JPH02153903A - Production of highly hygroscopic resin - Google Patents

Production of highly hygroscopic resin

Info

Publication number
JPH02153903A
JPH02153903A JP30817888A JP30817888A JPH02153903A JP H02153903 A JPH02153903 A JP H02153903A JP 30817888 A JP30817888 A JP 30817888A JP 30817888 A JP30817888 A JP 30817888A JP H02153903 A JPH02153903 A JP H02153903A
Authority
JP
Japan
Prior art keywords
ether
water
compound
glycol
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30817888A
Other languages
Japanese (ja)
Other versions
JPH0639487B2 (en
Inventor
Yoshikazu Kobayashi
由和 小林
Koichi Isomi
磯見 浩一
Masunori Ozaki
益教 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP30817888A priority Critical patent/JPH0639487B2/en
Publication of JPH02153903A publication Critical patent/JPH02153903A/en
Publication of JPH0639487B2 publication Critical patent/JPH0639487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Abstract

PURPOSE:To industrially obtain the subject resin having individually excellent water-absorbing speed, water-absorbing amount and gel strength by treating a powdery hygroscopic polymeric compound having carboxyl group, etc., with specific crosslinking agent in the presence of water and ether compound. CONSTITUTION:A powdery hygroscopic compound having carboxyl group and/or carboxylate part (e.g., hydrolyzed substance of starch/acrylonitrile graft copolymer) is treated with a crosslinking agent having at least two functional groups reactive with the above hygroscopic polymeric compound (preferably epoxy compound or aluminum gel formed by reaction of aluminum salt and aluminate or aluminum salt and alkali metal hydroxide) in the presence of water and ether compound (preferably diethylene glycol methyl ether, propylene glycol ethyl ether or tetraethylene glycol dimethyl ether, etc.) to afford the aimed resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高吸水性樹脂の製法に係わり、詳しくは吸水速
度、吸水量及びゲル強度が共に大きい吸水性樹脂の工業
的製法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for producing a super absorbent resin, and more particularly to an industrial method for producing a water absorbent resin that has high water absorption rate, water absorption amount, and gel strength.

〈従来の技術〉 高吸水性樹脂は、その驚異的に多い吸水量及び多少の圧
力を受けても一度吸水した液は離水しないという優れた
保持力から、従来、バルブや吸水紙に代わる液吸収素材
として、おむつ、生理用品等の衛生用品メーカーの注目
を集め実用化されてきたものであり、近年、その用途は
農業、園芸、食品、メディカル等に幅広く拡がりつつあ
る。
<Prior art> Super water-absorbing resin has been used as an alternative to valves and water-absorbing paper due to its surprisingly large amount of water absorption and its excellent retention ability, which means that once absorbed, the liquid will not separate from water even when subjected to some pressure. As a material, it has attracted the attention of manufacturers of sanitary products such as diapers and sanitary products, and has been put into practical use.In recent years, its uses have been expanding to a wide range of fields, including agriculture, horticulture, food, and medical care.

ところで、高吸水性樹脂には、吸水量が多いことのみな
らず、速やかに吸水することが要求される。−このため
、吸水性樹脂に一定の処理を施して、吸水速度をさらに
大きくする等の改良が一般に行われている。例えば、粉
末状の吸水性高分子の粒子表面を架橋剤にて架橋する種
々の改良法が提案されている(特公昭59−8898号
公報、特開昭58−42802号公報、特公昭61−4
8521号公報、特公昭60−18890号公報参照)
。これらの方法は、いずれも適量の架橋剤を用いること
により、粒子に表面処理を施し、粒子表面の架橋密度を
大きくして、吸水によって膨潤した粒子間の凝集、凝着
を起こり難くすると共に、吸水初期の段階における粒子
表面のゲル化を防止して、吸水速度を改良することによ
り、大きな吸水量と共に大きな吸水速度を有する高吸水
性樹脂を得ることを目的とするものである。
By the way, super absorbent resins are required not only to absorb a large amount of water, but also to absorb water quickly. - For this reason, improvements such as subjecting water-absorbing resins to certain treatments to further increase their water-absorbing speed are generally being carried out. For example, various improved methods have been proposed in which the particle surfaces of powdered water-absorbing polymers are cross-linked using a cross-linking agent (Japanese Patent Publications No. 59-8898, JP-A-58-42802, JP-B No. 61-1988). 4
(Refer to Publication No. 8521 and Special Publication No. 18890/1989)
. In each of these methods, by using an appropriate amount of a crosslinking agent, particles are surface-treated to increase the crosslinking density on the particle surface, thereby making it difficult for particles swollen by water absorption to coagulate and adhere, and The purpose of this invention is to obtain a super water-absorbent resin that has both a large water absorption amount and a high water absorption rate by preventing gelation of the particle surface at the initial stage of water absorption and improving the water absorption rate.

これら従来の表面架橋法にあっては、メタノール等の揮
発性の有機溶媒中に吸水性の高分子化合物を分散させた
液に、架橋剤を添加することにより架橋を行なっていた
In these conventional surface crosslinking methods, crosslinking is carried out by adding a crosslinking agent to a liquid in which a water-absorbing polymer compound is dispersed in a volatile organic solvent such as methanol.

〈発明が解決しようとする課題〉 しかしながら、分散媒として有機溶媒を多量に用いる上
記従来の製法にあっては、火災、爆発等の危険性があり
、このため作業上の安全性に問題があった。
<Problems to be Solved by the Invention> However, the conventional manufacturing method described above, which uses a large amount of organic solvent as a dispersion medium, has the risk of fire, explosion, etc., and therefore poses problems in work safety. Ta.

