the structure of one unit of light receiving element taken along a line, and FIG.

これら図に示す受光素、子30は、基板32上に第電極
34及び光電変換膜36を順次(こ備え、この膜36上
に第一電極34に対して対向配置される第二電極38と
この電極38に電気的に接続される配線電極40とを備
え、さらに画素領域42の外側の領域の第一電極34部
分に、陽極酸化膜44を備えて成る。
The light-receiving element 30 shown in these figures includes a second electrode 34 and a photoelectric conversion film 36 sequentially arranged on a substrate 32, and a second electrode 38 disposed on this film 36 opposite to the first electrode 34. A wiring electrode 40 is electrically connected to this electrode 38, and an anodic oxide film 44 is provided on a portion of the first electrode 34 outside the pixel region 42.

画素領域42は任意好適な形状及び大きさに設定された
1画素分の領域を表し、例えば第1図(8)にハツチン
グを付して示した領域を画素領域としている。図示例で
は、陽極酸化膜44を画素領域42の外側の領域であっ
て配線電極40と対向する側の領域の第一電極44の部
分に設けるようにしたか、画素領域42の外側領域にお
ける電極44と電極38及び又は40との間の短絡を防
止できるように設けてあればどのように陽極酸化膜44
を設けても良く、従って画素領域42の外9F)領域の
第一電極44の全部又は一部に陽極酸化膜44を設ける
ことかできる。
The pixel area 42 represents an area for one pixel set to any suitable shape and size, and for example, the area shown with hatching in FIG. 1(8) is the pixel area. In the illustrated example, the anodic oxide film 44 is provided on a portion of the first electrode 44 in a region outside the pixel region 42 and facing the wiring electrode 40; If the anodic oxide film 44 is provided in such a way as to prevent a short circuit between the electrode 44 and the electrode 38 and/or 40, the anodic oxide film 44
Therefore, the anodic oxide film 44 can be provided on all or part of the first electrode 44 in the area 9F) outside the pixel area 42.

そして図示例の受光素子30にあっては、基板32及び
第二電極38ヲ透明な材料から成る基板及び電極とし、
第一電極34ヲ連光性材料から成る電極とし、第一電極
34、光電変換膜36及び第二電極38にそれぞれ導光
窓46a、 46b、 46cを設けている。
In the illustrated light receiving element 30, the substrate 32 and the second electrode 38 are made of a transparent material, and
The first electrode 34 is made of a light-transmitting material, and the first electrode 34, the photoelectric conversion film 36, and the second electrode 38 are provided with light guide windows 46a, 46b, and 46c, respectively.

イメージセンサは複数個の受光素子30を基板32上に
任意好適に配設することによって構成され、例えば第1
図(B)に示すイメージセンサては複数個の受光素子3
0ヲ列状に並列配置し、第一電極34及び光電変換膜3
6ヲ受光素子30の配列方向に延在する帯状の電極及び
膜であって各受光素子30に対して共通の電極及び膜と
し、ざらに第二電極38及び配線電極40を各受光素子
30に対して個別に設けた電極としている。尚、受光素
子30ヲ二次元的に配列してイメージセンサを構成する
ようにしてもよい。
The image sensor is constructed by arbitrarily arranging a plurality of light receiving elements 30 on a substrate 32, for example, a first
The image sensor shown in Figure (B) has a plurality of light receiving elements 3.
The first electrode 34 and the photoelectric conversion film 3 are arranged in parallel in a row.
6 is a band-shaped electrode and film extending in the arrangement direction of the light receiving elements 30 and is common to each light receiving element 30, and roughly the second electrode 38 and the wiring electrode 40 are provided to each light receiving element 30. The electrodes are provided separately for each. Note that the image sensor may be constructed by arranging the light receiving elements 30 two-dimensionally.

〈実施例〉 次に第2図を参照し、この発明の実施例(こつき説明す
る。
<Embodiment> Next, referring to FIG. 2, an embodiment of the present invention will be explained in detail.

第2図(A)〜(F)はこの発明の一実施例の製造工程
を段階的に示す断面図であり、第1図(A)に対応する
断面を示す。
FIGS. 2(A) to 2(F) are cross-sectional views showing step by step the manufacturing process of an embodiment of the present invention, and show cross-sectional views corresponding to FIG. 1(A).