また、有機溶媒の回収が水質汚濁等の公害を防止す、る
上で必要になるため製造コストがかさむという問題もあ
った。
Furthermore, since recovery of the organic solvent is necessary to prevent pollution such as water pollution, there is also the problem of increased manufacturing costs.

ところで、上記従来製法を開示した公報には、分散剤と
してメタノール、エタノール、ケトン、エチレングリコ
ール、プロピレングリコール、グリセリン、ジエチレン
グリコール等の親水性有機溶剤を用いることにより吸水
速度が大きい高吸水性樹脂を得ることが可能である旨記
載されているが、本発明者等による確認試験によれば各
公報において開示されているほどの品質を有するものは
得られなかった。本発明者等がこの原因を検討した結果
、架橋処理の際に、吸水性高分子化合物の粒子同士が凝
集してダマ状になるため樹脂表面を均一に架橋すること
ができないことに因ることが判った。
By the way, the publication disclosing the above-mentioned conventional production method states that a super absorbent resin with a high water absorption rate can be obtained by using a hydrophilic organic solvent such as methanol, ethanol, ketone, ethylene glycol, propylene glycol, glycerin, or diethylene glycol as a dispersant. However, according to confirmation tests conducted by the present inventors, it was not possible to obtain a product having the quality disclosed in each publication. The inventors investigated the cause of this problem and found that it is because the particles of the water-absorbing polymer compound aggregate and form lumps during cross-linking treatment, making it impossible to uniformly cross-link the resin surface. It turns out.

本発明は以上の事情に鑑みなされたものであって、その
目的とするところは、樹脂表面を均一に架橋することに
より、吸水速度及び吸水量が共に大きく、しかも大きな
ゲル強度を有する吸水性樹脂を、低廉且つ安全に製造す
る方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to create a water-absorbing resin that has high water absorption rate and water absorption amount, and high gel strength by uniformly crosslinking the resin surface. The purpose of the present invention is to provide a method for manufacturing the same at low cost and safely.

く課題を解決するための手段〉 上記目的を達成するための本発明に係る吸水性樹脂の製
法においては、分散剤としてエーテル化合物を用いるこ
とにより、架橋処理の際の吸水性高分子化合物の粒子の
凝集を防止してこれを均一に分散させ、粒子表面を均一
に架橋し得るようにした。
Means for Solving the Problems> In the method for producing a water-absorbing resin according to the present invention to achieve the above object, an ether compound is used as a dispersant, so that particles of a water-absorbing polymer compound during crosslinking treatment are By preventing agglomeration of the particles and uniformly dispersing them, the particle surfaces can be uniformly crosslinked.

即ち、本発明に係る高吸水性樹脂の製法は、カルボキシ
ル基及び/又はカルボキシレート部分を有する粉末状の
吸水性高分子化合物を、水及びエーテル化合物の存在下
、前記吸水性高分子化合物と反応し得る2個以上の官能
基を有する架橋剤にて処理するものである。
That is, the method for producing a superabsorbent resin according to the present invention involves reacting a powdery water-absorbing polymer compound having a carboxyl group and/or a carboxylate moiety with the water-absorbing polymer compound in the presence of water and an ether compound. It is treated with a crosslinking agent having two or more functional groups that can be used.

以下、本発明に係る製法を詳細に説明する。Hereinafter, the manufacturing method according to the present invention will be explained in detail.

本発明において用い得る吸水性高分子化合物としては、
カルボキシル基及び/又はカルボキシレート部分を有す
る重合体であれば良く、例えば澱粉/アクリルニトリル
グラフト共重合体の加水分解物、澱粉/アクリル酸グラ
フト共重合体の部分中和物、酢酸ビニル/アクリル酸エ
ステル共重合体のケン化物、カルボキシメチルセルロー
ス、イソブチレン/無水マレイン酸共重合体、ポリアク
リル酸の部分中和物及びこれらの各重合体の架橋物等を
挙げることができる。主鎖にアクリル酸又はアクリル酸
塩の七ツマー単位を有する重合体又は共重合体からなる
ポリアクリル酸系の吸水性高分子化合物が特に好ましい
Water-absorbing polymer compounds that can be used in the present invention include:
Any polymer having carboxyl groups and/or carboxylate moieties may be used, such as hydrolysates of starch/acrylic nitrile graft copolymers, partially neutralized starch/acrylic acid graft copolymers, vinyl acetate/acrylic acid Examples include saponified products of ester copolymers, carboxymethylcellulose, isobutylene/maleic anhydride copolymers, partially neutralized products of polyacrylic acid, and crosslinked products of each of these polymers. Particularly preferred is a polyacrylic acid-based water-absorbing polymer compound consisting of a polymer or copolymer having heptad units of acrylic acid or acrylate in its main chain.

かかる主鎖にアクリル酸又はアクリル酸塩のモノマー単
位を有する重合体又は共重合体からなるポリアクリル酸
系の重合体としては、例えばポリアクリル酸、ポリアク
リル酸塩、アクリル酸とアクリル酸塩との共重合体等が
挙げられる。ここで、ポリアクリル酸塩及びアクリル酸
塩の塩部分としては、ナトリウム塩、カリウム塩等のア
ルカリ金属塩、アンモニウム塩等の有機塩基塩を挙げる
ことができる。また、親水性等の特性を改良するために
、主鎖にアクリル酸又はアクリル酸塩のモノマー単位を
有する重合体とアクリルアミド、N−ビニルピロリドン
、2−ヒドロキシエチルメタクリレート等との共重合体
であってもよい。なお、架橋したものが好ましく、架橋
物の製造に際しては、公知の架橋手段を用いることがで
きる。例えば、N−メチロールアクリルアミド等の架橋
性上ツマ−との共重合体を加熱したり、或いはペルオキ
ソ硫酸カリウム等の酸化性を有する触媒を用いることに
より、又は2個以上の重合性不飽和結合を有する架橋剤
として例えばN、N’ −メチレンビスアクリルアミド
、エチレングリコールジアクリレート等を重合の際に添
加する方法がある。
Examples of polyacrylic acid-based polymers consisting of polymers or copolymers having monomer units of acrylic acid or acrylate in the main chain include polyacrylic acid, polyacrylate, and acrylic acid and acrylate. Examples include copolymers of. Here, examples of the polyacrylate and the salt portion of the acrylate include alkali metal salts such as sodium salt and potassium salt, and organic base salts such as ammonium salt. In addition, in order to improve properties such as hydrophilicity, copolymers of polymers having acrylic acid or acrylate monomer units in the main chain with acrylamide, N-vinylpyrrolidone, 2-hydroxyethyl methacrylate, etc. You can. Note that crosslinked products are preferable, and known crosslinking means can be used for producing crosslinked products. For example, by heating a copolymer with a crosslinkable polymer such as N-methylolacrylamide, or by using an oxidizing catalyst such as potassium peroxosulfate, or by removing two or more polymerizable unsaturated bonds. There is a method of adding, for example, N,N'-methylenebisacrylamide, ethylene glycol diacrylate, etc. as a crosslinking agent during polymerization.

しかし、通常はアクリル酸及び/又はアクリル酸塩の水
溶液に、必要に応じて他の共重合性モノマー及び上記の
架橋剤を添加して重合させる方法が採られており、この
方法で得られる重合体は乾燥すると塊状に固化するので
、高吸水性樹脂素材に適した大きさの粒径に粉砕機を用
いて粉砕する。
However, a method is usually adopted in which other copolymerizable monomers and the above-mentioned crosslinking agents are added as necessary to an aqueous solution of acrylic acid and/or acrylates, and the polymers obtained by this method are When the coalescence is dried, it solidifies into a lump, so it is crushed using a crusher to a particle size suitable for the super absorbent resin material.

タイラーふるいにおいて、5〜400メツシュ通過物が
好ましく、10〜200メツシュ通過物がさらに好まし
い。なお、乳化重合又は懸濁重合により得られる重合体
は小さな球状をなしており、そのまま用いても良く、さ
らに粉砕して微細化して用いても良い。
In the Tyler sieve, a material passing through a 5 to 400 mesh is preferred, and a material passing through a 10 to 200 mesh is more preferred. In addition, the polymer obtained by emulsion polymerization or suspension polymerization has a small spherical shape, and may be used as it is, or may be further pulverized to make it finer.

本発明において水を添加するのは、架橋深度即ち高吸水
性樹脂の架橋部分の粒子表面からの深さを均一化するた
めであり、好ましい水の添加量はポリマー100ffl
量部当り1〜50重量部である。
The reason why water is added in the present invention is to equalize the crosslinking depth, that is, the depth from the particle surface of the crosslinked part of the super absorbent resin, and the preferable amount of water added is 100ffl of the polymer.
The amount is 1 to 50 parts by weight.

1重量部未満の場合、添加効果が充分でない一方、50
重量部を越えた場合、粒子の内部深くまで架橋されてし
まうため、ゲル強度は大きくなるものの吸水量が小さく
なり、吸水量及びゲル強度の両方を満足する高吸水性樹
脂を得ることができず、また水の量が多くなればなるほ
ど、乾燥により多くの時間および熱量を要するため工業
的製法として不向きだからである。
If the amount is less than 1 part by weight, the effect of addition is not sufficient;
If the amount exceeds 1 part by weight, the particles will be cross-linked deep inside, so although the gel strength will increase, the amount of water absorption will decrease, making it impossible to obtain a superabsorbent resin that satisfies both water absorption and gel strength. Moreover, the larger the amount of water, the more time and heat required for drying, making it unsuitable as an industrial production method.

本発明において分散剤として用い得るエーテル化合物と
しては、ジエチレングリコール、プロピレングリコール
、ジプロピレングリコール、トリプロピレングリコール
、テトラエチレングリコール等のモノアルキルエーテル
またはジアルキルエーテルが例示され、具体的には、ジ
エチレングリコールメチルエーテル、ジプロピレングリ
コールメチルエーテル、ジエチレングリコールジエチル
エーテル、ジエチレングリコールジエチルエーテル、ジ
エチレングリコールジブチルエーテル、プロピレングリ
コールメチルエーテル、プロピレングリコールエチルエ
ーテル、ジプロピレングリコールメチルエーテル、ジプ
ロピレングリコールエチルエーテル、トリプロピレング
リコールメチルエーテル、テトラエチレングリコールジ
メチルエーテル等が挙げられる。
Examples of the ether compound that can be used as a dispersant in the present invention include monoalkyl ethers or dialkyl ethers such as diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, and tetraethylene glycol. Specifically, diethylene glycol methyl ether, Dipropylene glycol methyl ether, diethylene glycol diethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, tripropylene glycol methyl ether, tetraethylene glycol dimethyl ether etc.

なお、エチレングリコールのアルキルエーテルは、毒性
がある点で、好ましくない。
Note that alkyl ethers of ethylene glycol are not preferred because they are toxic.