ます基板32として例えばガラスから成る透明な絶縁物
基板を用意し、この基板32の基板面32aに電極材料
を堆積させて第一電極層を形成し、然る後第−電極層を
バターニングして第2図(A)にも示すように導光窓4
6bを備える第一電極34を形成する。この実施例では
第一電極34の電極材料として陽極酸化を行なえかつ遮
光性を有する材料、例えばアルミニウム(Aρ)、マグ
ネシウム(M9)、タンタル(Ta)、チタン(丁1)
及びジルコニウム(Z r)の群から選ばれた一種又は
二種以上の材料を用いる。従って電極34ヲ例えば、こ
れら材料のなかの一種から成る一層構造の電極としたり
、これら材料のなかから選んた二種の材料の一方を積層
させこの一方の材料の層上に他方の材料を積層させた二
層構造の電極としたりすることができる。
First, a transparent insulating substrate made of glass, for example, is prepared as the substrate 32, and an electrode material is deposited on the substrate surface 32a of this substrate 32 to form a first electrode layer, and then the second electrode layer is patterned. As shown in FIG. 2(A), the light guide window 4
6b is formed. In this embodiment, the electrode material of the first electrode 34 is a material that can be anodized and has a light blocking property, such as aluminum (Aρ), magnesium (M9), tantalum (Ta), titanium (T1).
and zirconium (Zr). Therefore, the electrode 34 may be, for example, an electrode with a single layer structure made of one of these materials, or one of two materials selected from these materials may be laminated and the other material may be laminated on top of the layer of one material. It is also possible to form an electrode with a two-layer structure.

例えば電極材料をタンタルとしこのタンタルを]○OO
〜2000λ程度の層厚となるようにスパッタ法によっ
て基板32に被着させることによって第一電極層を形成
すれば良い。
For example, if the electrode material is tantalum, this tantalum]○OO
The first electrode layer may be formed by depositing it on the substrate 32 by sputtering so as to have a layer thickness of about 2000 λ.

次に第2図(B)にも示すように、少なくとも画素領域
の第一電極34部分にレジスト48を設け、陽極酸化膜
44の形成領域の第一電極34の部分をレジスト48で
被覆せずに露出させ、次に第電極34の露出部分に対す
る陽極酸化を行なって絶R膜を形成する(すなわち陽極
酸化膜44を形成する)。陽極酸化膜44の膜厚を例え
ば500〜1000人程度とする。
Next, as shown in FIG. 2(B), a resist 48 is provided at least on the first electrode 34 portion of the pixel area, and the first electrode 34 portion of the anodic oxide film 44 formation area is not covered with the resist 48. Then, the exposed portion of the first electrode 34 is anodized to form an extreme R film (that is, an anodic oxide film 44 is formed). The thickness of the anodic oxide film 44 is, for example, approximately 500 to 1,000.

皮表酸化膜44の形成ののち、第2図(C)にも示すよ
うにレジスト48を剥離する。
After the skin surface oxide film 44 is formed, the resist 48 is peeled off as shown in FIG. 2(C).

次に第2図(D)にも示すよう(こ第一電極34上にア
モルファスシリコン(以下、a−5iと称す)を選択的
に堆積させてa−3iから成る半導体層の光電変換膜3
6を形成する。例えばSi H4を主成分とする原料ガ
スを用いたグロー放電法によって、膜厚0.5−1.5
um程度のa−3iを堆積させ光電変換膜36を形成す
る。マスクを用いることによってa−3iを選択的に堆
積させて所望の形状の光電変換膜36を形成できる。
Next, as shown in FIG. 2(D), amorphous silicon (hereinafter referred to as a-5i) is selectively deposited on the first electrode 34 to form a photoelectric conversion film 3 of a semiconductor layer consisting of a-3i.
form 6. For example, a film thickness of 0.5-1.5
A photoelectric conversion film 36 is formed by depositing a-3i of about um. By using a mask, a-3i can be selectively deposited to form a photoelectric conversion film 36 having a desired shape.

次(こ光電変換膜36上に電極材料を堆積させて第電極
層を形成し、然る後第三電極層をバタングして第2図(
E)にも示すように導光窓46cを備える第二電極38
を形成する。この実施例では第二電極38の形成材料と
して透明な導電材料例え−ばITO(Indium T
in 0xide) %用いる。
Next, an electrode material is deposited on the photoelectric conversion film 36 to form a first electrode layer, and then a third electrode layer is batted as shown in FIG.
As also shown in E), the second electrode 38 includes a light guiding window 46c.
form. In this embodiment, the material for forming the second electrode 38 is a transparent conductive material such as ITO (Indium T
(in Oxide)% is used.