本発明において、かかる特定のエーテル化合物を選択し
たのは、本発明者等による実験結果に基くものであり、
他の親水性有機溶剤を用いたのでは、架橋処理の際に凝
集によるダマが発生しやすく均一な架橋処理が困難にな
るとの理由による。
In the present invention, such specific ether compounds were selected based on experimental results by the present inventors.
This is because using other hydrophilic organic solvents tends to cause lumps due to aggregation during the crosslinking process, making uniform crosslinking difficult.

好ましい使用量はポリマー100重量部当り0605〜
10重量部である。0.05重量部未満の場合、架橋処
理の際にダマが発生するために添加効果が小さくなる一
方、 10ffiffi部を越えて添加した場合、粉末のベト
ッキが出てきて流動性が低下し、ハンドリング性が著し
く悪化する。なお、この特定のエーテル化合物の使用量
は、水100重量部に対して2〜50重量部であること
が望ましい。これは、2重量部未満の場合、有意な添加
効果を得ることができない一方、50重量部を越えた場
合、増量効果をさほど期待できないからである。なお、
好ましい配合量は5〜30重量部である。
The preferred amount used is 0.605 to 100 parts by weight of polymer.
It is 10 parts by weight. If the amount is less than 0.05 parts by weight, lumps will be generated during crosslinking treatment and the effect of addition will be reduced. If more than 10 ffiffi parts are added, a sticky powder will appear, reducing fluidity and making handling difficult. Sexuality deteriorates significantly. Note that the amount of this specific ether compound used is preferably 2 to 50 parts by weight per 100 parts by weight of water. This is because if the amount is less than 2 parts by weight, no significant effect can be obtained, while if it exceeds 50 parts by weight, no significant increase in weight can be expected. In addition,
The preferred amount is 5 to 30 parts by weight.

本発明において用い得る2以上の官能基を有する架橋剤
としては、吸水性高分子化合物が有するカルボキシル基
及び/又はカルボキシレート部分と反応し得るものであ
れば良い。かかる架橋剤としては、例えばアルデヒド化
合物(例えばグルタルア−ルデヒド、グリオキザール等
)イソシアネ−ト(例えば2.4−トリレンジイソシア
ネート、ヘキサメチレンジイソシアネート等)、ハロエ
ポキシ化合物(例えばエピクロルヒドリン、エビブロモ
ヒドリン)、エポキシ化合物(例えばエチレングリコー
ルジグリシジルエーテル、ジエチレングリコールジグリ
シジルエーテル、ポリエチレングリコールジグリシジル
エーテル、プロピレングリコールジグリシジルエーテル
、ジプロピレングリコールジグリシジルエーテル、ポリ
プロピレングリコールジグリシジルエーテル、グリセリ
ンジグリシジルエーテル、ポリグリセリンポリグリシジ
ルエーテル、ペンタエリトリトールポリグリシジルエー
テル、ソルビトールポリグリシジルエーテル)および多
価の金属化合物を挙げることができる。これらの架橋剤
の中では、エポキシ化合物およびアルミニウム塩とアル
ミン酸塩またはアルミニウム塩とアルカリ金属水酸化物
との反応により形成された水酸化アルミニウムゲル(特
開昭62−25072号公報参照)が最も好ましい。
The crosslinking agent having two or more functional groups that can be used in the present invention may be any crosslinking agent as long as it can react with the carboxyl group and/or carboxylate moiety of the water-absorbing polymer compound. Examples of such crosslinking agents include aldehyde compounds (e.g. glutaraldehyde, glyoxal, etc.), isocyanates (e.g. 2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.), haloepoxy compounds (e.g. epichlorohydrin, shrimp bromohydrin), epoxy Compounds (e.g. ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerin diglycidyl ether, polyglycerin polyglycidyl ether, Pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether) and polyvalent metal compounds may be mentioned. Among these crosslinking agents, aluminum hydroxide gel formed by the reaction of an epoxy compound and an aluminum salt and an aluminate or an aluminum salt and an alkali metal hydroxide (see Japanese Patent Application Laid-Open No. 62-25072) is the most popular. preferable.

上記架橋剤は、求める吸水特性、ゲル強度等に応じて適
宜の量を用い得るが、吸水性高分子化合物100重量部
に対して0.001〜10重量部を用いるのが一般的で
あり、好ましい使用量は0.005〜5重量部である。
The crosslinking agent may be used in an appropriate amount depending on the desired water absorption properties, gel strength, etc., but it is generally used in an amount of 0.001 to 10 parts by weight per 100 parts by weight of the water absorbing polymer compound. The preferred amount used is 0.005 to 5 parts by weight.

ここで、架橋剤が一般的に0.001〜10重量部使用
されるのは、0.001重量部未満の場合、架橋効果が
充分にあられれず、また架橋処理の際に粉末状の吸水性
樹脂が凝集してダマ状の塊になり、均一に架橋処理する
ことが困難になる一方、10重量部を越える場合、架橋
密度が大きくなり過ぎ、吸水量が低下するからである。
Here, the crosslinking agent is generally used in an amount of 0.001 to 10 parts by weight, because if it is less than 0.001 part by weight, the crosslinking effect will not be sufficiently achieved, and during the crosslinking treatment, the powdery water absorbent This is because the resin aggregates into lump-like lumps, making it difficult to crosslink uniformly, while if it exceeds 10 parts by weight, the crosslinking density becomes too high and the amount of water absorption decreases.

本発明に係る高吸水性樹脂の製法においては、特定のエ
ーテル化合物と水との存在下、粉末状の吸水性高分子化
合物を架橋剤にて架橋処理をした後、乾燥する。具体的
には種々の方法が考えられるが、混合機に吸水性高分子
化合物を収容し、これに分散剤と架橋剤とを水に溶解又
は分散させた液を攪拌しながら滴下又はスプレーし、充
分に混合して架橋処理した後、乾燥機で乾燥する方法が
例示される。
In the method for producing a superabsorbent resin according to the present invention, a powdery water-absorbing polymer compound is crosslinked with a crosslinking agent in the presence of a specific ether compound and water, and then dried. Specifically, various methods can be considered, such as placing a water-absorbing polymer compound in a mixer, dropping or spraying a liquid in which a dispersant and a crosslinking agent are dissolved or dispersed in water while stirring; An example of this method is to thoroughly mix and crosslink, and then dry in a dryer.

なお、上記混合機は、本発明においては特に限定されず
、ナウターミキサ−リボンブレンダーコニカルブレンダ
ー、ヘンシェルミキサー ライカイ器等の慣用の混合機
を用いることができる。
The above-mentioned mixer is not particularly limited in the present invention, and a conventional mixer such as a Nauta mixer, a ribbon blender, a conical blender, a Henschel mixer, or the like can be used.

また、架橋処理後に行う乾燥には、慣用の乾燥機、例え
ば熱風循環乾燥機、減圧乾燥機等を用いることができる
Further, for drying after the crosslinking treatment, a conventional dryer such as a hot air circulation dryer, a vacuum dryer, etc. can be used.

上記架橋処理において、架橋反応温度は特に限定されず
、架橋剤の種類、目標とする吸水特性及びゲル強度等に
応じて適宜の温度で行うことができる。
In the above-mentioned crosslinking treatment, the crosslinking reaction temperature is not particularly limited, and can be carried out at an appropriate temperature depending on the type of crosslinking agent, target water absorption characteristics, gel strength, etc.

また、乾燥温度は、室温〜150℃、好ましくは70−
120℃である。なお、架橋処理と乾燥処理とを同時に
行なってもよい。
In addition, the drying temperature is room temperature to 150°C, preferably 70°C to 150°C.
The temperature is 120°C. Note that the crosslinking treatment and the drying treatment may be performed simultaneously.

さらに、混合時の流動性、架橋特性等を改良するために
、塩化カルシウム、硝酸亜鉛等を添加してもよい。
Furthermore, calcium chloride, zinc nitrate, etc. may be added to improve fluidity during mixing, crosslinking properties, etc.

〈実施例〉 以下に、本発明方法の実施例及び比較例を示すが、本発
明は下記の実施例に限定されるものではないことは勿論
である。下記において、96は重量%を示し、また吸水
性樹脂の性能試験は下記の方法により行なった。
<Examples> Examples and comparative examples of the method of the present invention are shown below, but it goes without saying that the present invention is not limited to the following examples. In the following, 96 indicates weight %, and the performance test of the water absorbent resin was conducted by the following method.

a)吸水量の測定 ひだ折りした市販のコーヒーフィルタに試料X (g)
を入れ、0.9%食塩水に10分間浸漬した後、コーヒ
ーフィルタを含めて重uY(g)を測定する。別途また
、0.9%食塩水を吸水した前記コーヒーフィルタの重
fi1Z(g)を測定する。これらの測定値X−Zより
、下記の式に基づいて吸水量(倍)を求めた。
a) Measurement of water absorption amount Sample X (g) is placed on a folded commercially available coffee filter.
After soaking in 0.9% saline solution for 10 minutes, the weight uY (g) including the coffee filter is measured. Separately, the weight fi1Z (g) of the coffee filter that has absorbed 0.9% saline is measured. From these measured values X-Z, the water absorption amount (times) was determined based on the following formula.

吸水量(倍)−(Y−Z)/X b)ゲル強度の測定 200 mlのビーカーに0.9%食塩水97.5gを
加え、マグネチックスターラで攪拌しながら、吸水性高
分子化合物2.5gを添加してゲル化させる。生成した
ゲルを24時間放置した後、初めに3/16インチ直径
のJIS規格玉軸受用鋼球を、次にそれよりl/16イ
ンチずつ大きくなった同鋼球を順次ゲル表面に載せる。
Water absorption amount (times) - (Y-Z) / Add .5g and allow to gel. After the gel is left to stand for 24 hours, first a JIS standard ball bearing steel ball with a diameter of 3/16 inch is placed on the surface of the gel, and then steel balls larger in diameter of 1/16 inch are sequentially placed on the gel surface.

この操作を鋼球がゲル内に沈降するまで継続する。但し
、沈降しなかった鋼球は除去してから次の鋼球を載せる
ようにする。このようにして、沈降しなかった鋼球の最
大直径をもってゲル強度とした。
This operation is continued until the steel balls settle into the gel. However, the steel balls that have not settled should be removed before placing the next steel ball. In this way, the maximum diameter of the steel balls that did not settle was defined as the gel strength.