例えばITOを1000人程皮表層厚となるようにスパ
ッタ法によって光電変換膜36上に被着させることによ
って第二電極層を形成する。
For example, the second electrode layer is formed by depositing ITO on the photoelectric conversion film 36 by sputtering to a thickness of about 1,000 skin layers.

次に第二電極38上に電極材料を堆積させて第電極層を
形成し然る後第三電極層をパターニングして第2図(F
)にも示すように配線電極40を形成し、次いてフォト
リソ及びエツチング技術によって光電変換*46bに導
光窓46b %形成し、よって受光素子30ヲ得る。
Next, an electrode material is deposited on the second electrode 38 to form a first electrode layer, and then a third electrode layer is patterned as shown in FIG.
), a wiring electrode 40 is formed, and then a light guiding window 46b% is formed in the photoelectric conversion *46b by photolithography and etching techniques, thereby obtaining a light receiving element 30.

配線電極40の電極材料としては例えばアルミラムなど
のメタル(金属)材料を用いる。
As the electrode material for the wiring electrode 40, for example, a metal material such as aluminum laminate is used.

この発明は上述した実施例にのみ限定されるものではな
く、従って各構成成分の配設位置、形成材料、形状及び
構成任意好適に変更できる。また上述した実施例ではこ
の発明の理解を深めるために特定の材料、形成方法、製
造工程順序及び特定の数値的条件を挙げて説明したか、
これら材料、形成方法、製造工程順序及び条件は一例に
すぎす、従ってこの発明の目的の範囲内において任意好
適に変更できる。
The present invention is not limited to the embodiments described above, and therefore, the arrangement positions, forming materials, shapes, and configurations of each component can be changed as desired. In addition, in the above-mentioned embodiments, specific materials, forming methods, manufacturing process orders, and specific numerical conditions have been listed and explained in order to better understand the present invention.
These materials, forming methods, manufacturing process order, and conditions are merely examples, and therefore can be changed as desired within the scope of the purpose of the present invention.

例えば第一電極を、遮光性を有する層上に遮光性を有さ
ないか陽極酸化を行なえる層を積層させた2層構造の電
極とするようにしても良い。
For example, the first electrode may have a two-layer structure in which a layer that does not have a light-shielding property or can be anodized is laminated on a layer that has a light-shielding property.

(発明の効果) 上述した説明からも明らかなようにこの発明の受光素子
の製造方法によれば、画素領域の外側の領域の第一電極
部分に、陽極酸化によって絶縁膜を形成する。
(Effects of the Invention) As is clear from the above description, according to the method of manufacturing a light receiving element of the present invention, an insulating film is formed on the first electrode portion in the area outside the pixel area by anodic oxidation.

陽極酸化によって絶縁膜を形成するので、電極上に例え
ばスパッタやプラズマCVDによって絶縁物質を堆積さ
せること(こよって絶縁膜を形成する場合よりも、絶縁
膜の形成工程を簡略化できる。
Since the insulating film is formed by anodic oxidation, the process for forming the insulating film can be simplified compared to the case where an insulating material is deposited on the electrode by sputtering or plasma CVD (thus, the insulating film is formed).

またこの製造方法によって製造された受光素子は画素領
域の外側の領域の第一電極部分に絶縁膜を備えるので、
第一電極と第二電極及び配線電極との対向する領域にお
いてこれら電極が光導電膜のピンホールを介して電気的
に接触する確率を低減できる。
Furthermore, since the light receiving element manufactured by this manufacturing method includes an insulating film on the first electrode portion in the area outside the pixel area,
In areas where the first electrode, second electrode, and wiring electrode face each other, the probability that these electrodes come into electrical contact through pinholes in the photoconductive film can be reduced.