■ 供試吸水性高分子化合物の調製 80%アクリル酸75重量部、48.6%水酸化ナトリ
ウム48.0重量部及びイオン交換水48.6重量部を
混合して中和度70%のアクリル酸塩水溶液を調製した
。このアクリル酸塩水溶液1028gに、1%N、N’
 −メチレンビスアクリルアミド水溶液5gを添加して
窒素置換した後、2%ベルオキソニ硫酸塩に2 S2 
os水溶液36g、2%ピロ亜硫酸塩に2 S20s水
溶液21.6g及び40%グリオキサール水溶液を水で
50倍に薄めた希釈液14.4gを添加して混合液を得
た。次いで、この混合液を、縦48cm。
■ Preparation of test water-absorbing polymer compound 75 parts by weight of 80% acrylic acid, 48.0 parts by weight of 48.6% sodium hydroxide, and 48.6 parts by weight of ion-exchanged water were mixed to prepare acrylic with a neutralization degree of 70%. An aqueous acid salt solution was prepared. To 1028 g of this acrylate aqueous solution, 1% N, N'
- After adding 5 g of methylene bisacrylamide aqueous solution and purging with nitrogen, 2 S2
A mixed solution was obtained by adding 21.6 g of 2S20s aqueous solution and 14.4 g of a diluted solution of 40% glyoxal aqueous solution diluted 50 times with water to 36 g of os aqueous solution and 2% pyrosulfite. Next, spread this mixture into a length of 48 cm.

横37印のバット(内面テフロンコーティング)に注入
し、42℃の熱風循環乾燥器内で20分間重合して、厚
さ5〜6 mmの含水ゲルを得た。得られた含水ゲルを
表面温度130℃のドラムドライアで乾燥してフレーク
状の樹脂とし、この樹脂をビンミルで粉砕した後、分級
し、16〜200メツシユの粉末状の吸水性高分子化合
物を得た。
The mixture was poured into a vat with 37 horizontal marks (Teflon coating on the inside) and polymerized for 20 minutes in a hot air circulation dryer at 42°C to obtain a hydrogel with a thickness of 5 to 6 mm. The obtained hydrous gel was dried in a drum dryer with a surface temperature of 130°C to obtain a flaky resin, and this resin was ground in a bottle mill and then classified to obtain a powdery water-absorbing polymer compound of 16 to 200 meshes. Ta.

■ 実施例1〜5及び比較例1〜4 ■で得られた粉末状の吸水性高分子化合物を、第1表に
示す組成を有する処理液を所定量用いて処理した。即ち
、容ff1lffの小型攪拌機に前述■の調製で得た粉
末状の吸水性高分子化合物100gを入れ、分散剤種の
みを異にする第1表に示す処理液24.05gを攪拌し
ながら滴下した。この滴下は徐々に行なうことが肝要で
あり、本実施例における滴下時間は1分間であった。滴
下終了後、さらに5分間攪拌を継続し、架橋処理におけ
るダマの発生の有無等を観察した。
(2) Examples 1 to 5 and Comparative Examples 1 to 4 The powdered water-absorbing polymer compound obtained in (1) was treated using a predetermined amount of a treatment liquid having the composition shown in Table 1. That is, 100 g of the powdered water-absorbing polymer compound obtained in the above-mentioned preparation (2) was placed in a small stirrer with a volume of ff1lff, and 24.05 g of the treatment solution shown in Table 1, which differed only in the type of dispersant, was added dropwise while stirring. did. It is important to perform this dropping gradually, and the dropping time in this example was 1 minute. After the dropwise addition was completed, stirring was continued for another 5 minutes, and the presence or absence of lumps during the crosslinking treatment was observed.

■ 実施例6〜11 ■で得られた粉末状の吸水性高分子化合物を、第2表に
示すように分散剤の種類および水と分散剤との配合割合
が異なる種々の架橋処理液を用いて処理した。即ち、容
ff1lNの小型攪拌機に■の調整で得られた粉末状の
吸水性高分子化合物100gを入れ、第2表にその組成
を示す架橋処理液を攪拌しながら滴下した。この滴下も
■の場合と同様に徐々に行なうことが肝要であり、本実
施例では1分間で滴下した。滴下終了後、さらに5分間
攪拌を継続し、得られた樹脂を乾燥機にて含水率が約7
%になるまで140℃の温度で乾燥した。 以上の処理
をして得られた高吸水性樹脂としての各試料について吸
水量(倍)及びゲル強度(インチ)を測定した。
■ Examples 6 to 11 The powdered water-absorbing polymer compounds obtained in (1) were treated with various crosslinking solutions having different types of dispersants and different mixing ratios of water and dispersants, as shown in Table 2. Processed. That is, 100 g of the powdered water-absorbing polymer compound obtained in the adjustment in (2) was placed in a small stirrer having a capacity of ff11N, and the crosslinking treatment solution whose composition is shown in Table 2 was added dropwise while stirring. It is important to perform this dropping gradually as in case ①, and in this example, the dropping was carried out over 1 minute. After dropping, stirring was continued for another 5 minutes, and the resulting resin was dried in a dryer until the moisture content was approximately 7.
% at a temperature of 140°C. The water absorption amount (times) and gel strength (in inches) were measured for each sample as a super absorbent resin obtained through the above treatment.

■ 実施例12 架橋処理液として、第3表に示される架橋処理液を用い
たこと以外は、実施例6〜11と同様にして、■で得ら
れた粉末状の吸水性高分子化合物を処理し、吸水量(倍
)及びゲル強度(インチ)を測定した。
■ Example 12 The powdered water-absorbing polymer compound obtained in (■) was treated in the same manner as Examples 6 to 11, except that the cross-linking treatment liquid shown in Table 3 was used as the cross-linking treatment liquid. Then, water absorption (times) and gel strength (inch) were measured.

(以下、余白) 第1表に示すように、特定のエーテル化合物を分散剤と
して含有する架橋処理液を用いた場合(実施例1〜5)
は、ダマが発生せず、供試高分子化合物の均一な架橋処
理をすることができた。
(Hereinafter, blank space) As shown in Table 1, when a crosslinking treatment liquid containing a specific ether compound as a dispersant was used (Examples 1 to 5)
The test polymer compound was able to be crosslinked uniformly without any lumps.

これに対して、メタノール、アセトン、プロピレングリ
コール、グリセリンを分散剤として用いた場合(比較例
1〜4)は、ダマが発生した。特に、メタノールを分散
剤として用いた比較例1では、凝集・凝着がはなはだし
く起こり、攪拌不能になった。また、第2表および第3
表に示すように、種々の特定エーテル化合物を使用し、
また処方を種々変更して架橋処理を行った(実施例6〜
12)ものはいずれも、吸水量が多く、ゲル強度が大き
かった。
On the other hand, when methanol, acetone, propylene glycol, or glycerin was used as a dispersant (Comparative Examples 1 to 4), lumps were generated. In particular, in Comparative Example 1 in which methanol was used as a dispersant, agglomeration and aggregation occurred so much that stirring became impossible. Also, Table 2 and 3
As shown in the table, using various specific ether compounds,
In addition, crosslinking treatment was carried out by changing the formulation in various ways (Example 6 to
12) All of them had a large amount of water absorption and high gel strength.

〈発明の効果〉 以上説明したように、本発明に係る高吸水性樹脂の製法
においては、特定のエーテル化合物と水とを共存せしめ
て、カルボキシル基及び/又はカルボキシレート部分を
有する粉末状の吸水性高分子化合物を架橋処理するので
、その処理時に、吸水性高分子化合物がダマ状に凝集せ
ず、均一な架橋処理が可能となると共に、優れた吸水性
能を有する高吸水性樹脂を製造することができる。即ち
、本発明方法により得られる高吸水性樹脂は、例えば、
水のみならず塩類を含有する溶液、例えば尿、血液等の
体液等に対しても大きな吸水速度を示し、速やかにこれ
らを吸収することができる。また、吸水後のゲル強度が
大きいので、安定した形状で水分を保持することができ
るという保水性に優れる。さらに、吸水時にいわゆるマ
マコ現象を起こすことが無いので、吸水速度が大きい。
<Effects of the Invention> As explained above, in the method for producing a superabsorbent resin according to the present invention, a specific ether compound and water are allowed to coexist to form a water-absorbing powder having carboxyl groups and/or carboxylate moieties. Since the water-absorbing polymer compound is cross-linked, the water-absorbing polymer compound does not aggregate into lumps during the treatment, making uniform cross-linking possible, and producing a super-absorbent resin with excellent water-absorbing performance. be able to. That is, the superabsorbent resin obtained by the method of the present invention is, for example,
It exhibits a high water absorption rate not only for water but also for solutions containing salts, such as body fluids such as urine and blood, and can rapidly absorb these. In addition, since the gel strength after water absorption is high, it has excellent water-retaining properties that allow it to retain water in a stable shape. Furthermore, since the so-called mamako phenomenon does not occur when water is absorbed, the water absorption rate is high.

またさらに、ゲル強度等の特性が充分でない吸水性高分
子化合物であっても、本発明に係る製法を用いて均一に
架橋することにより、ゲル強度が大きな吸水性樹脂を製
造することができる。
Furthermore, even if a water-absorbing polymer compound does not have sufficient properties such as gel strength, it is possible to produce a water-absorbing resin with high gel strength by uniformly crosslinking it using the production method according to the present invention.

しかも、本発明方法によれば、効率的且つ低順に吸水性
能に優れた吸水性樹脂を製造することができる。即ち、
架橋工程にアルコール等の有機溶媒を多量に用いること
がないため、溶媒の回収工程等を必要とせず、生産性を
高めることが可能になると共に、架橋処理工程において
、ダマを生じることなく均一に架橋処理することができ
るため、生産コストの低減を図ることができ、簡易且つ
安全な製造が可能になる。
Moreover, according to the method of the present invention, water-absorbing resins with excellent water-absorbing performance can be produced efficiently and in descending order. That is,
Since large amounts of organic solvents such as alcohol are not used in the crosslinking process, there is no need for a solvent recovery process, which makes it possible to increase productivity, and the crosslinking process can be performed uniformly without creating lumps. Since crosslinking treatment can be performed, production costs can be reduced, and simple and safe manufacturing becomes possible.

以上のように、本発明は種々の優れた特有の効果を奏す
るものである。
As described above, the present invention has various excellent and unique effects.

特許出願人  積水化成品工業株式会社代 理 人Patent applicant: Sekisui Plastics Co., Ltd. Reason Man

Claims (1)

【特許請求の範囲】 1、カルボキシル基及び/又はカルボキシ レート部分を有する粉末状の吸水性高分 子化合物を、水及びエーテル化合物の存 在下、前記吸水性高分子化合物と反応し 得る2個以上の官能基を有する架橋剤に て処理する高吸水性樹脂の製法。 2、前記エーテル化合物が、ジエチレング リコールメチルエーテル、ジエチレング リコールエチルエーテル、ジエチレング リコールジエチルエーテル、ジエチレン グリコールジエチルエーテル、ジエチレ ングリコールジブチルエーテル、プロピ レングリコールメチルエーテル、プロピ レングリコールエチルエーテル、ジプロ ピレングリコールメチルエーテル、ジプ ロピレングリコールエチルエーテル、ト リプロピレングリコールメチルエーテル、 テトラエチレングリコールジメチルエー テルである請求項1記載の高吸水性樹脂 の製法。[Claims] 1, carboxyl group and/or carboxy Powdered water-absorbing polymer with rate portion child compound in the presence of water and ether compound. reacts with the water-absorbing polymer compound in the presence of A crosslinking agent with two or more functional groups to obtain A manufacturing method for super absorbent resin. 2. The ether compound is diethylene Recall methyl ether, diethylene Recall ethyl ether, diethylene Recall diethyl ether, diethylene Glycol diethyl ether, diethyl glycol dibutyl ether, propylene glycol dibutyl ether Ren glycol methyl ether, propylene glycol methyl ether Ren glycol ethyl ether, dipro Pyrene glycol methyl ether, zyp Ropylene glycol ethyl ether, Lipropylene glycol methyl ether, Tetraethylene glycol dimethyl ether The super absorbent resin according to claim 1, which is manufacturing method.
JP30817888A 1988-12-06 1988-12-06 Super absorbent resin manufacturing method Expired - Fee Related JPH0639487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30817888A JPH0639487B2 (en) 1988-12-06 1988-12-06 Super absorbent resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30817888A JPH0639487B2 (en) 1988-12-06 1988-12-06 Super absorbent resin manufacturing method