従ってこの発明をイメージセンサの受光素子の製造に適
用すれば、ビット欠陥の発生を確率的に低減してイメー
ジセンサの歩留り向上を図れる。
Therefore, if the present invention is applied to the manufacture of a light receiving element of an image sensor, the occurrence of bit defects can be reduced stochastically and the yield of image sensors can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(8)はこの発明の実施例で製造され
る受光素子の構造を概略的に示す断面図及び平面図、 第2図(ハ)〜(F)はこの発明の詳細な説明に供する
製造工程図、 第3図は従来の受光素子の構造を概略的に示す断面図で
ある。 30・・・受光素子、   32・・・基板34・・・
第一電極、   36・・・光電変換膜38・・・第二
電極、   40・・・配線電極42・・・画素領域、
   44・・・陽極酸化膜。 (B) この発明の詳細な説明図 第2 図 6a この発明の詳細な説明図 第2図
FIGS. 1(A) and (8) are a cross-sectional view and a plan view schematically showing the structure of a light-receiving element manufactured in an embodiment of the present invention, and FIGS. 2(C) to (F) are details of the present invention. FIG. 3 is a cross-sectional view schematically showing the structure of a conventional light-receiving element. 30... Light receiving element, 32... Substrate 34...
First electrode, 36... Photoelectric conversion film 38... Second electrode, 40... Wiring electrode 42... Pixel area,
44...Anodic oxide film. (B) Detailed explanatory diagram of this invention 2nd figure 6a Detailed explanatory diagram of this invention 2nd figure

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に第一電極及び光電変換膜を順次に備え、
該光電変換膜上に前記第一電極に対して対向配置される
第二電極と該第二電極に電気的に接続される配線電極と
を備えて成る受光素子を製造するに当り、 画素領域の外側の領域の第一電極部分に、陽極酸化によ
って絶縁膜を形成することを特徴とする受光素子の製造
方法。
(1) A first electrode and a photoelectric conversion film are sequentially provided on a substrate,
In manufacturing a light receiving element comprising a second electrode disposed on the photoelectric conversion film opposite to the first electrode, and a wiring electrode electrically connected to the second electrode, 1. A method of manufacturing a light receiving element, comprising forming an insulating film on a first electrode portion in an outer region by anodic oxidation.
(2)前記第一電極を、アルミニウム、マグネシウム、
タンタル、チタン及びジルコニウムの群から選ばれた一
種又は二種以上を用いて形成することを特徴とする請求
項1に記載の受光素子の製造方法。
(2) The first electrode is made of aluminum, magnesium,
2. The method of manufacturing a light receiving element according to claim 1, wherein the light receiving element is formed using one or more members selected from the group of tantalum, titanium, and zirconium.
JP63315629A 1988-12-14 1988-12-14 Manufacture of photodetector Pending JPH02159762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315629A JPH02159762A (en) 1988-12-14 1988-12-14 Manufacture of photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315629A JPH02159762A (en) 1988-12-14 1988-12-14 Manufacture of photodetector

Publications (1)

Publication Number Publication Date
JPH02159762A true JPH02159762A (en) 1990-06-19

Family

ID=18067666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315629A Pending JPH02159762A (en) 1988-12-14 1988-12-14 Manufacture of photodetector

Country Status (1)

Country Link
JP (1) JPH02159762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154165A (en) * 1990-10-18 1992-05-27 Fuji Xerox Co Ltd Semiconductor device
JPH0492654U (en) * 1990-12-28 1992-08-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154165A (en) * 1990-10-18 1992-05-27 Fuji Xerox Co Ltd Semiconductor device
JPH0492654U (en) * 1990-12-28 1992-08-12

Similar Documents

Publication Publication Date Title
JPS5980964A (en) Photoelectric conversion element
JPH02159762A (en) Manufacture of photodetector
JPH09222505A (en) Device having microlens and shape of microlens
JPS628951B2 (en)
JPH031873B2 (en)
JP2573342B2 (en) Light receiving element
KR100503269B1 (en) Light sensing device employing a single tft serving both functions of sensing and switching, and a control method of the same
JPH04255269A (en) Photodetective device
JPS6327871B2 (en)
JPH0653470A (en) Image sensor and fabrication thereof
KR20000038217A (en) Storage capacitor of thin film transistor photo sensor and method thereof
JPS5999863A (en) Color original reading method
JPH02159771A (en) Photoelectric conversion device
JPH01192167A (en) Sensor
JPS58155758A (en) Optoelectric transducer and manufacture thereof
JPS6218065A (en) Manufacture of image sensor
JPS6037161A (en) Photoelectric conversion element
JPS6236962A (en) Contact type image sensor
JPH0763087B2 (en) Method of manufacturing image sensor
JPS61181158A (en) Contact type image sensor
JPS63273350A (en) Contact type image sensor and manufacture thereof
JPS6182467A (en) Manufacture of image sensor
JPS6218066A (en) Image sensor and manufacture of the same
JPS61232668A (en) Image sensor and manufacture thereof
JPH03288472A (en) Adhesive sensor and manufacture thereof