Publications (2)

Publication Number Publication Date
JPH02153903A true JPH02153903A (en) 1990-06-13
JPH0639487B2 JPH0639487B2 (en) 1994-05-25

Family

ID=17977849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30817888A Expired - Fee Related JPH0639487B2 (en) 1988-12-06 1988-12-06 Super absorbent resin manufacturing method

Country Status (1)

Country Link
JP (1) JPH0639487B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200046A (en) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd Preparation of modified highly water-absorptive resin and resin
US5389722A (en) * 1992-06-05 1995-02-14 Nippon Shokubai Co., Ltd. Hydrophilic resin and method for production thereof
EP0755413A1 (en) * 1994-04-11 1997-01-29 Hoechst Celanese Corporation Superabsorbent polymers and products therefrom
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
EP1712584A2 (en) 1997-06-18 2006-10-18 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
EP1682194B1 (en) 2003-10-31 2008-07-09 Basf Se Blood- and/or body fluid-absorbing polymer particles
EP3009474B1 (en) 2014-10-16 2017-09-13 Evonik Degussa GmbH Method for the production of water soluble polymers
EP3381970A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3381972A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3954717A1 (en) 2020-08-10 2022-02-16 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same
EP4317260A1 (en) 2022-08-04 2024-02-07 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839986A (en) * 1994-07-29 1996-02-13 Masaharu Hosoi Correcting tool for writing way

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200046A (en) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd Preparation of modified highly water-absorptive resin and resin
JPH0674331B2 (en) * 1992-01-28 1994-09-21 三洋化成工業株式会社 Process for producing modified super absorbent resin and resin
US5389722A (en) * 1992-06-05 1995-02-14 Nippon Shokubai Co., Ltd. Hydrophilic resin and method for production thereof
EP0755413A1 (en) * 1994-04-11 1997-01-29 Hoechst Celanese Corporation Superabsorbent polymers and products therefrom
EP0755413A4 (en) * 1994-04-11 1999-11-17 Hoechst Celanese Corp Superabsorbent polymers and products therefrom
EP1712584A2 (en) 1997-06-18 2006-10-18 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
EP1682194B1 (en) 2003-10-31 2008-07-09 Basf Se Blood- and/or body fluid-absorbing polymer particles
US7867623B2 (en) 2003-10-31 2011-01-11 Basf Aktiengesellschaft Polymeric particles capable of absorbing blood and/or body fluids
US8071222B2 (en) 2003-10-31 2011-12-06 Basf Se Polymeric particles capable of absorbing blood and/or body fluids
EP1682194B2 (en) 2003-10-31 2017-03-29 Basf Se Blood- and/or body fluid-absorbing polymer particles
EP3009474B1 (en) 2014-10-16 2017-09-13 Evonik Degussa GmbH Method for the production of water soluble polymers
EP3381970A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3381972A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3954717A1 (en) 2020-08-10 2022-02-16 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same
US11673116B2 (en) 2020-08-10 2023-06-13 Formosa Plastics Corporation Method for producing superabsorbent polymer
EP4317260A1 (en) 2022-08-04 2024-02-07 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same

Also Published As

Publication number Publication date
JPH0639487B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US6335406B1 (en) Method for production of absorbent resin excelling in durability
RU2243975C2 (en) Powder-like, cross-linked polymers absorbing aqueous liquids and blood also, method for their preparing and their applying
JP4150252B2 (en) Method for producing water absorbent resin
US7879923B2 (en) Method for surface-treatment of water absorbent resin
RU2243238C2 (en) Powderlike cross-linked absorbing polymers, method of production and application thereof
JP6727301B2 (en) Method of manufacturing water absorbent
JP2011214016A (en) Water-absorbent resin, and method for producing the same and application
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
JPH08506363A (en) Water-absorbing polymer with improved properties
JPH02153903A (en) Production of highly hygroscopic resin
JPH0615574B2 (en) Method for producing water absorbent resin
JP2002201290A (en) Water-absorbing resin and its preparation process
JPH01292004A (en) Production of highly water-absorbable resin
JPH04501877A (en) Manufacturing method of super absorbent resin
JPH0625209B2 (en) Water absorbent resin and method for producing the same
JP3259143B2 (en) Method for producing water absorbent resin
JPH06122707A (en) Production of water-absorbent resin
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JP4256484B2 (en) Water-absorbing agent, water-absorbing article, and method for producing water-absorbing agent
JP2555159B2 (en) Method for producing water absorbent resin
JPS6343930A (en) Production of highly water-absorptive polymer
JP3325806B2 (en) Water absorbing agent and method for producing the same
JP2001247683A (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin
JPH03285919A (en) Production of highly water-absorbing resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees