JP2001247683A - Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof - Google Patents

Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof

Info

Publication number
JP2001247683A
JP2001247683A JP2000393864A JP2000393864A JP2001247683A JP 2001247683 A JP2001247683 A JP 2001247683A JP 2000393864 A JP2000393864 A JP 2000393864A JP 2000393864 A JP2000393864 A JP 2000393864A JP 2001247683 A JP2001247683 A JP 2001247683A
Authority
JP
Japan
Prior art keywords
water
basic
resin
absorbing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000393864A
Other languages
Japanese (ja)
Other versions
JP4704559B2 (en
Inventor
Nobuyuki Harada
信幸 原田
Shigeru Sakamoto
繁 阪本
Yoshiji Adachi
芳史 足立
Kazunao Hitomi
一尚 樋富
Ichiji Torii
一司 鳥井
Toshimasa Kitayama
敏匡 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000393864A priority Critical patent/JP4704559B2/en
Publication of JP2001247683A publication Critical patent/JP2001247683A/en
Application granted granted Critical
Publication of JP4704559B2 publication Critical patent/JP4704559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a basic water-absorbing resin in good productivity which becomes a main component of a water-absorbing agent excellent in water-absorbing magnification under pressure, a manufacturing method of a water-absorbing agent and use thereof. SOLUTION: A manufacturing method of an amorphous basic water-absorbing resin is the one which performs subdivision of reaction products as well as progress of a crosslinking reaction when obtaining a basic water-soluble resin by reacting a basic resin with a crosslinking agent. A manufacturing method of the 1st water-absorbing agent comprises mixing an acidic water-absorbing resin with the basic water-absorbing resin obtained above. A manufacturing method of the 2nd water-absorbing agent comprises obtaining a mixture of the basic water-absorbing resin and the acidic water-absorbing resin by allowing the acidic water-absorbing resin to coexist when performing subdivision of the crosslinking reaction by the above method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩基性吸水性樹脂
の製法、吸水剤の製法、ならびにその使用に関するもの
である。
The present invention relates to a method for producing a basic water-absorbing resin, a method for producing a water-absorbing agent, and use thereof.

【0002】更に詳しくは、加圧下の吸水倍率が著しく
向上した吸水剤の製法およびその主成分となる塩基性吸
水性樹脂の製法に関するものである。
More specifically, the present invention relates to a method for producing a water-absorbing agent having a remarkably improved water absorption capacity under pressure and a method for producing a basic water-absorbing resin as a main component thereof.

【0003】[0003]

【従来の技術】近年、紙オムツや生理用ナプキン、いわ
ゆる失禁パット等の衛生材料には、その構成材として、
体液を吸収させることを目的とし、いわゆる吸水性樹脂
が幅広く使用されている。
2. Description of the Related Art In recent years, sanitary materials such as disposable diapers and sanitary napkins, so-called incontinence pads, have been used as constituent materials thereof.
For the purpose of absorbing bodily fluids, so-called water-absorbing resins are widely used.

【0004】上記の吸水性樹脂としては、例えば、ポリ
アクリル酸部分中和物架橋体、澱粉−アクリル酸グラフ
ト重合体の加水分解物、酢酸ビニル−アクリル酸エステ
ル共重合体ケン化物、アクリロニトリル共重合体若しく
はアクリルアミド共重合体の加水分解物又はこれらの架
橋体等が知られている。しかし、これら従来知られてい
る吸水性樹脂のほとんどその全てが酸性吸水性樹脂の酸
性基をアルカリ金属化合物等で中和したものである。こ
のため、その粒子表面近傍を2次架橋処理していない場
合にはその生理食塩水に対する加圧下の吸収倍率は10
g/g未満であり、たとえその粒子表面近傍が2次架橋
処理されたものであったとしても人工尿に対する加圧下
の吸収倍率は高々30g/gで、紙おむつや生理用品に
用いられるには依然として不十分であり、加圧下条件で
あっても人工尿をたくさん吸収し膨潤できる新しい吸水
剤が嘱望されていた。このような問題点を解決するため
にWO96/15180号公報、WO96/17681
号公報、WO98/24832号公報、WO98/37
149号公報、WO99/34841号公報、WO99
/34842号公報、WO99/34843号公報、W
O99/25393号公報、WO99/30751号公
報等では、酸性吸水性樹脂と塩基性吸水性樹脂とからな
る吸水剤が提案されている。しかしながらこれらの特許
に記載の方法では、該吸水剤の主成分となる塩基性吸水
性樹脂は、一度塊状ゲル状態を経た後細粒化され、必要
により最適粒度に該塩基性吸水性樹脂を粒度調整した
後、更に酸性吸水性樹脂と混合されており、大規模生産
においては非常に大きな塊状ゲルを取り扱いしなければ
ならず、その設備が大掛かりになるばかりでなく、生産
性が非常に低く、またバッチごとの品質が安定しないも
のとならざるを得なかった。特に、一度塊状ゲルを形成
した後、該含水ゲルを機械的に細分化する場合には、一
度架橋により形成されたネットワークを切断せねばなら
ず、その場合に可溶性成分が増加したり、架橋構造が不
均一になったり、細分化に多大なエネルギーを要すると
いった問題点もかかえていた。また、EP949290
A2公報では、塩基性樹脂を懸濁液の状態で架橋反応を
行う方法が提案されているが、有機溶剤を用いることか
ら、その有機溶剤を除去する工程が必要であり、生産設
備が大掛かりになるばかりでなく、生産性が非常に低く
なっていた。また、このようにして得られた塩基性吸水
性樹脂は略球状となり、不定形状粒子は得られない。
Examples of the water-absorbing resin include a crosslinked product of a partially neutralized polyacrylic acid, a hydrolyzate of a starch-acrylic acid graft polymer, a saponified vinyl acetate-acrylate copolymer, and a copolymer of acrylonitrile. A hydrolyzate of a coalesced or acrylamide copolymer or a crosslinked product thereof is known. However, almost all of these conventionally known water absorbing resins are obtained by neutralizing the acidic groups of the acidic water absorbing resin with an alkali metal compound or the like. For this reason, when the secondary cross-linking treatment is not performed in the vicinity of the particle surface, the absorption capacity under pressure to physiological saline is 10%.
g / g, and even if the particle surface is secondary cross-linked, the absorption capacity of artificial urine under pressure is at most 30 g / g, which is still low for use in disposable diapers and sanitary products. A new water-absorbing agent, which is insufficient, and can absorb and swell a large amount of artificial urine even under pressure, has been desired. In order to solve such problems, WO 96/15180, WO 96/17681
Gazette, WO98 / 24832, WO98 / 37
No. 149, WO99 / 34841, WO99
/ 34842, WO99 / 34843, W
In O99 / 25393, WO99 / 30751, etc., a water absorbing agent comprising an acidic water absorbing resin and a basic water absorbing resin is proposed. However, in the methods described in these patents, the basic water-absorbing resin as the main component of the water-absorbing agent is once subjected to a lump gel state and then finely divided, and if necessary, the basic water-absorbing resin is sized to an optimum particle size. After the adjustment, it is further mixed with an acidic water-absorbing resin, and in a large-scale production, it is necessary to handle a very large bulk gel, not only the equipment becomes large-scale, but also the productivity is very low, In addition, the quality of each batch had to be unstable. In particular, in the case where the hydrated gel is mechanically subdivided after once forming the bulk gel, the network formed by the crosslinking must be cut once, in which case the soluble component increases or the crosslinked structure is increased. However, there are also problems such as non-uniformity and a large amount of energy required for subdivision. Also, EP949290
The A2 publication proposes a method of performing a crosslinking reaction of a basic resin in a suspension state. However, since an organic solvent is used, a step of removing the organic solvent is required, which requires a large production facility. Not only that, but productivity was very low. In addition, the basic water-absorbing resin thus obtained becomes substantially spherical, and irregular shaped particles cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みなされたものであり、その目的は、加圧下
の吸水倍率に優れた吸水剤の主成分となる塩基性吸水性
樹脂を、1)好ましくはワンステップで、2)小さい設
備で、3)安価に、4)安定的に高品質のものを、5)
生産性よく製造する方法を提供することにある。また別
の目的は、加圧下の吸水倍率に優れた吸水剤を、1)小
さい設備で、2)安価に、3)安定的に高品質のもの
を、4)生産性よく製造する方法を提供することにあ
る。更に、本発明の方法で得られた吸水剤をおむつなど
の吸収物品の構成要素として使用した場合には、長時間
使用した場合であっても漏れを著しく低減でき、表面を
サラサラの乾いた状態に保つことができる。また、本発
明の方法で得られた吸水剤はアンモニア、アセトアルデ
ヒドやメルカプタンなどを消臭する効果に優れた消臭製
品の構成要素としても使用することが可能である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a basic water-absorbing resin which is a main component of a water-absorbing agent having excellent water absorption under pressure. 1) preferably in one step, 2) small equipment, 3) inexpensive, 4) stable and high quality 5)
An object of the present invention is to provide a method for manufacturing with high productivity. Another object is to provide a method for producing a water absorbing agent excellent in water absorption capacity under pressure, 1) with small equipment, 2) inexpensively, 3) stably high quality, and 4) with high productivity. Is to do. Furthermore, when the water-absorbing agent obtained by the method of the present invention is used as a component of an absorbent article such as a diaper, leakage can be significantly reduced even when used for a long time, and the surface is dry and dry. Can be kept. Further, the water absorbing agent obtained by the method of the present invention can also be used as a component of a deodorant product excellent in deodorizing ammonia, acetaldehyde, mercaptan, and the like.

【0006】[0006]

【課題を解決するための手段】本願発明者等は、上記目
的を達成できる新規な塩基性吸水性樹脂の製法、吸水剤
の製法について鋭意検討した結果、本発明に到達した。
すなわち本発明は、塩基性樹脂と架橋剤を反応させて塩
基性吸水性樹脂を得る際に、架橋反応の進行と同時に反
応物の細分化を行なうことを特徴とする不定形状の塩基
性吸水性樹脂の製法である。本発明にかかる吸水剤の製
法は、上記方法で得られた塩基性吸水性樹脂に酸性吸水
性樹脂を混合する方法である。本発明にかかる別の吸水
剤の製法は、上記方法で架橋反応と細分化を行う際に、
酸性吸水性樹脂を共存させることにより、塩基性吸水性
樹脂と酸性吸水性樹脂との混合物を得る方法である。
Means for Solving the Problems The inventors of the present invention have intensively studied a method for producing a novel basic water-absorbing resin and a method for producing a water-absorbing agent which can achieve the above objects, and as a result, have reached the present invention.
That is, the present invention provides a basic water-absorbent resin having an irregular shape, wherein a basic resin and a cross-linking agent are reacted to obtain a basic water-absorbent resin. It is a method for producing resin. The method for producing a water absorbing agent according to the present invention is a method in which an acidic water absorbing resin is mixed with the basic water absorbing resin obtained by the above method. Another method of producing a water-absorbing agent according to the present invention, when performing a cross-linking reaction and fragmentation by the above method,
This is a method of obtaining a mixture of a basic water-absorbent resin and an acidic water-absorbent resin by allowing an acidic water-absorbent resin to coexist.

【0007】[0007]

【発明の実施の形態】以下に本発明について詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0008】本発明において、塩基性吸水性樹脂とは、
純水中で塩基性を示し且つ純水を吸収し膨潤することの
できる範囲まで架橋されている塩基性吸水性樹脂であ
る。本発明において水中で塩基性を示す塩基性吸水性樹
脂は、例えば純水中でのpHが8よりも大きい値を示
し、且つ純水の吸収倍率が1g/g以上であることが好
ましい。このような物性値を示す塩基性吸水性樹脂とし
ては、例えば塩基性基を含み、その塩基性基の50%〜
100モル%が未中和(フリー)の塩基の形で存在し水
不溶性となるまでゆるく架橋された塩基性樹脂を挙げる
ことができる。より好ましくはその塩基性基の70〜1
00モル%が未中和(フリー)の塩基の形で存在し、最
も好ましくはその塩基性基の90〜100モル%が未中
和(フリー)の塩基の形で存在し且つ水不溶性になるま
でゆるく架橋された塩基性樹脂である。本発明でより好
ましく使用される塩基性吸水性樹脂は、1〜4級のアミ
ノ基(アミン基)を含有し、そのアミノ基(アミン基)
の50%〜100モル%が未中和(フリー)の塩基の形
で存在するアミノ基含有塩基性樹脂を、水不溶性且つ水
膨潤性となるまで架橋剤によりゆるく架橋した塩基性吸
水性樹脂を例示できる。
In the present invention, the basic water-absorbing resin is
It is a basic water-absorbing resin which is basic in pure water and is crosslinked to the extent that it can absorb pure water and swell. In the present invention, it is preferable that the basic water-absorbing resin which shows basicity in water has a pH value in pure water of more than 8, for example, and an absorption capacity of pure water of 1 g / g or more. Examples of the basic water-absorbing resin exhibiting such physical property values include a basic group, and 50% to 50% of the basic group.
A basic resin in which 100 mol% is present in the form of an unneutralized (free) base and which is loosely crosslinked until it becomes insoluble in water can be mentioned. More preferably, 70 to 1 of the basic group
00 mol% is present in the form of unneutralized (free) base, most preferably 90-100 mol% of the basic groups are present in the form of unneutralized (free) base and become water-insoluble It is a basic resin that has been loosely crosslinked. The basic water-absorbing resin more preferably used in the present invention contains primary to quaternary amino groups (amine groups), and the amino groups (amine groups)
Of an amino group-containing basic resin in which 50% to 100 mol% of the base resin is present in the form of an unneutralized (free) base, and a water-insoluble and water-swellable basic water-absorbing resin loosely crosslinked with a crosslinking agent. Can be illustrated.

【0009】本発明において使用される塩基性樹脂とし
ては、実質的に架橋前の状態では水溶性あるいは水分散
性の、架橋されていない親水性の塩基性樹脂を例示する
ことができる。このようなものとしては、例えば、直鎖
状ポリアルキレンアミン、分岐状ポリアルキレンアミ
ン、ポリビニルアミン、ポリアリルアミン、ポリN−ビ
ニルイミダゾール、ポリビニルピリジン、ポリビニルピ
リジンアミンオキシド、ポリジアリルアミン、ポリアミ
ドポリアミン、ポリジメチルアミノアルキルアクリレー
ト、ポリジメチルアミノアルキルメタクリレート、ポリ
ジメチルアミノアルキルアクリルアミド、ポリジメチル
アミノアルキルメタクリルアミド、ポリアミジン、ポリ
ビニルグアニジン、ポリジアリルアミン、ポリアクリル
酸ヒドラジン、アスパラギン酸−ヘキサメチレンジアミ
ン重縮合物;ポリリシンのような塩基性ポリアミノ酸;
キトサンなどの天然物由来の塩基性樹脂;およびこれら
の重合体の共重合体などを挙げることができる。これら
は架橋により塩基性吸水性樹脂に転換し得ることが必須
である。好ましくは、塩基性樹脂がアミノ基含有塩基性
樹脂であり、より好ましくは該塩基性樹脂が、その塩基
性基の90〜100モル%が未中和(フリー)の塩基の
形で存在する、ポリエチレンイミン、ポリアリルアミ
ン、ポリビニルアミン、ポリジアリルアミン、ポリジア
リルジメチルアミンからなる群より選ばれる少なくとも
1種であり、最も好ましくはポリエチレンイミン、ポリ
アリルアミン、ポリビニルアミンより選ばれる少なくと
も1種である。また本発明において、架橋前の塩基性樹
脂の平均分子量は約1,000〜10,000,000
の範囲であることが好ましい。
Examples of the basic resin used in the present invention include a hydrophilic non-crosslinked basic resin which is water-soluble or water-dispersible before being crosslinked. As such, for example, linear polyalkyleneamine, branched polyalkyleneamine, polyvinylamine, polyallylamine, polyN-vinylimidazole, polyvinylpyridine, polyvinylpyridineamine oxide, polydiallylamine, polyamide polyamine, polydimethyl Aminoalkyl acrylate, polydimethylaminoalkyl methacrylate, polydimethylaminoalkyl acrylamide, polydimethylaminoalkyl methacrylamide, polyamidine, polyvinylguanidine, polydiallylamine, polyhydric hydrazine, aspartic acid-hexamethylenediamine polycondensate; such as polylysine Basic polyamino acids;
Basic resins derived from natural products such as chitosan; and copolymers of these polymers. It is essential that these can be converted to a basic water-absorbing resin by crosslinking. Preferably, the basic resin is an amino group-containing basic resin, more preferably the basic resin is present in the form of an unneutralized (free) base in which 90 to 100 mol% of the basic groups are non-neutralized. It is at least one selected from the group consisting of polyethyleneimine, polyallylamine, polyvinylamine, polydiallylamine, and polydiallyldimethylamine, and most preferably at least one selected from polyethyleneimine, polyallylamine, and polyvinylamine. In the present invention, the average molecular weight of the basic resin before crosslinking is about 1,000 to 10,000,000.
Is preferably within the range.

【0010】本発明では、塩基性吸水性樹脂は、対応す
る塩基性樹脂をその官能基(例えばアミノ基(アミン
基))と反応し共有結合を形成し得る基を2個以上有す
る架橋剤で架橋し、該樹脂中に架橋構造を導入すること
で得ることができる。架橋剤としては、その官能基がア
ミノ基(アミン基)である場合には例えば、エポキシ
基、アルデヒド基、ハロゲン化アルキル基、イソシアネ
ート基、カルボキシル基、酸無水物基、酸ハライド基、
エステル結合部分、活性二重結合などを1分子あたり2
個以上有する、従来一般に用いられている化合物を使用
できる。このような架橋剤としては、例えば、ビスエポ
キシ化合物;エピクロルヒドリン、ジブロムエチレンな
どのジハロゲン化物;ホルマリン、グリオキザールのよ
うなジアルデヒド化合物;(ポリ)エチレングリコール
類のジグリジシルエーテル、(ポリ)プロピレングリコ
ール類のジグリシジルエーテル、ネオペンチルアルコー
ルなどのジアルコールのジグリシジルエーテル類、グリ
セロールのポリグリシジルエーテル類;メチルアクリレ
ート、エチルアクリレートなどのα,β−不飽和カルボ
ン酸エステル類;メチレンビスアクリルアミドなどのジ
−α,β−不飽和カルボニル化合物;α,ω−アルキレ
ンジイソシアネート類などが挙げられるが、これらに限
定されるものではない。架橋剤の種類および量は、得ら
れる塩基性吸水性樹脂の吸水倍率、強度などを考慮しつ
つ選択されるが、塩基性樹脂がアミノ基含有塩基性樹脂
である場合には、高分子のアミンユニットに対し0.0
01〜20モル%の範囲が好ましい。架橋剤量が0.0
01モル%よりも少ない場合には得られる塩基性吸水性
樹脂の吸水倍率が低くまた強度が不十分となり、20モ
ル%を超える場合には吸水倍率が大きく低下することが
ある。
In the present invention, the basic water-absorbing resin is a crosslinking agent having two or more groups capable of forming a covalent bond by reacting a corresponding basic resin with its functional group (for example, an amino group (amine group)). It can be obtained by crosslinking and introducing a crosslinked structure into the resin. When the functional group is an amino group (amine group), for example, an epoxy group, an aldehyde group, an alkyl halide group, an isocyanate group, a carboxyl group, an acid anhydride group, an acid halide group,
Ester bond, active double bond, etc.
A compound having at least one compound and conventionally used generally can be used. Examples of such a crosslinking agent include bisepoxy compounds; dihalides such as epichlorohydrin and dibromoethylene; dialdehyde compounds such as formalin and glyoxal; diglycidyl ethers of (poly) ethylene glycols; and (poly) propylene glycol. Diglycidyl ethers such as diglycidyl ethers and neopentyl alcohol; polyglycidyl ethers such as glycerol; α, β-unsaturated carboxylic esters such as methyl acrylate and ethyl acrylate; -Α, β-unsaturated carbonyl compounds; α, ω-alkylenediisocyanates, and the like, but are not limited thereto. The type and amount of the cross-linking agent are selected in consideration of the water absorption capacity and strength of the obtained basic water-absorbing resin, but when the basic resin is an amino group-containing basic resin, a polymer amine is used. 0.0 per unit
The range of 01 to 20 mol% is preferred. The amount of the crosslinking agent is 0.0
When the amount is less than 01 mol%, the resulting water-absorbing capacity of the basic water-absorbing resin is low and the strength becomes insufficient. When it exceeds 20 mol%, the water-absorbing capacity may be greatly reduced.

【0011】本発明の塩基性吸水性樹脂の製法は、塩基
性樹脂と架橋剤にせん断力を加え、架橋反応の進行と同
時に細分化を行なうことを特徴とする。本発明で言うと
ころの細分化とは、架橋により生成するゲルが流動性を
有する粒子状の大きさに細かく砕かれることを言う。塩
基性樹脂と架橋剤にせん断力が加わることにより、塩基
性樹脂と架橋剤が接触し、塩基性樹脂は架橋剤により架
橋されることになるが、その際に引き続きせん断力が加
わることによって、架橋反応の進行と同時に得られるゲ
ル状の塩基性吸水性樹脂に均一な架橋構造が導入され、
同時に粒子状に細分化されることになる。架橋反応の進
行と同時に細分化が行われることにより、個々に生成す
る塩基性吸水性樹脂粒子内の架橋密度分布がより均質と
なり、その結果、粒子サイズが揃うと同時に、吸水倍率
に優れ、可溶性成分の少ないという特徴を有する塩基性
吸水性樹脂粒子を生産性良く製造することができる。こ
れは塊状ゲル生成後に細分化するという従来の方法では
成し得なかった特徴であり、架橋反応の進行と同時に細
分化されることで、本発明の吸水剤に最も適した塩基性
吸水性樹脂を得ることができる。架橋反応の進行と同時
に細分化するに先立ち、塩基性樹脂と架橋剤はそれぞ
れ、溶液により希釈された状態で、或いは無希釈の液体
の状態で供給されても良い。
The method for producing a basic water-absorbing resin of the present invention is characterized in that a shearing force is applied to the basic resin and the crosslinking agent to perform fragmentation simultaneously with the progress of the crosslinking reaction. The term “fractionation” as used in the present invention means that a gel formed by cross-linking is finely crushed into a fluid-like particle size. By applying a shear force to the basic resin and the cross-linking agent, the basic resin and the cross-linking agent come into contact, and the basic resin is cross-linked by the cross-linking agent. A uniform cross-linked structure is introduced into the gel-like basic water-absorbent resin obtained at the same time as the progress of the cross-linking reaction,
At the same time, it is subdivided into particles. Since the fragmentation is performed simultaneously with the progress of the crosslinking reaction, the distribution of the crosslinking density in the individually generated basic water-absorbent resin particles becomes more uniform, and as a result, the particle size becomes uniform, the water absorption ratio is excellent, and the solubility is high. Basic water-absorbing resin particles having a feature of a small amount of components can be produced with high productivity. This is a feature that could not be achieved by the conventional method of fragmentation after the formation of a bulk gel, and the basic water-absorbent resin most suitable for the water-absorbing agent of the present invention is fragmented at the same time as the crosslinking reaction proceeds. Can be obtained. Prior to fragmentation simultaneously with the progress of the cross-linking reaction, the basic resin and the cross-linking agent may be supplied in a state of being diluted with a solution or in a state of an undiluted liquid, respectively.

【0012】本発明において、塩基性樹脂および架橋剤
は、それぞれ、溶液の状態或いは液体の状態で予め混合
された後、供給されても良い。溶液状態で混合される場
合の媒体としては水性液が好適に使用される。塩基性樹
脂と架橋剤の混合状態での合計濃度は、40重量%以上
の濃度の水性液の状態が好ましく、更に好ましくは80
重量%以上の水性液濃度である。適切な架橋密度分布お
よび粒子制御をするための最も好ましい形態は双方が無
希釈の液体状態で予め混合されることである。可能な限
り両者が高濃度の状態(例えば双方が無希釈の状態)で
前もって混合されることは、生産性良く、均質な架橋密
度分布を有する塩基性吸水性樹脂が得られるのでより好
ましい。両者の混合は、乱流が発生する状況下に両者が
接触するのであれば、特に混合機を使用しなくても良
く、また下記に例示される容器内で両者が混合されても
よい。好ましくは、積極的に乱流を発生させる装置を具
備したラインミルのような管内流体混合機内で両者が混
合される。管内流体混合機としては例えば、静止型管内
混合装置や液体せん断機構を備えた混合装置など従来公
知の装置を例示できる。静止型管内混合装置としては、
例えば、ノリタケスタティックミキサー((株)ノリタ
ケカンパニーリミティッド)、スルーザーミキサー(住
友重機械工業(株))、東レ静止型管内混合機(東レ
(株))、スケヤミキサー((株)桜製作所)、TK−
ROSS−LPDミキサー(特殊機化工業(株))など
を挙げることができ、液体せん断機構を備えた混合装置
としては、ホモミキサーやホモジナイザー等を挙げるこ
とができる。
In the present invention, the basic resin and the crosslinking agent may be supplied after being mixed in a solution state or a liquid state, respectively. An aqueous liquid is suitably used as a medium when mixed in a solution state. The total concentration of the basic resin and the crosslinking agent in a mixed state is preferably an aqueous liquid having a concentration of 40% by weight or more, more preferably 80% by weight.
The aqueous liquid concentration is not less than% by weight. The most preferred form for proper crosslink density distribution and particle control is that both are premixed in neat liquid state. It is more preferable that the two are mixed in advance in a state where they are as high as possible (for example, both are undiluted), since a basic water-absorbing resin having a uniform cross-link density distribution can be obtained with good productivity. The mixing of the two may be performed without using a mixer, and may be performed in a container exemplified below, as long as the two come into contact with each other under a turbulent flow. Preferably, the two are mixed in an in-line fluid mixer such as a line mill equipped with a device that actively generates turbulence. Examples of the in-pipe fluid mixer include conventionally known apparatuses such as a stationary in-pipe mixer and a mixing apparatus having a liquid shearing mechanism. As a stationary in-pipe mixing device,
For example, Noritake Static Mixer (Noritake Co., Ltd.), Sluzer Mixer (Sumitomo Heavy Industries, Ltd.), Toray Static Mixer (Toray Co., Ltd.), Skeya Mixer (Sakura Seisakusho), TK −
A ROSS-LPD mixer (Tokiki Kika Kogyo Co., Ltd.) and the like can be mentioned. As a mixing device having a liquid shearing mechanism, a homomixer and a homogenizer can be mentioned.

【0013】本発明において、塩基性樹脂と架橋剤は、
せん断力が加えられ、架橋反応の進行と同時に細分化さ
れて本発明の塩基性吸水性樹脂となる。また別の実施形
態では、塩基性樹脂と架橋剤は、容器内でせん断力によ
り架橋反応の進行と同時に細分化され、更に非連続に容
器外に排出されて本発明の塩基性吸水性樹脂となる。更
にまた別の実施形態では、塩基性樹脂と架橋剤は回転攪
拌軸を有する容器内に連続的に供給され、該攪拌軸によ
るせん断力により架橋反応の進行と同時に細分化を行な
われ、更に容器外に連続的に排出されて本発明の塩基性
吸水性樹脂となる。せん断力を加え、架橋反応の進行と
同時に細分化することのできる反応容器としては、例え
ば、円筒型混合機、タービュライザー、ナウター型混合
機、V型混合機、パドルドライヤー、押し出し機、双腕
型ニーダー、バンバリーミキサー、スクリュー型混合
機、万能混合機、2軸押し出し機、回転式混合機、ロー
ルミキサーなどの従来公知の容器を例示できる。塩基性
樹脂と架橋剤を、容器内でせん断力により架橋反応の進
行と同時に細分化を行ない、更に非連続に容器外に排出
することの出来る反応容器としては、例えば、円筒型混
合機、ナウター型混合機、V型混合機、双腕型ニーダ
ー、バンバリーミキサー、万能混合機などを例示でき、
好ましくは例えば双腕型ニーダーを例示できる。塩基性
樹脂と架橋剤を回転攪拌軸を有する容器内に連続的に供
給し、該攪拌軸によるせん断力により架橋反応の進行と
同時に細分化を行ない、更に容器外に連続的に排出する
ことのできる反応容器としては例えば、KRCニーダ
ー、タービュライザー、パドルドライヤー、押し出し
機、スクリュー型混合機、2軸押し出し機、コンティニ
アスニーダーなどを例示できる。また、架橋反応の際の
温度・反応時間は、使用される塩基性樹脂と架橋剤の組
合せにもよるが、通常は、室温〜150℃の温度で数秒
〜数時間の範囲である。好ましくは50℃〜120℃の
温度下で数秒〜1時間の範囲であり、特に操作を連続的
に行なう場合には、容器内での滞留時間内に架橋反応を
終えることが好ましく、容器をコンパクトにするために
は反応を50℃〜120℃の温度下で数秒〜50分の範
囲で終えるような条件を選択することが好ましい。ま
た、反応は減圧下、常圧下、加圧下のいずれの状態で行
なっても良い。更に溶媒として水性液を使用する場合に
は、架橋反応の進行と同時に細分化しながら、同時に水
性液を除去しつつ、反応を行なうことも可能である。
In the present invention, the basic resin and the crosslinking agent are
A shearing force is applied, and the resin is finely divided at the same time as the cross-linking reaction proceeds, to obtain the basic water-absorbing resin of the present invention. In yet another embodiment, the basic resin and the cross-linking agent are fragmented simultaneously with the progress of the cross-linking reaction by a shearing force in the container, and further discontinuously discharged out of the container to form the basic water-absorbing resin of the present invention. Become. In still another embodiment, the basic resin and the cross-linking agent are continuously supplied into a container having a rotary stirring shaft, and are divided at the same time as the cross-linking reaction proceeds by the shearing force of the stirring shaft. It is continuously discharged to the outside and becomes the basic water absorbent resin of the present invention. Examples of a reaction vessel capable of applying a shearing force and subdividing simultaneously with the progress of the crosslinking reaction include, for example, a cylindrical mixer, a turbulizer, a Nauter mixer, a V mixer, a paddle dryer, an extruder, and a twin mixer. Conventionally known containers such as an arm type kneader, a Banbury mixer, a screw type mixer, a universal mixer, a twin screw extruder, a rotary mixer and a roll mixer can be exemplified. The reaction vessel capable of performing the fragmentation of the basic resin and the cross-linking agent simultaneously with the progress of the cross-linking reaction by the shearing force in the vessel, and further discharging the mixture discontinuously out of the vessel, for example, a cylindrical mixer, a Nauter Type mixer, V-type mixer, double-arm kneader, Banbury mixer, universal mixer, etc.
Preferably, for example, a double arm type kneader can be exemplified. The basic resin and the cross-linking agent are continuously supplied into a container having a rotary stirring shaft, and the fragmentation is performed simultaneously with the progress of the cross-linking reaction by the shearing force of the stirring shaft, and further continuously discharged outside the container. Examples of the reaction vessel that can be used include a KRC kneader, a turbulizer, a paddle dryer, an extruder, a screw-type mixer, a twin-screw extruder, and a continuous kneader. The temperature and reaction time for the cross-linking reaction depend on the combination of the basic resin and the cross-linking agent used, but are usually in the range of room temperature to 150 ° C. for several seconds to several hours. It is preferably in the range of several seconds to one hour at a temperature of 50 ° C. to 120 ° C. In particular, when the operation is continuously performed, it is preferable that the crosslinking reaction be completed within the residence time in the container. It is preferable to select such conditions that the reaction is completed at a temperature of 50 ° C. to 120 ° C. for several seconds to 50 minutes. The reaction may be performed under reduced pressure, normal pressure, or pressurized state. Further, when an aqueous liquid is used as the solvent, the reaction can be performed while the aqueous liquid is being removed while the fragmentation is being performed simultaneously with the progress of the crosslinking reaction.

【0014】本発明において、このようにして得られた
塩基性吸水性樹脂は、必要により、更に整粒工程、或い
は水洗工程および/または乾燥工程を経て、所望の塩基
性吸水性樹脂とすることができる。また、攪拌軸の回転
速度、攪拌翼の形状をコントロールすることによって、
得られる塩基性吸水性樹脂の細分化の程度および粒子サ
イズを制御することも可能である。
In the present invention, the basic water-absorbing resin thus obtained may be further subjected to a sizing step, a washing step and / or a drying step, if necessary, to obtain a desired basic water-absorbing resin. Can be. In addition, by controlling the rotation speed of the stirring shaft and the shape of the stirring blade,
It is also possible to control the degree of fragmentation and the particle size of the resulting basic water-absorbent resin.

【0015】このようにして得られた本発明の塩基性吸
水性樹脂は、例えば、不定形状であり、粒子サイズは全
体の少なくとも80重量%以上の粒子が粒径10〜10
00μmの範囲であり、水可溶性成分量は10重量%未
満、吸水倍率は1〜100g/gの範囲である。このよ
うな物性を有する本発明の塩基性吸水性樹脂は、更に酸
性吸水性樹脂と混合されることで、加圧下の吸水倍率に
優れた本発明の吸水剤とすることができる。特に、酸性
吸水性樹脂と混合され吸水剤として使用されるには、塩
基性吸水性樹脂の平均粒子サイズが100〜850μm
(好ましくは200〜300μm)であり、可溶性成分
量は5重量%未満、吸水倍率が5〜20g/gの範囲に
制御されることが好ましい。
The thus obtained basic water-absorbent resin of the present invention has, for example, an irregular shape and a particle size of at least 80% by weight or more of the entire particle.
The water-soluble component amount is less than 10% by weight, and the water absorption capacity is in the range of 1 to 100 g / g. The basic water-absorbing resin of the present invention having such physical properties can be further mixed with an acidic water-absorbing resin to make the water-absorbing agent of the present invention excellent in water absorption under pressure. In particular, in order to be mixed with an acidic water absorbent resin and used as a water absorbing agent, the average particle size of the basic water absorbent resin is 100 to 850 μm.
(Preferably 200 to 300 μm), the amount of the soluble component is controlled to be less than 5% by weight, and the water absorption capacity is controlled to be in the range of 5 to 20 g / g.

【0016】本発明において、酸性吸水性樹脂とは、純
水中で酸性を示し且つ純水を吸収し膨潤することのでき
る範囲まで架橋されている酸性吸水性樹脂である。本発
明において水中で酸性を示す酸性吸水性樹脂は、例えば
純水中でのpHが6よりも小さい値を示し、且つ純水の
吸水倍率が1g/g以上であることが好ましい(さらに
好ましくは、純水の吸水倍率が10g/g以上)。この
ような物性値を示す酸性吸水性樹脂としては、例えば酸
性基を含み、その酸性基の50%〜100モル%が未中
和(フリー)の酸の形で存在し水不溶性となるまでゆる
く架橋された酸性樹脂を挙げることができる。より好ま
しくはその酸性基の70〜100モル%が未中和(フリ
ー)の酸の形で存在し、最も好ましくはその酸性基の9
0〜100モル%が未中和(フリー)の酸の形で存在し
且つ水不溶性になるまでゆるく架橋された酸性樹脂であ
る。本発明でより好ましく使用される酸性吸水性樹脂
は、例えば、カルボン酸基、スルホン酸基およびリン酸
基からなる群より選ばれる少なくとも1種の酸基を含有
する酸性吸水性樹脂を挙げることができる。本発明にお
いて、酸性吸水性樹脂は例えば、イ)酸基を含有する重
合性単量体を共重合性架橋剤の存在下に重合する方法、
ロ)酸基を含有する重合性単量体を重合して得られた酸
基含有重合体に後架橋処理を施す方法などの従来公知の
方法により得ることができる。また本発明で用いること
のできる酸性吸水性樹脂はポリアスパラギン酸架橋体、
ポリグルタミン酸架橋体のような架橋ポリペプチドやカ
ルボキシメチルセルロース架橋体のような天然物由来の
酸性吸水性樹脂であってもよい。
In the present invention, the acidic water-absorbing resin is an acidic water-absorbing resin which exhibits acidity in pure water and is crosslinked to a range capable of absorbing pure water and swelling. In the present invention, the acidic water-absorbing resin that is acidic in water preferably has a pH value in pure water of less than 6, for example, and a water absorption capacity of pure water of 1 g / g or more (more preferably, , Pure water absorption capacity of 10 g / g or more). Examples of the acidic water-absorbing resin having such physical property values include an acidic group, and 50% to 100% by mole of the acidic group is present in the form of an unneutralized (free) acid and loosely becomes water-insoluble. Cross-linked acidic resins can be mentioned. More preferably 70 to 100 mol% of the acid groups are present in the form of unneutralized (free) acid, most preferably 9 to 100 mol% of the acid groups.
0-100 mol% is an acidic resin which is present in the form of an unneutralized (free) acid and is loosely crosslinked until water-insoluble. The acidic water-absorbing resin more preferably used in the present invention includes, for example, an acidic water-absorbing resin containing at least one acid group selected from the group consisting of a carboxylic acid group, a sulfonic acid group and a phosphoric acid group. it can. In the present invention, the acidic water-absorbing resin is, for example, a) a method of polymerizing a polymerizable monomer containing an acid group in the presence of a copolymerizable crosslinking agent,
B) It can be obtained by a conventionally known method such as a method of subjecting an acid group-containing polymer obtained by polymerizing an acid group-containing polymerizable monomer to post-crosslinking treatment. The acidic water-absorbing resin that can be used in the present invention is a crosslinked polyaspartic acid,
A crosslinked polypeptide such as a crosslinked polyglutamic acid or an acidic water-absorbing resin derived from a natural product such as a crosslinked carboxymethylcellulose may be used.

【0017】酸基含有重合体の後架橋処理は、例えば、
I)加熱処理により架橋構造を導入する方法、II)電子
線、ガンマー線などの放射線照射により架橋構造を導入
する方法、III)ポリエチレングリコールジグリシジル
エーテル、グリセロールジグリシジルエーテル、エチレ
ングリコール、ポリエチレングリコール、プロピレング
リコール、グリセリン、ペンタエリスリトール、エチレ
ンジアミン、ポリエチレンイミン、エチレンカーボネー
トなどの酸基含有重合体の官能基と反応し得る官能基を
1分子中に2個以上有する化合物により重合体に架橋構
造を導入する方法などにより達成することができる。
The post-crosslinking treatment of the acid group-containing polymer includes, for example,
I) a method of introducing a crosslinked structure by heat treatment, II) a method of introducing a crosslinked structure by irradiation with electron beams, gamma rays, etc., III) polyethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, Introduce a cross-linked structure into the polymer by a compound having two or more functional groups in one molecule that can react with the functional groups of the acid group-containing polymer such as propylene glycol, glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and ethylene carbonate. It can be achieved by a method or the like.

【0018】本発明においてより好適に採用される酸性
吸水性樹脂の製法は、その重合度および架橋度のコント
ロールの容易さから、イ)の酸基を含有する重合性単量
体を共重合性架橋剤の存在下に重合する方法である。
The method for producing an acidic water-absorbing resin more preferably employed in the present invention is based on the fact that the polymerizable monomer having an acid group of a) is copolymerizable because of the ease of controlling the degree of polymerization and the degree of crosslinking. This is a method of polymerizing in the presence of a crosslinking agent.

【0019】本発明で好適に使用できる酸基を含有する
重合性単量体としては例えば、アクリル酸、メタアクリ
ル酸、エタアクリル酸、クロトン酸、ソルビン酸、マレ
イン酸、イタコン酸、けい皮酸、それらの無水物などの
カルボン酸基を含有する重合性単量体; ビニルスルホ
ン酸、アリルスルホン酸、スチレンスルホン酸、ビニル
トルエンスルホン酸、2−(メタ)アクリルアミド−2
−メチルプロパンスルホン酸、2−(メタ)アクリロイ
ルエタンスルホン酸、2−(メタ)アクリロイルプロパ
ンスルホン酸などのスルホン酸基を含有する重合性単量
体;2−ヒドロキシエチルアクリロイルホスフェート、
2−ヒドロキシエチルメタクリロイルホスフェート、フ
ェニル−2−アクリロイロキシエチルホスフェート、ビ
ニルリン酸などのリン酸基を含有する重合性単量体等を
挙げることができる。
Examples of the polymerizable monomer having an acid group that can be suitably used in the present invention include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, sorbic acid, maleic acid, itaconic acid, and cinnamic acid. And carboxylic acid group-containing polymerizable monomers such as anhydrides thereof; vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, vinyl toluene sulfonic acid, 2- (meth) acrylamide-2
Polymerizable monomers containing sulfonic acid groups such as -methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid; 2-hydroxyethylacryloyl phosphate;
Examples thereof include polymerizable monomers containing a phosphate group such as 2-hydroxyethyl methacryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, and vinyl phosphoric acid.

【0020】これらのうちで好ましいものはカルボン酸
基またはスルホン酸基を含有する重合性単量体であり、
特に好ましいものはカルボン酸基を含有する重合性単量
体であり、最も好ましくはアクリル酸である。これらの
酸基を含有する単量体は単独で使用してもよく、また2
種以上を併用してもよい。
Preferred among these are polymerizable monomers containing a carboxylic acid group or a sulfonic acid group,
Particularly preferred are polymerizable monomers containing a carboxylic acid group, most preferably acrylic acid. These monomers containing an acid group may be used alone,
More than one species may be used in combination.

【0021】本発明において、前記酸基を含有する単量
体と共に必要により他の重合性単量体を使用することが
できる。このようなものとしては例えばメチル(メタ)ア
クリレート、エチル(メタ)アクリレート、メトキシポリ
エチレングリコール(メタ)アクリレート、ポリエチレ
ングリコールモノ(メタ)アクリレートなどの不飽和カ
ルボン酸(アクリル酸、メタアクリル酸、エタアクリル
酸、クロトン酸、ソルビン酸、マレイン酸、イタコン
酸、けい皮酸など)のアルキルまたはアルキレンオキシ
ドエステル類;スチレンなどの芳香族ビニル炭化水素;
エチレン、プロピレン、ブテンなどの脂肪族ビニル炭化
水素;アクリロニトリルなどの不飽和ニトリル類;アク
リルアミド、メタアクリルアミドなどの不飽和アミド類
などが挙げられる。
In the present invention, other polymerizable monomers can be used together with the acid group-containing monomer, if necessary. Examples of such a compound include unsaturated carboxylic acids such as methyl (meth) acrylate, ethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and polyethylene glycol mono (meth) acrylate (acrylic acid, methacrylic acid, ethacrylic). Alkyl or alkylene oxide esters of acids, crotonic acid, sorbic acid, maleic acid, itaconic acid, cinnamic acid, etc .; aromatic vinyl hydrocarbons such as styrene;
Examples include aliphatic vinyl hydrocarbons such as ethylene, propylene, and butene; unsaturated nitriles such as acrylonitrile; and unsaturated amides such as acrylamide and methacrylamide.

【0022】本発明において好適に使用できる酸基を含
有する単量体と共重合できる共重合性架橋剤としては、
少なくとも2個の重合性二重結合を有する化合物(1)
および少なくとも1個の重合性二重結合を有しかつ単量
体と反応性の官能基を少なくとも1個有する化合物
(2)が挙げられる。
Examples of the copolymerizable crosslinking agent which can be preferably used in the present invention and which can be copolymerized with a monomer having an acid group include:
Compound (1) having at least two polymerizable double bonds
And a compound (2) having at least one polymerizable double bond and having at least one functional group reactive with a monomer.

【0023】化合物(1)の具体例としては以下のもの
が挙げられる。例えば、N,N′−メチレンビス(メ
タ)アクリルアミド、(ポリ)エチレングリコールジ
(メタ)アクリレート、(ポリ)プロピレングリコール
ジ(メタ)アクリレート、トリメチロールプロパントリ
(メタ)アクリレート、トリメチロールプロパンジ(メ
タ)アクリレート、グリセリントリ(メタ)アクリレー
ト、グリセリンアクリレートメタクリレート、エチレン
オキサイド変性トリメチロールプロパントリ(メタ)ア
クリレート、ペンタエリスリト−ルテトラ(メタ)アク
リレ−ト、ジペンタエリスリトールヘキサ(メタ)アク
リレート、トリアリルシアヌレート、トリアリルイソシ
アヌレート、トリアリルホスフェート、トリアリルアミ
ン、ポリ(メタ)アリロキシアルカン、ジビニルベンゼ
ン、ジビニルトルエン、ジビニルキシレン、ジビニルナ
フタレン、ジビニルエーテル、ジビニルケトン、トリビ
ニルベンゼン、トリレンジイソシアネート、ヘキサメチ
レンジイソシアネートなど。
The following are specific examples of the compound (1). For example, N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) ) Acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, triallylcia Nurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly (meth) allyloxyalkane, divinylbenzene, divinyltoluene, divinylxy Emissions, divinyl naphthalene, divinyl ether, divinyl ketone, trivinylbenzene, tolylene diisocyanate, hexamethylene diisocyanate.

【0024】化合物(2)の例としては、たとえばグリ
シジル(メタ)アクリレートのような一分子中にエポキ
シ基と重合性二重結合を有する化合物;N−メチロール
(メタ)アクリルアミドのような一分子中にヒドロキシ
基と重合性二重結合を有する化合物;N,N,N−トリ
メチル−N−(メタ)アクリロイオキシエチルトリメチ
ルアンモニウムクロライド、N,N,N−トリエチル−
N−(メタ)アクリロイオキシエチルトリメチルアンモ
ニウムクロライド、(メタ)アクリル酸ジメチルアミノ
エチル、(メタ)アクリル酸ジエチルアミノエチル、ア
リルアミン、ビニルピリジンのような1〜4級アミノ基
含有不飽和化合物などを挙げることができる。
Examples of the compound (2) include a compound having an epoxy group and a polymerizable double bond in one molecule such as glycidyl (meth) acrylate; a compound such as N-methylol (meth) acrylamide in one molecule. Having a hydroxy group and a polymerizable double bond; N, N, N-trimethyl-N- (meth) acryloyloxyethyltrimethylammonium chloride, N, N, N-triethyl-
N- (meth) acryloyloxyethyltrimethylammonium chloride, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, allylamine, unsaturated compounds containing a primary or quaternary amino group such as vinylpyridine, and the like. be able to.

【0025】共重合性架橋剤のうちで好ましいものは、
ビス(メタ)アクリルアミド、ポリオールと不飽和モノ
カルボン酸とのジ−またはポリ−エステル、ポリアリル
化合物であり、特に好ましいものは、N,N′−メチレ
ンビスアクリルアミド、トリメチロールプロパントリ
(メタ)アクリレート、(ポリ)エチレングリコールジ
アクリレート、トリアリルアミン、ポリ(メタ)アリロ
キシアルカンより選ばれる少なくとも1種である。
Preferred among the copolymerizable crosslinking agents are:
Bis (meth) acrylamide, di- or poly-esters of polyols and unsaturated monocarboxylic acids, and polyallyl compounds, particularly preferred are N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, It is at least one selected from (poly) ethylene glycol diacrylate, triallylamine, and poly (meth) allyloxyalkane.

【0026】本発明において共重合性架橋剤の量は全重
合性単量体および共重合性架橋剤の合計重量にもとづい
て通常0.001〜10%、好ましくは0.01〜5%
である。共重合性架橋剤の量が0.001%未満では得
られた酸性吸水性樹脂は吸水時のゲル強度が小さくなる
ことがあり、10%を越えると吸水倍率が低くなること
があるため好ましくない。
In the present invention, the amount of the copolymerizable crosslinking agent is usually 0.001 to 10%, preferably 0.01 to 5%, based on the total weight of all the polymerizable monomers and the copolymerizable crosslinking agent.
It is. If the amount of the copolymerizable cross-linking agent is less than 0.001%, the obtained acidic water-absorbing resin may have a low gel strength when absorbing water, and if it exceeds 10%, the water absorption capacity may be low, which is not preferable. .

【0027】必要により使用される他の重合性単量体の
量は全重合性単量体および共重合性架橋剤の合計重量に
基づいて通常40%以下、好ましくは20%以下であ
る。
The amount of other polymerizable monomers used as required is usually 40% or less, preferably 20% or less, based on the total weight of all polymerizable monomers and copolymerizable crosslinking agent.

【0028】なお重合に際しては、澱粉やセルロ−ス、
澱粉やセルロ−スの誘導体、ポリビニルアルコ−ル、ポ
リアクリル酸、ポリアクリル酸架橋体等の親水性高分
子、次亜リン酸(塩)等の連鎖移動剤や、水溶性ないし
水分散性界面活性剤を添加してもよい。なお、これら重
合性単量体に加える化合物は、米国特許4076663
号,同4320040号,同4833222号,同51
18719号,同5149750号,同5154713
号および同5264495号や、欧州特許037298
1号および同0496594号などに例示されている。
In the polymerization, starch, cellulose,
Derivatives of starch and cellulose, hydrophilic polymers such as polyvinyl alcohol, polyacrylic acid and crosslinked polyacrylic acid, chain transfer agents such as hypophosphorous acid (salt), and water-soluble or water-dispersible interfaces An activator may be added. Compounds to be added to these polymerizable monomers are described in US Pat.
Nos. 432,040, 4,833,222, 51
Nos. 18719, 5149750, 5154713
No. 5,264,495 and EP 037298.
Nos. 1 and 0496594.

【0029】本発明において、酸基含有単量体の重合方
法、または酸基含有単量体および共重合性架橋剤および
必要により使用されるその他の重合性単量体の重合方法
は、例えば、バルク重合や沈澱重合を採用することも可
能であるが、性能面や重合の制御の容易さから、単量体
を水溶液として、水溶液重合、逆相懸濁重合を行うこと
が好ましい。またこの場合の溶媒として、例えば水、メ
タノール、エタノール、アセトン、N,N−ジメチルホ
ルムアミド、ジメチルスルホキシド、メチルエチルケト
ン、およびこれらの2種以上の混合物を使用してもよ
い。溶媒を使用した場合の酸基含有単量体の濃度には特
に限定はないが、重量基準で通常10%以上、好ましく
は15〜80%である。また重合温度については通常0
℃〜150℃、好ましくは10〜100℃の範囲であ
る。
In the present invention, a method for polymerizing an acid group-containing monomer, or a method for polymerizing an acid group-containing monomer, a copolymerizable cross-linking agent, and optionally other polymerizable monomers are described in, for example, Although bulk polymerization or precipitation polymerization can be adopted, it is preferable to carry out aqueous solution polymerization and reverse phase suspension polymerization using a monomer as an aqueous solution from the viewpoint of performance and ease of polymerization control. Further, as the solvent in this case, for example, water, methanol, ethanol, acetone, N, N-dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, and a mixture of two or more thereof may be used. The concentration of the acid group-containing monomer when a solvent is used is not particularly limited, but is usually 10% or more, preferably 15 to 80% by weight. The polymerization temperature is usually 0.
C. to 150.degree. C., preferably 10 to 100.degree.

【0030】また重合を開始する方法としては、従来か
ら知られている方法で良く、例えばラジカル重合触媒を
用いて重合させる方法、および放射線、電子線、紫外線
などを照射する方法を挙げることができる。
The method of initiating the polymerization may be a conventionally known method, for example, a method of performing polymerization using a radical polymerization catalyst, or a method of irradiating radiation, an electron beam, ultraviolet light, or the like. .

【0031】ラジカル重合触媒を用いる方法において、
この触媒としては、過硫酸カリウム、過硫酸アンモニウ
ム、過硫酸ナトリウムなどの無機過酸化物;t−ブチル
ハイドロパーオキサイド、過酸化水素、過酸化ベンゾイ
ル、クメンヒドロパーオキサイドなどの有機過酸化物;
2,2′−アゾビス(2−アミジノプロパン)二塩酸
塩、アゾイソブチロニトリル、アゾビスシアノ吉草酸等
のアゾ化合物を挙げることができる。過酸化物のような
酸化性ラジカル重合触媒を用いる場合、亜硫酸ナトリウ
ム、亜硫酸水素ナトリウム、硫酸第一鉄、L−アスコル
ビン酸等の還元剤を併用してレドックス重合としても良
い。またこれらラジカル重合触媒の複数種を併用して用
いてもよい。ラジカル重合触媒の使用量も通常で良く、
例えば全重合性単量体および共重合性架橋剤の合計重量
に基づいて通常0.0005〜5%、好ましくは0.0
001〜1%である。
In a method using a radical polymerization catalyst,
Examples of the catalyst include inorganic peroxides such as potassium persulfate, ammonium persulfate, and sodium persulfate; organic peroxides such as t-butyl hydroperoxide, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide;
Examples thereof include azo compounds such as 2,2'-azobis (2-amidinopropane) dihydrochloride, azoisobutyronitrile, and azobiscyanovaleric acid. When an oxidizing radical polymerization catalyst such as a peroxide is used, redox polymerization may be performed by using a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid in combination. A plurality of these radical polymerization catalysts may be used in combination. The amount of the radical polymerization catalyst used may be normal,
For example, usually 0.0005 to 5%, preferably 0.05% based on the total weight of all polymerizable monomers and copolymerizable crosslinking agent.
001 to 1%.

【0032】本発明において、上記方法で得られる酸性
吸水性樹脂は、必要により、従来公知の乾燥・粉砕・分
級工程を経て、実質上乾燥した粉末の状態で使用され
る。好ましくは、該酸性吸水性樹脂は、その含水率が2
0重量%未満の、粒子サイズが10〜1000μmの範
囲の粉末の状態で、前記塩基性吸水性樹脂と混合され本
発明の吸水剤とすることができる。酸性吸水性樹脂の含
水率が20重量%以上の場合には、塩基性吸水性樹脂と
の混合条件によっては得られる吸水剤における脱塩効果
の低下が起こることがあるので注意を要する。本発明の
吸水剤の製法は、塩基性樹脂と架橋剤を架橋反応の進行
と同時に細分化を行ない得られる塩基性吸水性樹脂と、
酸性吸水性樹脂とを混合する方法である。この製法の具
体例としては、たとえば、以下の(a)および(b)の
方法を挙げることができる。 (a)塩基性樹脂と架橋剤を架橋反応の進行と同時に反
応物の細分化を行ない得られる塩基性吸水性樹脂と、酸
性吸水性樹脂とを予め別々に用意した後、両者を混合す
る。 (b)塩基性樹脂と架橋剤との架橋反応の進行と同時に
反応物の細分化を行う際に、酸性吸水性樹脂を共存させ
ることにより、塩基性樹脂の架橋反応の進行と同時に細
分化および酸性吸水性樹脂との混合を行う。上記方法
(a)において、塩基性吸水性樹脂と酸性吸水性樹脂と
の混合比率はその使用目的や被吸収液の種類によっても
異なるが、重量比(固形分として)で95:5〜5:9
5の範囲が好ましく、より好ましくは90:10〜1
0:90の範囲である。また塩基性吸水性樹脂と酸性吸
水性樹脂との混合は、両者が混合できるのであればその
混合機は特に限定されないが、そのような混合装置とし
ては、例えば、円筒型回転混合機、二重壁円錐型混合
機、V字型混合機、リボン型混合機、スクリュー型混合
機、流動型炉ロータリーデスク型混合機、気流型混合
機、双腕型ニーダー、内部混合機、回転式混合機、せん
断型混合機、タービュライザー、万能混合機、ナウター
型混合機、流動層式混合機等の従来から知られている混
合機を例示できる。また混合前に塩基性吸水性樹脂と酸
性吸水性樹脂はそれぞれの粒子が表面架橋処理を施され
たものであっても良い。上記方法(b)において、塩基
性樹脂と架橋剤としては、前述で説明した塩基性樹脂と
架橋剤が使用されるが、塩基性樹脂は、好ましくはその
塩基性基の50%〜100モル%が未中和(フリー)の
塩基の形で存在し、より好ましくはその塩基性基の70
〜100モル%が未中和(フリー)の塩基の形で存在
し、最も好ましくはその塩基性基の90〜100モル%
が未中和(フリー)の塩基の形で存在する。また、使用
される塩基性樹脂の濃度は、好ましくは50重量%以上
であり、さらに好ましくは80重量%以上であり、最も
好ましくは98重量%以上である。上記方法(b)で使
用される架橋剤の量は、塩基性樹脂がアミノ基含有塩基
性樹脂である場合には、高分子のアミンユニットに対し
0.001〜20モル%の範囲が好ましい。また、塩基
性樹脂と酸性吸水性樹脂との混合比率は、重量比(固形
分として)で90:10〜10:90の範囲が好まし
く、より好ましくは80:20〜20:80の範囲、最
も好ましくは70:30〜30:70の範囲である。上
記方法(b)で使用される酸性吸水性樹脂の含水率は、
20重量%未満が好ましい。塩基性樹脂と架橋剤と酸性
吸水性樹脂の混合は、三者が混合できるのであればその
混合機は特に限定されないが、そのような混合装置とし
ては、例えば、KRCニーダー、タービュライザー、パ
ドルドライヤー、押し出し機、スクリュー型混合機、2
軸押し出し機、コンティニアスニーダーなどを例示でき
る。また、架橋反応の際の温度・反応時間は、通常は、
室温〜150℃の温度で数秒〜数時間の範囲である。好
ましくは50℃〜120℃の温度下で数秒〜1時間の範
囲であり、特に操作を連続的に行なう場合には、容器内
での滞留時間内に架橋反応を終えることが好ましく、容
器をコンパクトにするためには反応を50℃〜120℃
の温度下で数秒〜50分の範囲で終えるような条件を選
択することが好ましい。また、反応は減圧下、常圧下、
加圧下のいずれの状態で行なっても良い。上記方法
(b)は、方法(a)と比較して、塩基性樹脂と架橋剤
の架橋反応で得られる塩基性吸水性樹脂を単離しないの
で、吸水剤をワンステップでより生産性良く製造でき
る。このようにして本発明の製法で得られた吸水剤は、
必要により乾燥され、粉砕されて所望の粒度の吸水剤と
することができる。乾燥する場合の乾燥温度は例えば5
0〜200℃の範囲であり、場合によっては窒素等の不
活性ガス雰囲気下で乾燥してもよい。乾燥機としては、
例えば、熱風乾燥機、回転式乾燥機、パドルドライヤ
ー、円盤型乾燥機、ベルト式乾燥機、Jナウター型乾燥
機、高周波乾燥機、減圧乾燥機、凍結乾燥機、溝型混合
乾燥機、ロータリー乾燥機、ディスク乾燥機、流動層式
乾燥機、気流型乾燥機、赤外線乾燥機等が挙げられる。
また、粉砕方法についても特に限定はなく、ハンマー式
粉砕機、衝撃式粉砕機、ロール式粉砕機、ジェット気流
式粉砕機など通常の装置が使用できる。本発明の製法で
得られた吸水剤の加圧下の吸水倍率(測定開始から1時
間後)は、好ましくは20g/g以上、さらに好ましく
は30g/g以上、最も好ましくは35g/g以上であ
る。また、吸水剤の加圧下の吸水倍率(測定開始から4
時間後)は、好ましくは25g/g以上、さらに好まし
くは35g/g以上、最も好ましくは40g/g以上で
ある。本発明の製法で得られた吸水剤の平均粒子サイズ
は好ましくは10〜1000μm、さらに好ましくは、
100〜850μm 、最も好ましくは、200〜600
μmである。また、本発明では、さらに消毒剤、消臭
剤、抗菌剤、香料、各種の無機粉末、有機粉末、発泡
剤、顔料、染料、親水性繊維、フィラー、疎水性繊維、
肥料等を混練時に添加し、これにより、本発明の製法で
得られた吸水剤に種々の機能を付与させることもでき
る。本発明の製法で得られた吸水剤は、各種の吸収性物
品、特に、薄型化の進む紙オムツや生理用ナプキン、失
禁パット等の吸収体に特に好適に用いることができ、長
時間使用した場合であっても漏れを著しく低減でき、表
面をサラサラの乾いた状態に保つことができる吸収性物
品を提供できる。
In the present invention, the acidic water-absorbing resin obtained by the above-mentioned method is used in a substantially dry powder state, if necessary, through a conventionally known drying, pulverizing and classifying step. Preferably, the acidic water-absorbent resin has a water content of 2
The water-absorbing agent of the present invention can be mixed with the basic water-absorbing resin in a state of a powder having a particle size of less than 0% by weight and having a particle size of 10 to 1000 µm. When the water content of the acidic water-absorbing resin is 20% by weight or more, the desalting effect of the obtained water-absorbing agent may decrease depending on the mixing conditions with the basic water-absorbing resin, so care must be taken. The method for producing the water-absorbing agent of the present invention is a basic water-absorbing resin obtained by performing fine division simultaneously with the progress of a crosslinking reaction with a basic resin and a crosslinking agent,
This is a method of mixing with an acidic water absorbent resin. Specific examples of this production method include, for example, the following methods (a) and (b). (A) A basic water-absorbent resin and an acidic water-absorbent resin, which are obtained by subdividing a reaction product simultaneously with the progress of a cross-linking reaction between a basic resin and a cross-linking agent, are separately prepared, and then both are mixed. (B) When the reaction product is subdivided simultaneously with the progress of the cross-linking reaction between the basic resin and the cross-linking agent, coexistence of the acidic water-absorbing resin allows the sub-division and the co-existence of the cross-linking reaction of the basic resin to proceed. Mix with acidic water absorbent resin. In the above method (a), the mixing ratio of the basic water-absorbing resin and the acidic water-absorbing resin varies depending on the purpose of use and the type of the liquid to be absorbed, but is 95: 5 to 5: 5 by weight (as solid content). 9
5 is preferred, and more preferably 90: 10-1.
The range is 0:90. The mixing of the basic water-absorbing resin and the acidic water-absorbing resin is not particularly limited as long as the two can be mixed. Examples of such a mixing device include a cylindrical rotary mixer and a double mixer. Wall cone mixer, V-shaped mixer, ribbon mixer, screw mixer, fluidized furnace rotary desk mixer, airflow mixer, double arm kneader, internal mixer, rotary mixer, Conventionally known mixers such as a shear mixer, a turbulizer, a universal mixer, a Nauter mixer, a fluidized bed mixer and the like can be exemplified. Before mixing, the basic water-absorbent resin and the acidic water-absorbent resin may have respective particles subjected to a surface cross-linking treatment. In the above method (b), the basic resin and the crosslinking agent described above are used as the basic resin and the crosslinking agent, and the basic resin is preferably used in an amount of 50% to 100% by mole of the basic group. Is present in the form of an unneutralized (free) base, more preferably 70% of its basic group
100100 mol% is present in the form of an unneutralized (free) base, most preferably 90-100 mol% of its basic groups
Exists in the form of unneutralized (free) base. The concentration of the basic resin used is preferably 50% by weight or more, more preferably 80% by weight or more, and most preferably 98% by weight or more. When the basic resin is an amino group-containing basic resin, the amount of the crosslinking agent used in the above method (b) is preferably in the range of 0.001 to 20 mol% based on the amine unit of the polymer. The mixing ratio of the basic resin and the acidic water-absorbing resin is preferably in the range of 90:10 to 10:90 by weight (as solid content), more preferably in the range of 80:20 to 20:80, most preferably. Preferably it is in the range of 70:30 to 30:70. The water content of the acidic water-absorbent resin used in the above method (b) is
Less than 20% by weight is preferred. The mixing of the basic resin, the crosslinking agent and the acidic water-absorbing resin is not particularly limited as long as the three components can be mixed. Examples of such a mixing device include a KRC kneader, a turbulizer, and a paddle. Dryer, extruder, screw-type mixer, 2
A shaft extruder, a continuous kneader and the like can be exemplified. In addition, the temperature and reaction time during the crosslinking reaction are usually
The temperature ranges from room temperature to 150 ° C. for several seconds to several hours. It is preferably in the range of several seconds to one hour at a temperature of 50 ° C. to 120 ° C. In particular, when the operation is continuously performed, it is preferable that the crosslinking reaction be completed within the residence time in the container. The reaction must be between 50 ° C and 120 ° C
It is preferable to select such a condition that the processing is completed within a range of several seconds to 50 minutes at the temperature of the above. The reaction is carried out under reduced pressure, normal pressure,
It may be performed in any state under pressure. The method (b) does not isolate the basic water-absorbing resin obtained by the crosslinking reaction between the basic resin and the crosslinking agent as compared with the method (a), so that the water-absorbing agent can be produced in one step with higher productivity. it can. Thus, the water-absorbing agent obtained by the production method of the present invention is:
If necessary, it can be dried and ground to obtain a water-absorbing agent having a desired particle size. The drying temperature for drying is, for example, 5
The temperature is in the range of 0 to 200 ° C., and in some cases, drying may be performed under an atmosphere of an inert gas such as nitrogen. As a dryer,
For example, hot air dryers, rotary dryers, paddle dryers, disk dryers, belt dryers, J-Nauta dryers, high frequency dryers, vacuum dryers, freeze dryers, grooved mixers, rotary dryers Dryers, disk dryers, fluidized bed dryers, airflow dryers, infrared dryers and the like.
There is no particular limitation on the pulverization method, and ordinary equipment such as a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a jet air pulverizer can be used. The water absorption capacity under pressure (after 1 hour from the start of measurement) of the water-absorbing agent obtained by the production method of the present invention is preferably 20 g / g or more, more preferably 30 g / g or more, and most preferably 35 g / g or more. . The water absorption capacity of the water absorbing agent under pressure (4% from the start of measurement)
After time) is preferably 25 g / g or more, more preferably 35 g / g or more, and most preferably 40 g / g or more. The average particle size of the water absorbing agent obtained by the production method of the present invention is preferably 10 to 1000 μm, more preferably,
100-850 μm, most preferably 200-600
μm. Further, in the present invention, further disinfectant, deodorant, antibacterial agent, fragrance, various inorganic powder, organic powder, foaming agent, pigment, dye, hydrophilic fiber, filler, hydrophobic fiber,
Fertilizers and the like are added during kneading, whereby various functions can be imparted to the water-absorbing agent obtained by the production method of the present invention. The water-absorbing agent obtained by the production method of the present invention can be particularly suitably used for various absorbent articles, in particular, absorbents such as disposable diapers and sanitary napkins, incontinence pads, etc., which have been used for a long time. Even in such a case, it is possible to provide an absorbent article that can significantly reduce leakage and keep the surface dry and dry.

【0033】本発明の製法で得られた吸水剤は、塩水を
すばやく吸収できるので、各種の吸収性物品;紙オムツ
や生理用ナプキン、失禁パット等の吸水剤、ワイパーの
吸水剤などの衛生材料分野;鮮度保持剤、肉類・魚介類
のドリップ吸収剤などの食品分野;植物や土壌の保水
剤、法面緑化用保水剤などの農園芸分野;塗料添加剤、
結露防止剤などの建材分野;光ケーブル用止水剤、海底
ケーブル用止水剤などの通信分野;印刷フィルムの表面
コート剤などの情報分野;含水物凝固剤などの産業用分
野;使い捨てカイロ、塩化カルシウムを主剤とした乾燥
剤などの家庭用品分野;土木用シーリング剤、コンクリ
ート混和剤などの土木分野など広範囲の分野に好適に用
いることができる。
The water-absorbing agent obtained by the production method of the present invention can quickly absorb salt water, so that various absorbent articles; water-absorbing agents such as paper diapers, sanitary napkins, incontinence pads, etc .; Fields: Foods such as freshness preservatives, drip absorbents for meat and seafood, etc .; Agriculture and horticulture fields such as water retention agents for plants and soil, water retention agents for slope greening; Paint additives;
Construction materials such as anti-condensation agents; telecommunications such as water-blocking agents for optical cables and submarine cables; information fields such as surface coating agents for printed films; industrial fields such as hydrated coagulants; It can be suitably used in a wide range of fields such as household products such as a desiccant containing calcium as a main component and civil engineering such as a sealing agent for civil engineering and a concrete admixture.

【0034】更に本発明の製法で得られた吸水剤は、そ
れ単独でアンモニア、アセトアルデヒドやメルカプタン
等の不快な臭い物質を除去できる効果も有しており、消
臭製品の構成要素として有効である。
Further, the water-absorbing agent obtained by the process of the present invention has an effect of removing unpleasant odorous substances such as ammonia, acetaldehyde and mercaptan by itself, and is effective as a component of a deodorant product. .

【0035】[0035]

【実施例】以下、実施例および比較例により、本発明を
さらに詳細に説明するが、本発明はこれらにより何ら限
定されるものではない。尚、塩基性吸水性樹脂中の可溶
性成分量、塩基性吸水性樹脂の吸水倍率、吸水剤の加圧
下の吸水倍率、酸性吸水性樹脂の含水率は以下の方法で
測定した。また、以下において、単に「部」、「%」と
あるのは特にことわりがない限り、それぞれ「重量
部」、「重量%」を表すものとする。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto. The amount of the soluble component in the basic water-absorbing resin, the water absorption of the basic water-absorbing resin, the water absorption of the water-absorbing agent under pressure, and the water content of the acidic water-absorbing resin were measured by the following methods. In the following, “parts” and “%” represent “parts by weight” and “% by weight”, respectively, unless otherwise specified.

【0036】(a)塩基性吸水性樹脂の可溶性成分量 固形分として1gに相当する量の塩基性吸水性樹脂(W
a[g])を0.0001gまで正確に計って200gの
純水に投入し16時間攪拌した後、その混合溶液を濾紙
(ADVANTEC社製、No.2)で濾過し、濾液を
分取した。200mlのビーカーに溶解したアミン成分
が1〜3mgに相当する量の濾液を採取し(Wb
[g])、純水を加えて50gにし、更にそこに、0.1
mol/l塩酸を添加しpHが1〜2になるように調製し
た。その溶液にトルイジンブルーを数滴添加した後、1
/400mol/lポリビニル硫酸カリウム溶液(PV
SK、コロイド滴定用)を滴下し、溶液の色が青から赤
紫になったところを終点(T[ml])とした。塩基性吸
水性樹脂の可溶性成分量の計算は以下の式により求め
た。
(A) Amount of Soluble Component of Basic Water Absorbent Resin The amount of the basic water absorbent resin (W
a [g]) was accurately measured to 0.0001 g, poured into 200 g of pure water, stirred for 16 hours, and then the mixed solution was filtered with filter paper (ADVANTEC, No. 2) to separate the filtrate. . A filtrate was collected in an amount corresponding to 1 to 3 mg of the amine component dissolved in a 200 ml beaker (Wb
[g]), add pure water to make 50g, and then add 0.1g
The solution was adjusted to pH 1 to 2 by adding mol / l hydrochloric acid. After adding a few drops of toluidine blue to the solution,
/ 400mol / l polyvinyl potassium sulfate solution (PV
SK, for colloid titration) was dropped, and the point where the color of the solution changed from blue to reddish purple was defined as the end point (T [ml]). The calculation of the amount of the soluble component of the basic water-absorbing resin was determined by the following equation.

【0037】[0037]

【数1】 (Equation 1)

【0038】(b)塩基性吸水性樹脂および酸性吸水性
樹脂の吸水倍率 固形分として0.2gに相当する量の塩基性吸水性樹脂
(または酸性吸水性樹脂)を0.0001gまで正確に
計って不織布製の袋(60mm×60mm)に入れ、1
00gの純水に浸漬した。24時間後に袋を引き上げ、
遠心分離機を用いて250G(cm/sec2)で3分間
水切りを行った後、袋の重量Wc(g)を測定した。ま
た、同様の操作を塩基性吸水性樹脂(または酸性吸水性
樹脂)を用いないで行い、その時の重量Wd(g)を測
定した。そして、これら重量Wc、Wdから、次式、 吸水倍率(g/g)=(Wc−Wd)/0.2−1 に従って塩基性吸水性樹脂(または酸性吸水性樹脂)の
吸水倍率(g/g)を算出した。
(B) Water absorption capacity of basic water-absorbent resin and acidic water-absorbent resin An amount of the basic water-absorbent resin (or acidic water-absorbent resin) corresponding to 0.2 g as solid content is accurately measured to 0.0001 g. Into a non-woven bag (60 mm x 60 mm)
It was immersed in 00 g of pure water. After 24 hours, pull up the bag,
After draining at 250 G (cm / sec 2 ) for 3 minutes using a centrifuge, the weight Wc (g) of the bag was measured. The same operation was performed without using a basic water-absorbing resin (or an acidic water-absorbing resin), and the weight Wd (g) at that time was measured. Then, from these weights Wc and Wd, the water absorption capacity (g / g) of the basic water-absorbent resin (or acidic water-absorbent resin) is calculated according to the following equation: Water absorption capacity (g / g) = (Wc-Wd) /0.2-1. g) was calculated.

【0039】(c)吸水剤の加圧下の吸水倍率 ステンレス400メッシュの金網(目の大きさ38μ
m)を底に融着させた内径60mmのプラスチックの支
持円筒の底の網上に、吸水剤0.9gを均一に散布し、
その上に吸水剤に対して、4.9kPaの荷重を均一に
加えることができるように調整された、外径が60mmよ
りわずかに小さく支持円筒との壁面に隙間が生じず、か
つ上下の動きは妨げられないピストンと荷重をこの順に
載置し、この測定装置一式の重量を測定した(We)。
(C) Water absorption capacity of water absorbing agent under pressure 400 mesh stainless steel mesh (mesh size 38 μm)
0.9 g of a water-absorbing agent was evenly sprayed on a net at the bottom of a plastic support cylinder having an inner diameter of 60 mm fused with m) at the bottom,
The outer diameter is slightly smaller than 60 mm, which is adjusted so that a load of 4.9 kPa can be applied uniformly to the water-absorbing agent. Put the unhindered piston and the load in this order, and measured the weight of the entire measuring device (We).

【0040】150mmのペトリ皿の内側に直径90m
mのガラスフィルターを置き、塩水(塩化カリウム2.
0g、硫酸ナトリウム2.0g、リン酸二水素アンモニ
ウム0.85g、リン酸水素二アンモニウム0.15
g、塩化カルシウム二水和物0.25g、塩化マグネシ
ウム六水和物0.5gに溶解のための脱イオン水を加え
総重量1000gとしたもの)をガラスフィルターの表
面と同レベルになるように加える。その上に直径90m
mの濾紙を載せ表面が全て濡れるようにし、かつ過剰の
液を除く。
90 m diameter inside a 150 mm petri dish
m glass filter, and brine (potassium chloride 2.
0 g, sodium sulfate 2.0 g, ammonium dihydrogen phosphate 0.85 g, diammonium hydrogen phosphate 0.15
g, 0.25 g of calcium chloride dihydrate and 0.5 g of magnesium chloride hexahydrate with deionized water for dissolution to make the total weight 1000 g) so as to have the same level as the surface of the glass filter. Add. 90m diameter on it
m of filter paper so that all surfaces are wet, and remove excess liquid.

【0041】上記測定装置一式を前記湿った濾紙上にの
せ、液を荷重下で吸収させる。吸水剤が所定時間液を吸
収した後、測定装置一式を持ち上げ、その重量を再測定
する(Wf)。WfよりWeを差し引いた値を吸水剤の
重量(0.9g)で除して加圧下の吸水倍率(g/g)
を求めた。上記測定はピストンと荷重が載ったまま行わ
れ、重量測定後、測定装置一式を前記湿った濾紙上に再
度のせ、次の所定時間まで塩水を荷重下で吸水させ、こ
の操作を繰り返して、単位時間後の加圧下の吸水倍率を
もとめた。
The above set of measuring apparatus is placed on the wet filter paper, and the liquid is absorbed under a load. After the water-absorbing agent has absorbed the liquid for a predetermined period of time, the complete measuring device is lifted and its weight is measured again (Wf). The value obtained by subtracting We from Wf is divided by the weight of the water-absorbing agent (0.9 g) to obtain a water absorption capacity under pressure (g / g).
I asked. The above measurement is carried out with the piston and the load placed thereon.After the weight measurement, the complete set of measuring devices is placed again on the wet filter paper, salt water is absorbed under the load until the next predetermined time, and this operation is repeated. The water absorption capacity under pressure after time was determined.

【0042】(d)酸性吸水性樹脂の含水率 酸性吸水性樹脂の初期の重量(Wg)を予め測定してお
き、180℃の熱風乾燥機中で3時間乾燥後の重量(W
h)を測定する。WgよりWhを差し引いた値をWgで
除した値を百分率で表わして、酸性吸水性樹脂の含水率
(%)とした。
(D) Moisture content of the acidic water-absorbing resin The initial weight (Wg) of the acidic water-absorbing resin is measured in advance, and the weight (W) after drying in a hot-air dryer at 180 ° C. for 3 hours.
h) is measured. The value obtained by subtracting Wh from Wg and dividing by Wg was expressed as a percentage, which was defined as the water content (%) of the acidic water-absorbing resin.

【0043】(参考例1)アクリル酸1008.8部、
共重合性架橋剤としてN,N′−メチレンビスアクリル
アミド8.63部、および純水3960.9部を混合
し、窒素ガスで60分脱気後、開閉可能な密閉容器中に
仕込み、窒素雰囲気下で液温を20℃の温度に保ちなが
ら反応系の窒素置換を続けた。次いで攪拌下に2,2′
−アゾビス(2−アミジノプロパン)二塩酸塩の10重
量%水溶液30.5部、過酸化水素の10重量%水溶液
10.8部とL−アスコルビン酸の1重量%水溶液2
5.2部をそれぞれ添加したところ5分後に重合が開始
し、30分後に反応系はピーク温度に達した。重合温度
がピークに達した30分後に、生成した含水ゲル状架橋
重合体を取り出し、ミートチョッパーを通過せしめ細分
化された含水ゲル状架橋重合体を得た。このものを13
0℃の熱風乾燥機中で1時間乾燥した。乾燥物をロール
グラニュレーター(日本グラニュレーター株式会社製)
で粉砕し、粉砕物を目開き850μmの金網を通過せし
め、通過物を分取して、酸性吸水性樹脂(1)を得た。
なお、この得られた酸性吸水性樹脂(1)の含水率は6
%であり、純水に対する吸水倍率は14g/gであっ
た。
Reference Example 1 1008.8 parts of acrylic acid,
8.63 parts of N, N'-methylenebisacrylamide as a copolymerizable cross-linking agent and 3960.9 parts of pure water are mixed, degassed with nitrogen gas for 60 minutes, and charged in an openable and closable container. The reaction system was continuously purged with nitrogen while keeping the liquid temperature at 20 ° C. under the temperature. Then, with stirring, 2,2 '
30.5 parts of a 10% by weight aqueous solution of azobis (2-amidinopropane) dihydrochloride, 10.8 parts of a 10% by weight aqueous solution of hydrogen peroxide and 1% by weight aqueous solution of L-ascorbic acid 2
When 5.2 parts were added, polymerization started 5 minutes later, and the reaction system reached a peak temperature 30 minutes later. Thirty minutes after the polymerization temperature reached the peak, the produced hydrogel crosslinked polymer was taken out and passed through a meat chopper to obtain a finely divided hydrogel crosslinked polymer. 13
It was dried in a hot air dryer at 0 ° C. for 1 hour. Roll the dried product into a roll granulator (Nippon Granulator Co., Ltd.)
Then, the pulverized product was passed through a wire mesh having an opening of 850 μm, and the passed product was fractionated to obtain an acidic water-absorbent resin (1).
The water content of the obtained acidic water-absorbent resin (1) was 6%.
%, And the water absorption capacity with respect to pure water was 14 g / g.

【0044】(参考例2)アクリル酸800部、2−ア
クリルアミド−2−メチルプロパンスルホン酸の50重
量%水溶液1150部、架橋剤としてのN,N′−メチ
レンビスアクリルアミド5.35部、および純水293
0部を混合し、窒素ガスで60分脱気後、開閉可能な密
閉容器中に仕込み、窒素雰囲気下で液温を20℃の温度
に保ちながら反応系の窒素置換を続けた。次いで攪拌下
に2,2′−アゾビス(2−アミジノプロパン)二塩酸
塩の10重量%水溶液30.3部、過酸化水素の3重量
%水溶液33.3部とL−アスコルビン酸の0.5重量
%水溶液50部をそれぞれ添加したところ1分後に重合
が開始し、17分後に反応系はピーク温度に達した。重
合温度がピークに達した30分後に、生成した含水ゲル
状架橋重合体を取り出し、ミートチョッパーを通過せし
め細分化された含水ゲル状架橋重合体を得た。このもの
を60℃の熱風乾燥機中で1時間乾燥した後、更に60
℃の減圧乾燥機にて3時間乾燥せしめた。乾燥物をロー
ルグラニュレーター(日本グラニュレーター株式会社
製)で粉砕し、粉砕物を目開き850μmの金網を通過
せしめ、通過物を分取して、酸性吸水性樹脂(2)を得
た。なお、この得られた酸性吸水性樹脂(2)の含水率
は15%であった。
Reference Example 2 800 parts of acrylic acid, 1150 parts of a 50% by weight aqueous solution of 2-acrylamido-2-methylpropanesulfonic acid, 5.35 parts of N, N'-methylenebisacrylamide as a crosslinking agent, and pure Water 293
After 0 parts were mixed and deaerated with nitrogen gas for 60 minutes, the mixture was charged into an openable and closable container, and the reaction system was replaced with nitrogen while maintaining the liquid temperature at 20 ° C. under a nitrogen atmosphere. Then, 30.3 parts of a 10% by weight aqueous solution of 2,2'-azobis (2-amidinopropane) dihydrochloride, 33.3 parts of a 3% by weight aqueous solution of hydrogen peroxide and 0.5% of L-ascorbic acid were stirred. When 50 parts by weight of the aqueous solution were added, polymerization started 1 minute later, and the reaction system reached the peak temperature 17 minutes later. Thirty minutes after the polymerization temperature reached the peak, the produced hydrogel crosslinked polymer was taken out and passed through a meat chopper to obtain a finely divided hydrogel crosslinked polymer. This was dried in a hot air drier at 60 ° C. for 1 hour, and further dried for 60 hours.
It was dried for 3 hours in a vacuum dryer at a temperature of ℃. The dried product was pulverized with a roll granulator (manufactured by Nippon Granulator Co., Ltd.), and the pulverized product was passed through a wire mesh having an aperture of 850 μm, and the passed product was fractionated to obtain an acidic water-absorbent resin (2). The water content of the obtained acidic water-absorbent resin (2) was 15%.

【0045】(実施例1)72.7g/分の供給速度で
供給される濃度100%のポリエチレンイミン(商品
名:エポミンSP−200、株式会社日本触媒製)に対
し、架橋剤としてのエチレングリコールジグリシジルエ
ーテル(商品名:デナコールEX−810、ナガセ化成
工業株式会社製、固形分100%)を7.3g/分の供
給速度で供給することにより混合物を連続的に得た。同
時に該混合物を回転数53rpmで駆動する2軸の回転
軸を有する、内容量1.2リットルでジャケット付きの
KRCニーダー(株式会社栗本鐵工所社製)に連続的に
投入し、該KRCニーダー内を連続的に通過させ、せん
断力により架橋反応と同時に細分化を行い、本発明の塩
基性吸水性樹脂(1)を連続的に得た。この時ジャケッ
ト内を通す水の温度は80℃であった。得られた本発明
の塩基性吸水性樹脂(1)の可溶性成分量は3.4%
で、吸水倍率は6.5g/gで、粒子サイズ10〜10
00μmの粒子は98重量%で、平均粒子サイズは27
0μmであった。本発明の塩基性吸水性樹脂(1)中の
10〜1000μmの粒子は1000〜850μmの粒
子を6%、850μm〜500μmの粒子を14%、5
00μm〜300μmの粒子を22%、300μm〜1
50μmの粒子を43%、150μm〜10μmの粒子
を15%含んでいた。
Example 1 A 100% concentration of polyethyleneimine (trade name: Epomin SP-200, manufactured by Nippon Shokubai Co., Ltd.) supplied at a supply rate of 72.7 g / min was mixed with ethylene glycol as a crosslinking agent. A mixture was continuously obtained by supplying diglycidyl ether (trade name: Denacol EX-810, manufactured by Nagase Kasei Kogyo Co., Ltd., solid content 100%) at a supply rate of 7.3 g / min. At the same time, the mixture was continuously charged into a jacketed KRC kneader (manufactured by Kurimoto Ironworks Co., Ltd.) having a capacity of 1.2 liters and having two rotating shafts driven at a rotation speed of 53 rpm. The mixture was continuously passed through the inside of the container, and finely divided at the same time as a crosslinking reaction by a shear force, whereby a basic water-absorbent resin (1) of the present invention was continuously obtained. At this time, the temperature of the water passing through the jacket was 80 ° C. The amount of the soluble component in the obtained basic water absorbent resin (1) of the present invention is 3.4%.
The water absorption capacity is 6.5 g / g, and the particle size is 10 to 10.
98 μ% of particles having a size of 00 μm and an average particle size of 27%
It was 0 μm. In the basic water-absorbent resin (1) of the present invention, 10% to 1000 μm particles represent 6% of 1000 to 850 μm particles, 14% represent 850 μm to 500 μm particles.
22% of particles of 00 μm to 300 μm, 300 μm to 1
It contained 43% of 50 μm particles and 15% of 150 μm to 10 μm particles.

【0046】(実施例2)内容量10リットルでシグマ
型攪拌羽根を2本有するジャケット付きステンレス製双
腕型ニーダーに蓋をつけた反応容器中に、30%のポリ
エチレンイミン(商品名:エポミンP−1000、株式
会社日本触媒製)5000gを投入し、回転数40rp
mで攪拌しながら、N,N’−メチレンビスアクリルア
ミドの9.4%水溶液1597g(温度80℃)を加
え、せん断力下に架橋反応と同時に細分化を行った。こ
の時ジャケット温度は60℃であった。ニーダー中での
反応開始から3分後に細分化されたゲルをニーダーから
排出し、次いでドームグラン(不二パウダル株式会社
製)を通過せしめ、本発明の塩基性吸水性樹脂(2)を
得た。得られた本発明の塩基性吸水性樹脂(2)の可溶
性成分量は3.1%で、吸水倍率は9.5g/g、乾燥
後の粒子サイズ10〜1000μmの粒子は98重量%
で、平均粒子サイズは210μmであった。また、乾燥
後の塩基性吸水性樹脂(2)中の10〜1000μmの
粒子は、850μm〜500μmの粒子を7%、500
μm〜300μmの粒子を22%、300μm〜150
μmの粒子を43%、150μm〜10μmの粒子を2
8%含んでいた。
Example 2 A 30% polyethyleneimine (trade name: Epomin P) was placed in a reaction vessel having a capacity of 10 liters and having a lid attached to a jacketed stainless steel double-armed kneader having two sigma-type stirring blades. -1000, manufactured by Nippon Shokubai Co., Ltd.)
While stirring at m, 1597 g of a 9.4% aqueous solution of N, N'-methylenebisacrylamide (at a temperature of 80 ° C.) was added, and fragmentation was performed simultaneously with a crosslinking reaction under a shearing force. At this time, the jacket temperature was 60 ° C. After 3 minutes from the start of the reaction in the kneader, the fragmented gel was discharged from the kneader, and then passed through Dome Gran (manufactured by Fuji Paudal Co., Ltd.) to obtain the basic water-absorbent resin (2) of the present invention. . The obtained basic water-absorbent resin (2) of the present invention has a soluble component amount of 3.1%, a water absorption capacity of 9.5 g / g, and 98% by weight of particles having a particle size of 10 to 1000 μm after drying.
The average particle size was 210 μm. Further, 10% to 1000 μm particles in the basic water-absorbent resin (2) after drying are 7% of 850 μm to 500 μm particles,
22% particles of 300 μm to 150 μm
μm particles 43%, 150 μm to 10 μm particles 2
It contained 8%.

【0047】(実施例3)実施例2のジャケット温度を
25℃とし、ニーダー内での反応時間を10分間とする
以外は実施例2と同様にして、本発明の塩基性吸水性樹
脂(3)を得た。得られた本発明の塩基性吸水性樹脂
(3)の可溶性成分量は3.4%で、吸水倍率は9.7
g/g、乾燥後の粒子サイズ10〜1000μmの粒子
は99重量%で、平均粒子サイズは230μmであっ
た。また、乾燥後の塩基性吸水性樹脂(3)中の10〜
1000μmの粒子は、850μm〜500μmの粒子
を9%、500μm〜300μmの粒子を25%、30
0μm〜150μmの粒子を40%、150μm〜10
μmの粒子を26%含んでいた。
Example 3 The basic water-absorbing resin (3) of the present invention was prepared in the same manner as in Example 2 except that the jacket temperature was 25 ° C. and the reaction time in the kneader was 10 minutes. ) Got. The obtained basic water-absorbent resin (3) of the present invention had a soluble component amount of 3.4% and a water absorption capacity of 9.7.
The particles having a particle size of 10 g / g and a dried particle size of 10 to 1000 μm were 99% by weight, and the average particle size was 230 μm. Further, 10 to 10 in the basic water absorbent resin (3) after drying.
9% of particles of 850 μm to 500 μm, 25% of particles of 500 μm to 300 μm, 30% of particles of 1000 μm.
40% of particles of 0 μm to 150 μm, 150 μm to 10 μm
It contained 26% of μm particles.

【0048】(実施例4)実施例2において、ドームグ
ランの代わりに、逆戻り防止部材をミートチョッパーケ
ーシング内にらせん状に備えたミートチョッパーを用い
た以外は実施例2と同様にして、本発明の塩基性吸水性
樹脂(4)を得た。得られた本発明の塩基性吸水性樹脂
(4)の可溶性成分量は3.2%で、吸水倍率は9.5
g/g、乾燥後の粒子サイズ10〜1000μmの粒子
は93重量%で、平均粒子サイズは165μmであっ
た。また、乾燥後の塩基性吸水性樹脂(4)中の10〜
1000μmの粒子は、1000〜850μmの粒子を
13%、850μm〜500μmの粒子を7%、500
μm〜300μmの粒子を9%、300μm〜150μ
mの粒子を25%、150〜10μmの粒子を46%含
んでいた。
(Embodiment 4) The present invention is carried out in the same manner as in Embodiment 2 except that a meat chopper provided with a reverse-prevention member in a spiral shape in a meat chopper casing is used instead of Dome Gran. To obtain a basic water-absorbing resin (4). The obtained basic water absorbent resin (4) of the present invention had a soluble component amount of 3.2% and a water absorption capacity of 9.5.
The particles having a particle size of 10 g / g and a dried particle size of 10 to 1000 μm were 93% by weight, and the average particle size was 165 μm. Moreover, 10 to 10 in the basic water absorbent resin (4) after drying.
13% of particles of 1000 to 850 μm, 7% of particles of 850 μm to 500 μm,
9% of particles of μm to 300 μm, 300 μm to 150 μ
The particles contained 25% of particles of m and 46% of particles of 150 to 10 μm.

【0049】(実施例5)182g/分の供給速度で供
給される濃度30%のポリエチレンイミン(商品名:エ
ポミンP−1000、株式会社日本触媒製)に対し、架
橋剤としてのN,N’−メチレンビスアクリルアミド
(温度80℃の9.4%水溶液)を58g/分の供給速
度で供給しつつ、両者を回転数53rpmで駆動する2
軸の回転軸を有する、内容量1.2リットルでジャケッ
ト付きのKRCニーダー(株式会社栗本鐵工所社製)に
連続的に投入し、該KRCニーダー内を連続的に通過さ
せ、せん断力により架橋反応と同時に細分化を行い、本
発明の塩基性吸水性樹脂(5)を連続的に得た。この時
ジャケット内を通す水の温度は80℃であった。得られ
た本発明の塩基性吸水性樹脂(5)の可溶性成分量は
3.5%で、吸水倍率は10.4g/gで、乾燥後の粒
子サイズ10〜1000μmの粒子は84重量%で、平
均粒子サイズは650μmであった。また、乾燥後の塩
基性吸水性樹脂(5)中の10〜1000μmの粒子
は、1000〜850μmの粒子を34%、850μm
〜500μmの粒子を31%、500μm〜300μm
の粒子を22%、300μm〜150μmの粒子を11
%、150〜10μmの粒子を2%含んでいた。
(Example 5) N, N 'as a cross-linking agent was applied to polyethyleneimine having a concentration of 30% (trade name: Epomin P-1000, manufactured by Nippon Shokubai Co., Ltd.) supplied at a supply rate of 182 g / min. While supplying methylene bisacrylamide (a 9.4% aqueous solution at a temperature of 80 ° C.) at a supply speed of 58 g / min, both are driven at a rotation speed of 53 rpm.
Continuously put into a KRC kneader (manufactured by Kurimoto Ironworks Co., Ltd.) having an inner volume of 1.2 liters and having a rotating shaft, and continuously passing through the KRC kneader, by shearing force. Subdivision was performed simultaneously with the crosslinking reaction, and the basic water-absorbent resin (5) of the present invention was continuously obtained. At this time, the temperature of the water passing through the jacket was 80 ° C. The amount of the soluble component of the obtained basic water absorbent resin (5) of the present invention is 3.5%, the water absorption capacity is 10.4 g / g, and the particles having a particle size of 10 to 1000 μm after drying are 84% by weight. The average particle size was 650 μm. In addition, the particles of 10 to 1000 μm in the basic water absorbent resin (5) after drying are 34% of particles of 1000 to 850 μm and 850 μm.
31% of particles of 500 μm, 500 μm to 300 μm
Of particles of 22% and particles of 300 μm to 150 μm
%, 2% of particles of 150 to 10 μm.

【0050】(実施例6)157g/分の供給速度で供
給される濃度50%のポリエチレンイミン(商品名:エ
ポミンP−1050、株式会社日本触媒製)に対し、架
橋剤としてのN,N’−メチレンビスアクリルアミド
(温度80℃の9.4%水溶液)を83g/分の供給速
度で供給しつつ、両者を回転数53rpmで駆動する2
軸の回転軸を有する、内容量1.2リットルでジャケッ
ト付きのKRCニーダー(株式会社栗本鐵工所社製)に
連続的に投入し、該KRCニーダー内を連続的に通過さ
せ、せん断力により架橋反応と同時に細分化を行い、本
発明の塩基性吸水性樹脂(6)を連続的に得た。この時
ジャケット内を通す水の温度は80℃であった。得られ
た本発明の塩基性吸水性樹脂(6)の可溶性成分量は
4.7%で、吸水倍率は8.0g/gで、乾燥後の粒子
サイズ10〜1000μmの粒子は88重量%で、平均
粒子サイズは290μmであった。また、乾燥後の塩基
性吸水性樹脂(6)中の10〜1000μmの粒子は、
1000〜850μmの粒子を21%、850μm〜5
00μmの粒子を12%、500μm〜300μmの粒
子を16%、300μm〜150μmの粒子を35%、
150〜10μmの粒子を16%含んでいた。
(Example 6) N, N 'as a crosslinking agent was applied to a 50% concentration polyethyleneimine (trade name: Epomin P-1050, manufactured by Nippon Shokubai Co., Ltd.) supplied at a supply rate of 157 g / min. While driving methylene bisacrylamide (a 9.4% aqueous solution at a temperature of 80 ° C.) at a supply speed of 83 g / min, drive both at a rotation speed of 53 rpm.
Continuously put into a KRC kneader (manufactured by Kurimoto Ironworks Co., Ltd.) having an inner volume of 1.2 liters and having a rotating shaft, and continuously passing through the KRC kneader, by shearing force. Subdivision was performed simultaneously with the crosslinking reaction, and the basic water-absorbent resin (6) of the present invention was continuously obtained. At this time, the temperature of the water passing through the jacket was 80 ° C. The amount of the soluble component of the obtained basic water absorbent resin (6) of the present invention is 4.7%, the water absorption capacity is 8.0 g / g, and the particles having a particle size of 10 to 1000 μm after drying are 88% by weight. The average particle size was 290 μm. The particles of 10 to 1000 μm in the basic water-absorbent resin (6) after drying are
21% of particles of 1000-850 μm, 850 μm-5
12% of particles of 00 μm, 16% of particles of 500 μm to 300 μm, 35% of particles of 300 μm to 150 μm,
It contained 16% of particles of 150-10 μm.

【0051】(実施例7)157g/分の供給速度で供
給される濃度50%のポリエチレンイミン(商品名:L
upasol−P、BASF社製)に対し、架橋剤とし
てのN,N’−メチレンビスアクリルアミド(温度80
℃の9.4%水溶液)を58g/分の供給速度で供給し
つつ、両者を回転数53rpmで駆動する2軸の回転軸
を有する、内容量1.2リットルでジャケット付きのK
RCニーダー(株式会社栗本鐵工所社製)に連続的に投
入し、該KRCニーダー内を連続的に通過させ、せん断
力により架橋反応と同時に細分化を行い、本発明の塩基
性吸水性樹脂(7)を連続的に得た。この時ジャケット
内を通す水の温度は80℃であった。得られた本発明の
塩基性吸水性樹脂(7)の可溶性成分量は4.3%で、
吸水倍率は7.3g/gで、乾燥後の粒子サイズ10〜
1000μmの粒子は88重量%で、平均粒子サイズは
305μmであった。また、乾燥後の塩基性吸水性樹脂
(7)中の10〜1000μmの粒子は、1000〜8
50μmの粒子を19%、850μm〜500μmの粒
子を18%、500μm〜300μmの粒子を14%、
300μm〜150μmの粒子を29%、150〜10
μmの粒子を20%含んでいた。
(Example 7) Polyethyleneimine having a concentration of 50% supplied at a supply rate of 157 g / min (trade name: L
Upasol-P (manufactured by BASF) against N, N'-methylenebisacrylamide (temperature 80
9.4% aqueous solution at a feed rate of 58 g / min, while having two rotating shafts driving both at a rotation speed of 53 rpm.
RC Kneader (manufactured by Kurimoto Iron Works Co., Ltd.) is continuously charged, continuously passed through the KRC kneader, and subjected to a shearing force to carry out a fragmentation simultaneously with a cross-linking reaction. (7) was obtained continuously. At this time, the temperature of the water passing through the jacket was 80 ° C. The amount of the soluble component of the obtained basic water absorbent resin (7) of the present invention was 4.3%,
The water absorption capacity is 7.3 g / g, and the particle size after drying is 10 to 10.
The 1000 μm particles were 88% by weight and the average particle size was 305 μm. The particles of 10 to 1000 μm in the basic water-absorbent resin (7) after drying are 1000 to 8 μm.
19% of 50 μm particles, 18% of 850 μm to 500 μm particles, 14% of 500 μm to 300 μm particles,
29% of particles of 300 μm to 150 μm,
It contained 20% of μm particles.

【0052】(実施例8)実施例1において、架橋剤で
あるエチレングリコールジグリシジルエーテル(商品
名:デナコールEX−810、ナガセ化成工業株式会社
製)の供給量を5.5g/分にした以外は実施例1と同
様にして、本発明の塩基性吸水性樹脂(8)を得た。本
発明の塩基性吸水性樹脂(8)の可溶性成分量は4.6
%で、吸水倍率は11.1g/g、粒子サイズ10〜1
000μmの粒子は95重量%で、平均粒子サイズは3
10μmであった。本発明の塩基性吸水性樹脂(8)中
の10〜1000μmの粒子は1000〜850μmの
粒子を8%、850μm〜500μmの粒子を18%、
500μm〜300μmの粒子を27%、300μm〜
150μmの粒子を29%、150〜10μmの粒子を
18%含んでいた。
Example 8 The procedure of Example 1 was repeated except that the feed rate of the crosslinking agent, ethylene glycol diglycidyl ether (trade name: Denacol EX-810, manufactured by Nagase Kasei Kogyo Co., Ltd.) was changed to 5.5 g / min. In the same manner as in Example 1, a basic water absorbent resin (8) of the present invention was obtained. The soluble component of the basic water absorbent resin (8) of the present invention is 4.6.
%, The water absorption capacity is 11.1 g / g, and the particle size is 10 to 1
The particle size of 000 μm is 95% by weight and the average particle size is 3%.
It was 10 μm. In the basic water-absorbent resin (8) of the present invention, particles of 10 to 1000 μm are 8% of particles of 1000 to 850 μm, 18% of particles of 850 μm to 500 μm,
27% of particles of 500 μm to 300 μm,
It contained 29% of 150 μm particles and 18% of 150-10 μm particles.

【0053】(実施例9)72.7g/分の供給速度で
供給される濃度100%のポリエチレンイミン(商品
名:Lupasol−WF、BASF社製)に対し、架
橋剤としてのエチレングリコールジグリシジルエーテル
(商品名:デナコールEX−810、ナガセ化成工業株
式会社製、固形分100%)を7.3g/分の供給速度
で供給することにより混合物を連続的に得た。同時に該
混合物を回転数53rpmで駆動する2軸の回転軸を有
する、内容量1.2リットルでジャケット付きのKRC
ニーダー(株式会社栗本鐵工所社製)に連続的に投入
し、該KRCニーダー内を連続的に通過させ、せん断力
により架橋反応と同時に細分化を行い、本発明の塩基性
吸水性樹脂(9)を連続的に得た。この時ジャケット内
を通す水の温度は80℃であった。得られた本発明の塩
基性吸水性樹脂(9)の可溶性成分量は3.5%で、吸
水倍率は5.2g/gで、粒子サイズ10〜1000μ
mの粒子は98重量%で、平均粒子サイズは275μm
であった。本発明の塩基性吸水性樹脂(9)中の10〜
1000μmの粒子は1000〜850μmの粒子を3
%、850μm〜500μmの粒子を16%、500μ
m〜300μmの粒子を25%、300μm〜150μ
mの粒子を38%、150μm〜10μmの粒子を18
%含んでいた。
Example 9 A 100% concentration polyethyleneimine (trade name: Lupasol-WF, manufactured by BASF) supplied at a supply rate of 72.7 g / min was mixed with ethylene glycol diglycidyl ether as a crosslinking agent. The mixture was continuously obtained by supplying (trade name: Denacol EX-810, manufactured by Nagase Kasei Kogyo Co., Ltd., solid content 100%) at a supply rate of 7.3 g / min. 1.2 liters jacketed KRC with two rotating axes simultaneously driving the mixture at 53 rpm
It is continuously charged into a kneader (manufactured by Kurimoto Tekkosho Co., Ltd.), continuously passed through the KRC kneader, and subjected to a shearing force to perform a cross-linking reaction and fragmentation at the same time. 9) was obtained continuously. At this time, the temperature of the water passing through the jacket was 80 ° C. The amount of the soluble component of the obtained basic water absorbent resin (9) of the present invention is 3.5%, the water absorption capacity is 5.2 g / g, and the particle size is 10 to 1000 μm.
m are 98% by weight, average particle size is 275 μm
Met. 10 to 10 in the basic water absorbent resin (9) of the present invention.
1000 μm particles correspond to 1000 to 850 μm particles.
%, 850 μm to 500 μm particles at 16%, 500 μm
25% of particles of m to 300 μm, 300 μm to 150 μ
m particles at 38% and 150 μm to 10 μm particles at 18%.
% Included.

【0054】(実施例10)実施例1において、架橋剤
であるエチレングリコールジグリシジルエーテルの代わ
りに、アクリル酸メチル(和光純薬工業株式会社製)を
3.7g/分で供給した以外は実施例1と同様にして、
本発明の塩基性吸水性樹脂(10)を得た。本発明の塩
基性吸水性樹脂(10)の可溶性成分量は2.7%で、
吸水倍率は2.4g/gで、粒子サイズ10〜1000
μmの粒子は99重量%で、平均粒子サイズは265μ
mであった。本発明の塩基性吸水性樹脂(10)中の1
0〜1000μmの粒子は、1000〜850μmの粒
子を1%、850μm〜500μmの粒子を17%、5
00μm〜300μmの粒子を27%、300μm〜1
50μmの粒子を28%、150〜10μmの粒子を2
7%含んでいた。
Example 10 Example 10 was repeated except that methyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) was supplied at 3.7 g / min in place of ethylene glycol diglycidyl ether as a crosslinking agent. As in Example 1,
The basic water-absorbent resin (10) of the present invention was obtained. The amount of the soluble component of the basic water absorbent resin (10) of the present invention is 2.7%,
The water absorption capacity is 2.4 g / g, and the particle size is 10 to 1000.
The particle size of μm is 99% by weight, and the average particle size is 265 μm.
m. 1 in the basic water absorbent resin (10) of the present invention.
Particles of 0 to 1000 μm are 1% of particles of 1000 to 850 μm and 17% of particles of 850 μm to 500 μm.
27% of particles of 00 μm to 300 μm, 300 μm to 1
28% of 50 μm particles, 2 of 150-10 μm particles
It contained 7%.

【0055】(実施例11)実施例10においてアクリ
ル酸メチルの代わりに、アクリル酸エチル(和光純薬工
業株式会社製)を3.7g/分で供給した以外は実施例
10と同様にして、本発明の塩基性吸水性樹脂(11)
を得た。本発明の塩基性吸水性樹脂(11)の可溶性成
分量は3.5%で、吸水倍率は3.4g/gで、粒子サ
イズ10〜1000μmの粒子は96重量%で、平均粒
子サイズは305μmであった。本発明の塩基性吸水性
樹脂(11)中の10〜1000μmの粒子は、100
0〜850μmの粒子を3%、850μm〜500μm
の粒子を20%、500μm〜300μmの粒子を29
%、300μm〜150μmの粒子を33%、150〜
10μmの粒子を15%含んでいた。
(Example 11) In the same manner as in Example 10, except that ethyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) was supplied at 3.7 g / min instead of methyl acrylate. Basic water-absorbing resin of the present invention (11)
I got The soluble component amount of the basic water-absorbent resin (11) of the present invention is 3.5%, the water absorption capacity is 3.4 g / g, the particles having a particle size of 10 to 1000 μm are 96% by weight, and the average particle size is 305 μm. Met. The particles of 10 to 1000 μm in the basic water-absorbent resin (11) of the present invention have a particle size of 100
3% of particles of 0 to 850 μm, 850 μm to 500 μm
Particles of 20% and particles of 500 μm to 300 μm
%, Particles of 300 μm to 150 μm are 33%, 150 to
It contained 15% of 10 μm particles.

【0056】(実施例12)実施例1において得られ
た、塩基性吸水性樹脂(1)40部と参考例1で得られ
た酸性吸水性樹脂(1)60部とシリカ微粒子(商品
名:レオロシールQS−20、株式会社トクヤマ製)
0.3部をドライブレンドし、本発明の吸水剤(1)を
得た。吸水剤(1)は加圧下の吸水倍率が、測定開始か
ら1時間後は36.7g/gで、4時間後は42.5g
/gであった。
Example 12 40 parts of the basic water absorbent resin (1) obtained in Example 1, 60 parts of the acidic water absorbent resin (1) obtained in Reference Example 1, and silica fine particles (trade name: Leolo Seal QS-20, manufactured by Tokuyama Corporation)
0.3 part was dry-blended to obtain a water absorbing agent (1) of the present invention. The water absorbing agent (1) has a water absorption capacity under pressure of 36.7 g / g after 1 hour from the start of measurement and 42.5 g after 4 hours.
/ G.

【0057】(実施例13)実施例2において得られ
た、塩基性吸水性樹脂(2)100部と参考例1で得ら
れた酸性吸水性樹脂(1)37.5部をニーダー中で攪
拌下に混合し、両者の混合物を得た。混合物を80℃の
熱風乾燥機中で1時間乾燥し、更に乾燥物100部にシ
リカ微粒子(商品名:レオロシールQS−20、株式会
社トクヤマ製)0.3部を混合した後、堅型粉砕機(オ
リエント社製、VM27−S)で粉砕した。粉砕物を目
開き850μmの金網を通過せしめ、通過物を分取して
本発明の吸水剤(2)を得た。吸水剤(2)は加圧下の
吸水倍率が、測定開始から1時間後は37.9g/g
で、4時間後は43.9g/gであった。
(Example 13) 100 parts of the basic water-absorbent resin (2) obtained in Example 2 and 37.5 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1 were stirred in a kneader. Mix below to obtain a mixture of both. The mixture was dried in a hot air dryer at 80 ° C. for 1 hour, and 0.3 part of fine silica particles (trade name: Leolosil QS-20, manufactured by Tokuyama Co., Ltd.) was mixed with 100 parts of the dried substance. (Made by Orient, VM27-S). The pulverized material was passed through a wire mesh having an aperture of 850 μm, and the passed material was collected to obtain a water absorbing agent (2) of the present invention. The water absorbing agent (2) has a water absorption capacity under pressure of 37.9 g / g after one hour from the start of measurement.
After 4 hours, it was 43.9 g / g.

【0058】(実施例14)実施例2において得られ
た、塩基性吸水性樹脂(2)100部と参考例2で得ら
れた酸性吸水性樹脂(2)58.3部をニーダー中で攪
拌下に混合し、両者の混合物を得た。混合物を80℃の
熱風乾燥機中で1時間乾燥し、更に乾燥物100部にシ
リカ微粒子(商品名:レオロシールQS−20、株式会
社トクヤマ製)0.3部を混合した後、堅型粉砕機(オ
リエント社製、VM27−S)で粉砕した。粉砕物を目
開き850μmの金網を通過物せしめ、通過物を分取し
て本発明の吸水剤(3)を得た。吸水剤(3)は加圧下
の吸水倍率が、測定開始から1時間後は39.0g/g
で、4時間後は40.5g/gであった。
(Example 14) 100 parts of the basic water absorbent resin (2) obtained in Example 2 and 58.3 parts of the acidic water absorbent resin (2) obtained in Reference Example 2 were stirred in a kneader. Mix below to obtain a mixture of both. The mixture was dried in a hot air dryer at 80 ° C. for 1 hour, and 0.3 part of fine silica particles (trade name: Leolosil QS-20, manufactured by Tokuyama Co., Ltd.) was mixed with 100 parts of the dried substance. (Made by Orient, VM27-S). The pulverized material was passed through a wire mesh having an opening of 850 μm, and the passed material was collected to obtain a water absorbing agent (3) of the present invention. The water absorbing agent (3) has a water absorption capacity under pressure of 39.0 g / g one hour after the start of measurement.
After 4 hours, it was 40.5 g / g.

【0059】(実施例15)実施例13において、竪型
粉砕機で粉砕前に混合していたシリカ微粒子を、80℃
の熱風乾燥前に混合物に添加した以外は実施例13と同
様にして、本発明の吸水剤(4)を得た。吸水剤(4)
は加圧下の吸水倍率が、測定開始から1時間後は35.
8g/gで、4時間後は42.7g/gであった。
(Example 15) In Example 13, the silica fine particles mixed before pulverization with a vertical pulverizer were heated to 80 ° C.
The water absorbing agent (4) of the present invention was obtained in the same manner as in Example 13 except that the mixture was added to the mixture before hot air drying. Water absorbing agent (4)
Means that the water absorption capacity under pressure is 35. One hour after the start of measurement.
8 g / g and 42.7 g / g after 4 hours.

【0060】(実施例16)実施例13において、塩基
性吸水性樹脂(2)と参考例1で得られた酸性吸水性樹
脂(1)の混合をニーダーの代わりに、タービュライザ
ー(ホソカワミクロン株式会社製)を用いた以外は実施
例13と同様にして、本発明の吸水剤(5)を得た。吸
水剤(5)は加圧下の吸水倍率が、測定開始から1時間
後は37.6g/gで、4時間後は43.7g/gであ
った。
(Example 16) In Example 13, the mixture of the basic water-absorbent resin (2) and the acidic water-absorbent resin (1) obtained in Reference Example 1 was replaced with a turbulizer (Hosokawa Micron Co., Ltd.). Except for the use of the same as in Example 13, except that water-absorbing agent (5) of the present invention was obtained. The water absorbing agent (5) had a water absorption capacity under pressure of 37.6 g / g after 1 hour from the start of measurement and 43.7 g / g after 4 hours.

【0061】(実施例17)実施例3において得られた
塩基性吸水性樹脂(3)を用いて、実施例13と同様に
して、酸性吸水性樹脂(1)と混合後、乾燥、粉砕、分
取を行い本発明の吸水剤(6)を得た。吸水剤(6)は
加圧下の吸水倍率が、測定開始から1時間後は36.3
g/gで、4時間後は42.6g/gであった。 (実施例18)実施例4において得られた塩基性吸水性
樹脂(4)を用いて、実施例13と同様にして、酸性吸
水性樹脂(1)と混合後、乾燥、粉砕、分取を行い本発
明の吸水剤(7)を得た。吸水剤(7)は加圧下の吸水
倍率が、測定開始から1時間後は36.5g/gで、4
時間後は43.0g/gであった。
(Example 17) The basic water-absorbent resin (3) obtained in Example 3 was mixed with the acidic water-absorbent resin (1) in the same manner as in Example 13, followed by drying, pulverization, After fractionation, a water absorbing agent (6) of the present invention was obtained. The water absorbing agent (6) had a water absorption capacity under pressure of 36.3 one hour after the start of measurement.
g / g and 42.6 g / g after 4 hours. (Example 18) The basic water-absorbent resin (4) obtained in Example 4 was mixed with the acidic water-absorbent resin (1) in the same manner as in Example 13, followed by drying, pulverization and fractionation. Thus, a water absorbing agent (7) of the present invention was obtained. The water-absorbing agent (7) had a water absorption capacity under pressure of 36.5 g / g after 1 hour from the start of the measurement and was 46.5 g / g.
After the time, it was 43.0 g / g.

【0062】(実施例19)実施例4において得られた
塩基性吸水性樹脂(4)12075部と、参考例1で得
られた酸性吸水性樹脂(1)3935部とを水張容量が
50Lの高速せん断型ミキサ(サイクロミックス、ホソ
カワミクロン製)中で攪拌下に混合し、両者の混合物を
得た。混合物を80℃の熱風乾燥機中で1時間乾燥し、
更に乾燥物100部にシリカ微粒子(商品名:レオロシ
ールQS−20、株式会社トクヤマ製)0.3部を混合
した後、堅型粉砕機(オリエント社製、VM27−S)
で粉砕した。粉砕物を目開き850μmの金網を通過せ
しめ、通過物を分取して本発明の吸水剤(8)を得た。
本発明の吸水剤(8)は加圧下の吸水倍率が、測定開始
から1時間後は37.0g/gで、4時間後は43.5
g/gであった。
(Example 19) 12075 parts of the basic water-absorbent resin (4) obtained in Example 4 and 3935 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1 had a water volume of 50 L. In a high-speed shear mixer (Cyclomix, manufactured by Hosokawa Micron Corporation) under stirring to obtain a mixture of both. Drying the mixture in a hot air dryer at 80 ° C. for 1 hour,
Furthermore, after mixing 0.3 part of silica fine particles (trade name: Reolosil QS-20, manufactured by Tokuyama Co., Ltd.) with 100 parts of the dried product, a hard pulverizer (VM27-S, manufactured by Orient).
And crushed. The pulverized material was passed through a wire mesh having an aperture of 850 μm, and the passed material was collected to obtain a water absorbing agent (8) of the present invention.
The water absorbing agent (8) of the present invention has a water absorption capacity under pressure of 37.0 g / g after 1 hour from the start of the measurement and 43.5 after 4 hours.
g / g.

【0063】(実施例20)実施例5で得られた塩基性
吸水性樹脂(5)100部と参考例1で得られた酸性吸
水性樹脂(1)37.5部をニーダー中で攪拌下に混合
し、両者の混合物を得た。混合物を80℃の熱風乾燥機
中で1時間乾燥し、更に乾燥物100部にシリカ微粒子
(商品名:レオロシールQS−20、株式会社トクヤマ
製)0.3部を混合した後、卓上粉砕機で粉砕した。粉
砕物を目開き850μmの金網を通過せしめ、通過物を
分取して本発明の吸水剤(9)を得た。本発明の吸水剤
(9)は加圧下の吸水倍率が、測定開始から1時間後は
36.7g/gで、4時間後は42.5g/gであっ
た。
(Example 20) 100 parts of the basic water-absorbent resin (5) obtained in Example 5 and 37.5 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1 were stirred in a kneader. To obtain a mixture of both. The mixture was dried in a hot air drier at 80 ° C. for 1 hour, and further, 0.3 part of silica fine particles (trade name: Leolosil QS-20, manufactured by Tokuyama Corporation) was mixed with 100 parts of the dried substance, and then the mixture was mixed with a tabletop pulverizer. Crushed. The pulverized material was passed through a wire mesh having an opening of 850 μm, and the passed material was collected to obtain a water absorbing agent (9) of the present invention. The water absorbing agent (9) of the present invention had a water absorption capacity under pressure of 36.7 g / g after 1 hour from the start of measurement and 42.5 g / g after 4 hours.

【0064】(実施例21)実施例5において得られた
塩基性吸水性樹脂(5)100部と、参考例1で得られ
た酸性吸水性樹脂(1)37.5部をニーダー中で攪拌
し、両者の混合物を得た。この混合物100部に対して
シリカ微粒子0.21部を添加し、80℃の流動層乾燥
機(ヤマト科学株式会社製、パルビスミニベットGA2
2型)中で15分間乾燥した後、卓上粉砕機で粉砕し
た。粉砕物を目開き850μmの金網を通過せしめ、通
過物を分取して本発明の吸水剤(10)を得た。本発明
の吸水剤(10)は加圧下の吸水倍率が、測定開始から
1時間後は36.5g/gで、4時間後は42.6g/
gであった。
(Example 21) 100 parts of the basic water absorbent resin (5) obtained in Example 5 and 37.5 parts of the acidic water absorbent resin (1) obtained in Reference Example 1 were stirred in a kneader. Then, a mixture of both was obtained. To 100 parts of this mixture, 0.21 part of silica fine particles was added, and a fluidized bed drier (manufactured by Yamato Scientific Co., Ltd., Palvis Minibet GA2) at 80 ° C.
(Type 2) for 15 minutes, and then pulverized with a tabletop pulverizer. The pulverized material was passed through a wire mesh having an opening of 850 μm, and the passed material was collected to obtain a water absorbing agent (10) of the present invention. The water absorbing agent (10) of the present invention has a water absorption capacity under pressure of 36.5 g / g after 1 hour from the start of the measurement and 42.6 g / g after 4 hours.
g.

【0065】(実施例22)実施例6において得られた
本発明の塩基性吸水性樹脂(6)100部と、参考例1
で得られた酸性吸水性樹脂(1)53.85部をニーダ
ー中で攪拌下に混合し、両者の混合物を得た。混合物を
80℃の熱風乾燥機中で1時間乾燥し、更に乾燥物10
0部にシリカ微粒子(商品名:レオロシールQS−2
0、株式会社トクヤマ製)0.3部を混合した後、卓上
粉砕機で粉砕した。粉砕物を目開き850μmの金網を
通過せしめ、通過物を分取して本発明の吸水剤(11)
を得た。本発明の吸水剤(11)は加圧下の吸水倍率
が、測定開始から1時間後は37.4g/gで、4時間
後は44.0g/gであった。
Example 22 100 parts of the basic water-absorbent resin (6) of the present invention obtained in Example 6, and Reference Example 1
53.85 parts of the acidic water-absorbent resin (1) obtained in the above was mixed in a kneader with stirring to obtain a mixture of both. The mixture was dried for 1 hour in a hot air dryer at 80 ° C.
0 parts of silica fine particles (trade name: Leolosil QS-2)
(0, manufactured by Tokuyama Co., Ltd.) and then pulverized with a desktop pulverizer. The pulverized material is passed through a wire mesh having a mesh size of 850 μm, and the passed material is separated to obtain the water absorbing agent (11) of the present invention.
I got The water absorbing agent (11) of the present invention had a water absorption capacity under pressure of 37.4 g / g after 1 hour from the start of measurement and 44.0 g / g after 4 hours.

【0066】(実施例23)本発明の塩基性吸水性樹脂
(6)100部の代わりに、実施例7において得られた
本発明の塩基性吸水性樹脂(7)を用いて、実施例22
と同様にして酸性吸水性樹脂(1)と混合後、乾燥、粉
砕、分取を行い本発明の吸水剤(12)を得た。本発明
の吸水剤(12)は加圧下の吸水倍率が、測定開始から
1時間後は36.3g/gで、4時間後は42.7g/
gであった。
Example 23 Example 22 was repeated using the basic water-absorbent resin (7) of the present invention obtained in Example 7 in place of 100 parts of the basic water-absorbent resin (6) of the present invention.
After mixing with the acidic water-absorbent resin (1) in the same manner as described above, drying, pulverization and fractionation were performed to obtain the water-absorbing agent (12) of the present invention. The water absorbing agent (12) of the present invention has a water absorption capacity under pressure of 36.3 g / g after 1 hour from the start of the measurement and 42.7 g / g after 4 hours.
g.

【0067】(実施例24)実施例8において得られた
塩基性吸水性樹脂(8)40部と、参考例1で得られた
酸性吸水性樹脂(1)60部とシリカ微粒子0.3部を
ドライブレンドし、本発明の吸水剤(13)を得た。本
発明の吸水剤(13)は加圧下の吸水倍率が、測定開始
から1時間後は30.2g/gで、4時間後は38.3
g/gであった。
Example 24 40 parts of the basic water-absorbent resin (8) obtained in Example 8, 60 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1, and 0.3 part of silica fine particles Was dry blended to obtain a water absorbing agent (13) of the present invention. The water absorbing agent (13) of the present invention has a water absorption capacity under pressure of 30.2 g / g after 1 hour from the start of measurement and 38.3 g after 4 hours.
g / g.

【0068】(実施例25)実施例9において得られた
塩基性吸水性樹脂(9)40部と、参考例1で得られた
酸性吸水性樹脂(1)60部とシリカ微粒子0.3部を
ドライブレンドし、本発明の吸水剤(14)を得た。本
発明の吸水剤(14)は加圧下の吸水倍率が、測定開始
から1時間後は31.5g/gで、4時間後は40.1
g/gであった。
(Example 25) 40 parts of the basic water-absorbent resin (9) obtained in Example 9, 60 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1, and 0.3 part of silica fine particles Was dry blended to obtain a water absorbing agent (14) of the present invention. The water absorbing agent (14) of the present invention has a water absorption capacity under pressure of 31.5 g / g after 1 hour from the start of measurement and 40.1 g after 4 hours.
g / g.

【0069】(実施例26)実施例10において得られ
た塩基性吸水性樹脂(10)40部と、参考例1で得ら
れた酸性吸水性樹脂(1)60部とシリカ微粒子0.3
部をドライブレンドし、本発明の吸水剤(15)を得
た。本発明の吸水剤(15)は加圧下の吸水倍率が、測
定開始から1時間後は30.7g/gで、4時間後は3
9.9g/gであった。
(Example 26) 40 parts of the basic water-absorbent resin (10) obtained in Example 10, 60 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1, and 0.3 parts of silica fine particles
Parts were dry-blended to obtain a water absorbing agent (15) of the present invention. The water-absorbing agent (15) of the present invention has a water absorption capacity under pressure of 30.7 g / g after 1 hour from the start of measurement and 3 times after 4 hours.
It was 9.9 g / g.

【0070】(実施例27)実施例11において得られ
た塩基性吸水性樹脂(11)40部と、参考例1で得ら
れた酸性吸水性樹脂(1)60部とシリカ微粒子0.3
部をドライブレンドし、本発明の吸水剤(16)を得
た。本発明の吸水剤(16)は加圧下の吸水倍率が、測
定開始から1時間後は32.1g/gで、4時間後は4
1.1g/gであった。 (比較例1)10%に希釈したポリエチレンイミン水溶
液(商品名:エポミンP−1000、株式会社日本触媒
製、を水で希釈したもの)に対し、エチレングリコール
ジグリシジルエーテル(商品名:デナコールEX−81
0、ナガセ化成工業株式会社製)を1.5モル%加えて
60℃で16時間反応させて比較塩基性吸水性樹脂
(1)を得た。得られた塊状の比較塩基性吸水性樹脂
(1)を予めエクストルーダーを用いて細かく砕き、こ
のもの37.4部(固形分として)と参考例1で得られ
た酸性吸水性樹脂(1)56.1部とを混合し、得られ
た混合物を更にミートチョッパーを2回通過せしめて両
者の混練物を得た。得られた混練物を80℃の熱風乾燥
機中で2時間乾燥し、次いで乾燥物を卓上粉砕機を用い
て粉砕し、粉砕物を目開き850μmの金網を通過せし
め、通過物を分取して比較吸水剤(1)を得た。比較吸
水剤(1)の加圧下の吸水倍率は測定開始後1時間で1
7.5g/g、4時間後で24.9g/gであった。 (実施例28)実施例1で得られた本発明の吸水剤
(1)の消臭効果を以下の方法で定量化した。500c
cの密閉容器中、アンモニアを1%含有する20gの生
理食塩水(0.9%食塩水)に対し、本発明の吸水剤
(1)1gを添加し、ゲル化せしめた。1時間後の該容
器中のヘッドスペースにおけるアンモニア量はブランク
(本発明の吸水剤を添加しない場合)の37%以下に低
下していた。500ccの密閉容器中、アセトアルデヒ
ドを1%含有する20gの生理食塩水(0.9%食塩
水)に対し、本発明の吸水剤(1)1gを添加し、ゲル
化せしめた。1時間後の該容器中のヘッドスペースにお
けるアセトアルデヒド量はブランク(本発明の吸水剤を
添加しない場合)の10%以下に低下していた。この結
果から、本発明の吸水剤は、アンモニアとアセトアルデ
ヒドの除去効果があることが判明した。
(Example 27) 40 parts of the basic water-absorbent resin (11) obtained in Example 11, 60 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1, and 0.3 parts of silica fine particles
Parts were dry blended to obtain a water absorbing agent (16) of the present invention. The water-absorbing agent (16) of the present invention has a water absorption capacity under pressure of 32.1 g / g after 1 hour from the start of measurement and 4 times after 4 hours.
1.1 g / g. (Comparative Example 1) Ethylene glycol diglycidyl ether (trade name: Denacol EX-) was added to a 10% aqueous solution of polyethyleneimine (trade name: Epomin P-1000, manufactured by Nippon Shokubai Co., Ltd., diluted with water). 81
0, manufactured by Nagase Kasei Kogyo Co., Ltd.) and reacted at 60 ° C. for 16 hours to obtain a comparative basic water-absorbent resin (1). The obtained lump of the comparative basic water-absorbent resin (1) was finely crushed in advance using an extruder, and 37.4 parts (as solid content) of the lump were mixed with the acidic water-absorbent resin (1) obtained in Reference Example 1. The resulting mixture was further passed twice through a meat chopper to obtain a kneaded product of the two. The obtained kneaded material was dried in a hot air dryer at 80 ° C. for 2 hours, and then the dried material was pulverized using a tabletop pulverizer. The pulverized material was passed through a wire mesh having an aperture of 850 μm, and the passed material was collected. Thus, a comparative water absorbing agent (1) was obtained. The water absorption capacity of the comparative water-absorbing agent (1) under pressure was 1 hour after the start of measurement.
7.5 g / g and 24.9 g / g after 4 hours. (Example 28) The deodorizing effect of the water absorbing agent (1) of the present invention obtained in Example 1 was quantified by the following method. 500c
1 g of the water-absorbing agent (1) of the present invention was added to 20 g of physiological saline (0.9% saline) containing 1% of ammonia in the closed container c to cause gelation. One hour later, the amount of ammonia in the headspace in the container had dropped to 37% or less of the blank (without adding the water absorbing agent of the present invention). In a 500 cc closed container, 1 g of the water-absorbing agent (1) of the present invention was added to 20 g of physiological saline (0.9% saline) containing 1% of acetaldehyde to cause gelation. After 1 hour, the amount of acetaldehyde in the headspace in the container had dropped to 10% or less of the blank (without adding the water absorbing agent of the present invention). From this result, it was found that the water-absorbing agent of the present invention had an effect of removing ammonia and acetaldehyde.

【0071】(実施例29)N−ビニルホルムアミド
(Aldrich製)3500部および純水13900
部を混合し、窒素ガスで60分脱気後、開閉可能な密閉
容器中に仕込み、窒素雰囲気下で液温を20℃の温度に
保ちながら反応系の窒素置換を続けた。次いで攪拌下に
2,2′−アゾビス(2−アミジノプロパン)二塩酸塩
の10重量%水溶液104.8部を添加し、溶液の温度
を60℃としたところ重合が開始した。20時間後に、
生成した高粘度の液体を取り出し、メタノール中に投入
し、ポリマーを沈降せしめた。このものを40℃の減圧
乾燥機中で2日間乾燥し、ポリ−N−ビニルホルムアミ
ドを得た。こうして得られたポリ−N−ビニルホルムア
ミドを10重量%水溶液として4287.3部、および
純水3925.3部、水酸化ナトリウム362部を混合
せしめ、攪拌下、溶液の温度を75℃とした。6時間
後、この溶液に対して6N塩酸を攪拌下に添加し、塩酸
塩とした後、この溶液をメタノール中に投入し、ポリマ
ーを沈降せしめた。このものを50℃の減圧乾燥機中で
1日間乾燥し、ポリビニルアミン塩酸塩を得た。次いで
ポリビニルアミン塩酸塩を水酸化ナトリウム水溶液中に
溶解せしめることでポリビニルアミン水溶液を得た。
Example 29 3500 parts of N-vinylformamide (manufactured by Aldrich) and 13900 parts of pure water
After mixing and degassing with nitrogen gas for 60 minutes, the mixture was charged into an openable and closable container, and the reaction system was replaced with nitrogen while maintaining the liquid temperature at 20 ° C. under a nitrogen atmosphere. Then, 104.8 parts of a 10% by weight aqueous solution of 2,2'-azobis (2-amidinopropane) dihydrochloride was added with stirring, and the temperature of the solution was adjusted to 60 ° C to initiate polymerization. 20 hours later,
The resulting high-viscosity liquid was taken out and poured into methanol to precipitate the polymer. This was dried in a vacuum dryer at 40 ° C. for 2 days to obtain poly-N-vinylformamide. The thus obtained poly-N-vinylformamide was mixed with 4287.3 parts as a 10% by weight aqueous solution, 3925.3 parts of pure water, and 362 parts of sodium hydroxide, and the temperature of the solution was adjusted to 75 ° C. with stirring. After 6 hours, 6N hydrochloric acid was added to the solution with stirring to form a hydrochloride, and the solution was poured into methanol to precipitate the polymer. This was dried in a vacuum dryer at 50 ° C. for 1 day to obtain polyvinylamine hydrochloride. Next, polyvinylamine hydrochloride was dissolved in an aqueous sodium hydroxide solution to obtain an aqueous polyvinylamine solution.

【0072】得られた10%濃度のポリビニルアミン水
溶液を182g/分の供給速度で供給しつつ、架橋剤と
してのエチレングリコールジグリシジルエーテル(商品
名:デナコールEX−810、ナガセ化成工業株式会社
製)を2.73g/分の供給速度で、内容量1.2リッ
トルでジャケット付きのKRCニーダー(株式会社栗本
鐵工所社製)内に連続的に供給した。この時のKRCニ
ーダーの回転数は53rpmであり、ジャケット内の温
度は80℃であった。KRCニーダー内を通過すること
により、そのせん断力により架橋反応の進行と同時に細
分化が行われ、本発明の塩基性吸水性樹脂(12)が連
続的に排出された。得られた本発明の塩基性吸水性樹脂
(12)の可溶性成分量は0.2%で、吸水倍率は1
8.0g/gで、乾燥後の粒子サイズ10〜1000μ
mの粒子は82重量%で、平均粒子サイズは540μm
であった。乾燥後の本発明の塩基性吸水性樹脂(12)
中の10〜1000μmの粒子は、1000μm〜85
0μmの粒子を29%、850μm〜500μmの粒子
を25%、500μm〜300μmの粒子を18%、3
00μm〜150μmの粒子を13%、150μm〜1
0μmの粒子を15%含んでいた。 (実施例30)実施例29で得られた本発明の塩基性吸
水性樹脂(12)100部を10000部の純水で1日
間水洗し、続いて40℃の減圧乾燥機中で2日間乾燥し
た。このものを卓上粉砕機で粉砕せしめ、850μm以
下の粒子として、本発明の塩基性吸水性樹脂(13)を
得た。 (実施例31)実施例29において得られた本発明の塩
基性吸水性樹脂(12)883部と、参考例1で得られ
た酸性吸水性樹脂(1)100部をニーダー中で攪拌下
に混合し、両者の混合物を得た。混合物を80℃の熱風
乾燥機中で1時間乾燥し、更に乾燥物100部にシリカ
微粒子(商品名:レオロシールQS−20、株式会社ト
クヤマ製)0.3部を混合した後、卓上粉砕機で粉砕し
た。粉砕物を目開き850μmの金網を通過せしめ、通
過物を分取して本発明の吸水剤(17)を得た。本発明
の吸水剤(17)は加圧下の吸水倍率が、測定開始から
1時間後は20.7g/gで、4時間後は23.6g/
gであった。 (実施例32)実施例30において得られた本発明の塩
基性吸水性樹脂(13)50部と、参考例1で得られた
酸性吸水性樹脂(1)50部とをドライブレンドし、本
発明の吸水剤(18)を得た。本発明の吸水剤(18)
は加圧下の吸水倍率が、測定開始から1時間後は29.
4g/gで、4時間後は37.3g/gであった。 (実施例33)内容量1.2Lでジャケット付きのKR
Cニーダー((株)栗本鉄工所製)を用い、1分間に、
樹脂固形分100%のポリエチレンイミン((株)日本
触媒製、商品名「エポミンSP−200」)32.7部
に架橋剤としてエチレングリコールジグリシジルエーテ
ル(ナガセ化成工業(株)製、商品名「デナコールEX
−810」)3.27部を添加したものと、参考例1で
得られた酸性吸水性樹脂(1)44部とを、回転数53
rpmで攪拌しながら、KRCニーダーを通過させた。
次いで、得られた通過物に、シリカ微粒子((株)トク
ヤマ製、商品名「レオロシールQS−20」)0.23
部をブレンドして、本発明の吸水剤(19)を得た。得
られた吸水剤(19)の塩水に対する加圧下吸水倍率
は、測定開始から1時間後は33.0g/gであり、4
時間後は39.5g/gであった。
While supplying the obtained aqueous solution of polyvinylamine at a concentration of 10% at a supply rate of 182 g / min, ethylene glycol diglycidyl ether (trade name: Denacol EX-810, manufactured by Nagase Kasei Kogyo Co., Ltd.) as a crosslinking agent Was continuously supplied at a supply rate of 2.73 g / min into a jacketed KRC kneader (manufactured by Kurimoto Tekkosho Co., Ltd.) at an inner volume of 1.2 liters. At this time, the rotation speed of the KRC kneader was 53 rpm, and the temperature in the jacket was 80 ° C. By passing through the KRC kneader, the shearing force caused the cross-linking reaction to proceed and fragmented simultaneously, and the basic water-absorbent resin (12) of the present invention was continuously discharged. The obtained basic water-absorbent resin (12) of the present invention had a soluble component amount of 0.2% and a water absorption capacity of 1%.
8.0 g / g, particle size after drying of 10 to 1000 μm
m is 82% by weight, and the average particle size is 540 μm.
Met. Basic water absorbent resin of the present invention after drying (12)
The particles of 10 to 1000 μm in the
29% of particles of 0 μm, 25% of particles of 850 μm to 500 μm, 18% of particles of 500 μm to 300 μm, 3
13% of particles of 00 μm to 150 μm, 150 μm to 1
It contained 15% of 0 μm particles. (Example 30) 100 parts of the basic water absorbent resin (12) of the present invention obtained in Example 29 was washed with 10000 parts of pure water for 1 day, and then dried in a vacuum dryer at 40 ° C for 2 days. did. This was pulverized with a desktop pulverizer to obtain a basic water-absorbent resin (13) of the present invention as particles having a size of 850 μm or less. (Example 31) 883 parts of the basic water absorbent resin (12) of the present invention obtained in Example 29 and 100 parts of the acidic water absorbent resin (1) obtained in Reference Example 1 were stirred in a kneader while stirring. They were mixed to obtain a mixture of both. The mixture was dried in a hot air drier at 80 ° C. for 1 hour, and further, 0.3 part of silica fine particles (trade name: Leolosil QS-20, manufactured by Tokuyama Corporation) was mixed with 100 parts of the dried substance, and then the mixture was mixed with a tabletop pulverizer. Crushed. The pulverized material was passed through a wire mesh having an aperture of 850 μm, and the passed material was collected to obtain a water absorbing agent (17) of the present invention. The water absorbing agent (17) of the present invention has a water absorption capacity under pressure of 20.7 g / g after 1 hour from the start of measurement and 23.6 g / g after 4 hours.
g. (Example 32) 50 parts of the basic water-absorbent resin (13) of the present invention obtained in Example 30 and 50 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1 were dry-blended. The water absorbing agent (18) of the invention was obtained. Water absorbing agent of the present invention (18)
Means that the absorption capacity under pressure is 1 hour after the start of measurement.
It was 4 g / g and 37.3 g / g after 4 hours. (Example 33) KR with a content of 1.2 L and a jacket
Using a C kneader (manufactured by Kurimoto Iron Works) in one minute,
Ethylene glycol diglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., trade name: 32.7 parts of polyethyleneimine having a resin solid content of 100% (trade name "Epomin SP-200", manufactured by Nippon Shokubai Co., Ltd.)) Denacol EX
-810 ") was added with 3.27 parts and 44 parts of the acidic water-absorbent resin (1) obtained in Reference Example 1 at a rotation speed of 53.
The mixture was passed through a KRC kneader while stirring at rpm.
Next, 0.23 of silica fine particles (trade name “Leosileal QS-20”, manufactured by Tokuyama Corporation) was added to the obtained passing material.
The parts were blended to obtain a water absorbing agent (19) of the present invention. The absorbency against pressure of the obtained water-absorbing agent (19) with respect to salt water was 33.0 g / g after 1 hour from the start of the measurement.
After the time, it was 39.5 g / g.

【0073】[0073]

【発明の効果】本発明の塩基性吸水性樹脂の製法では、
架橋反応の進行と同時に細分化が行われるため、塩基性
吸水性樹脂内部の架橋密度分布がより均質となり、その
結果、粒子サイズが揃うと同時に、吸水倍率に優れ、可
溶性成分の少ないという特徴を有する塩基性吸水性樹脂
を生産性良く製造することができる。従って、本発明の
方法で得られた塩基性吸水性樹脂は、酸性吸水性樹脂と
混合される場合に最適な品質の塩基性吸水性樹脂とする
ことができるのみならず、同時に最適な粒度にサイズ調
整することが可能である。このため、本発明の方法で得
られた塩基性吸水性樹脂は、酸性吸水性樹脂と混合され
て吸水剤となったとき、この吸水剤は、加圧下の吸水倍
率に著しく優れる高品質の吸水剤となっている。
According to the method for producing a basic water absorbent resin of the present invention,
Since the fragmentation is performed simultaneously with the progress of the crosslinking reaction, the distribution of the crosslinking density inside the basic water-absorbent resin becomes more homogeneous, and as a result, the particle size becomes uniform, the water absorption ratio is excellent, and the soluble component is small. It is possible to produce a basic water-absorbing resin having high productivity. Therefore, the basic water-absorbent resin obtained by the method of the present invention can not only be a basic water-absorbent resin having an optimal quality when mixed with an acidic water-absorbent resin, but also at the same time to an optimal particle size. It is possible to adjust the size. For this reason, when the basic water-absorbing resin obtained by the method of the present invention is mixed with an acidic water-absorbing resin to form a water-absorbing agent, the water-absorbing agent is a high-quality water-absorbing material that is remarkably excellent in water absorption capacity under pressure. It has become an agent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/00 A61F 13/18 307A C08L 101/12 (72)発明者 足立 芳史 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 樋富 一尚 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 鳥井 一司 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 北山 敏匡 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4C003 AA23 HA01 4C080 AA05 AA06 BB02 CC01 CC05 CC08 HH06 KK08 MM28 QQ03 4F070 AA57 AC35 AC38 AC44 AC47 AC66 AE08 DA41 DA55 FA17 FB06 FC03 GA06 GB02 GB08 GB09 4J002 AA00W AA00X BC12X BG01X BG07W BG07X BG12X BG13W BJ00W BQ00X CD00Y CD01Y CL00W CM01W CM04W EB046 EE006 EH076 EL026 EP026 ER006 FD14Y FD146 GD03──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 5/00 A61F 13/18 307A C08L 101/12 (72) Inventor Yoshifumi Adachi Nishioki, Okahama-ku, Abashiri-ku, Himeji City, Hyogo Prefecture 992 No. 1 within Nippon Shokubai Co., Ltd. (72) Inventor Kazuhisa Hitomi 992 Nishioki, Hibashi-ku, Himeji-shi No. 1 within Nippon Shokubai Co., Ltd. (72) Inventor Toshimasa Kitayama 992 Nishioki, Okihama-shi, Aboshi-ku, Himeji-shi, Hyogo F-term (reference) 4C003 AA23 HA01 4C080 AA05 AA06 BB02 CC01 CC05 CC08 HH06 KK08 MM28 QQ03 4F070 AA57 AC35 AC38 AC44 AC47 AC66 AE08 DA41 DA55 FA17 FB06 FC03 GA06 GB02 GB08 GB09 4J002 AA00W AA00X BC12X BG01X BG0 7W BG07X BG12X BG13W BJ00W BQ00X CD00Y CD01Y CL00W CM01W CM04W EB046 EE006 EH076 EL026 EP026 ER006 FD14Y FD146 GD03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】塩基性樹脂と架橋剤を反応させて塩基性吸
水性樹脂を得る際に、架橋反応の進行と同時に反応物の
細分化を行なう、不定形状の塩基性吸水性樹脂の製法。
1. A process for producing an irregular-shaped basic water-absorbing resin, which comprises, when a basic resin and a cross-linking agent are reacted to obtain a basic water-absorbing resin, the reaction product is finely divided at the same time as the crosslinking reaction proceeds.
【請求項2】反応容器内で架橋反応と細分化を進めたの
ち、細分化された反応物の全量を容器外に排出する、請
求項1に記載の塩基性吸水性樹脂の製法。
2. The method for producing a basic water-absorbing resin according to claim 1, wherein after the cross-linking reaction and fragmentation are advanced in the reaction vessel, the whole amount of the fragmented reactant is discharged out of the vessel.
【請求項3】反応容器内で架橋反応と細分化を行ないつ
つ、塩基性樹脂と架橋剤を反応容器内に送り込み、か
つ、細分化された反応物を容器外に排出する、請求項1
に記載の塩基性吸水性樹脂の製法。
3. The method according to claim 1, wherein the basic resin and the crosslinking agent are fed into the reaction vessel while the crosslinking reaction and the fragmentation are performed in the reaction vessel, and the fragmented reactant is discharged out of the vessel.
3. The method for producing a basic water-absorbing resin described in 1. above.
【請求項4】細分化された反応物粒子の少なくとも80
重量%が10〜1000μmの粒子サイズを持ってい
る、請求項1から3までのいずれかに記載の塩基性吸水
性樹脂の製法。
4. The method according to claim 1, wherein the at least 80
4. The process for producing a basic water-absorbing resin according to claim 1, wherein the weight% has a particle size of 10 to 1000 [mu] m.
【請求項5】請求項1から4までのいずれかに記載の方
法で得られた塩基性吸水性樹脂に酸性吸水性樹脂を混合
する、吸水剤の製法。
5. A method for producing a water-absorbing agent, comprising mixing an acidic water-absorbing resin with the basic water-absorbing resin obtained by the method according to any one of claims 1 to 4.
【請求項6】請求項1から4までのいずれかの方法で架
橋反応と細分化を行う際に、酸性吸水性樹脂を共存させ
ることにより、塩基性吸水性樹脂と酸性吸水性樹脂との
混合物を得る、吸水剤の製法。
6. A mixture of a basic water-absorbent resin and an acidic water-absorbent resin by coexistence of an acidic water-absorbent resin during the cross-linking reaction and fragmentation by any one of the methods of claims 1 to 4. To obtain a water-absorbing agent.
【請求項7】酸性吸水性樹脂は、その含水率が20重量
%未満のものである、請求項5または6に記載の吸水剤
の製法。
7. The method for producing a water absorbing agent according to claim 5, wherein the acidic water absorbent resin has a water content of less than 20% by weight.
【請求項8】その構成要素として、請求項5から7まで
のいずれかに記載の吸水剤が使用されている、おむつ、
衛生ナプキン、失禁用製品、消臭製品その他の吸水剤使
用製品。
8. A diaper, wherein the water absorbing agent according to any one of claims 5 to 7 is used as a component thereof.
Sanitary napkins, incontinence products, deodorant products, and other products that use water-absorbing agents.
JP2000393864A 1999-12-27 2000-12-25 Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof Expired - Fee Related JP4704559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393864A JP4704559B2 (en) 1999-12-27 2000-12-25 Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP36889399 1999-12-27
JP1999368893 1999-12-27
JP11-368893 1999-12-27
JP2000393864A JP4704559B2 (en) 1999-12-27 2000-12-25 Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof

Publications (2)

Publication Number Publication Date
JP2001247683A true JP2001247683A (en) 2001-09-11
JP4704559B2 JP4704559B2 (en) 2011-06-15

Family

ID=26582048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393864A Expired - Fee Related JP4704559B2 (en) 1999-12-27 2000-12-25 Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof

Country Status (1)

Country Link
JP (1) JP4704559B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059214A1 (en) * 2001-01-26 2002-08-01 Nippon Shokubai Co., Ltd. Water absorbing agent and method for production thereof, and water absorbing article
JP2003062460A (en) * 2001-01-26 2003-03-04 Nippon Shokubai Co Ltd Water absorbent, method for preparing the same, and water-absorbing material
JP2005213400A (en) * 2004-01-30 2005-08-11 Kawamura Inst Of Chem Res Hydrogel, crosslinked hydrogel, and manufacturing method for them
JP2007526941A (en) * 2004-02-23 2007-09-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Crosslinked polymer containing biomass-derived material
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
JP2010047688A (en) * 2008-08-21 2010-03-04 Nitto Boseki Co Ltd Allylamine crosslinked polymer and deodorant
WO2019171985A1 (en) * 2018-03-06 2019-09-12 日産化学株式会社 Electroless plating primer including polymer and metal fine particles
WO2019188669A1 (en) * 2018-03-29 2019-10-03 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509915A (en) * 1994-12-06 1998-09-29 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbable material
JPH11302391A (en) * 1998-02-18 1999-11-02 Nippon Shokubai Co Ltd Surface crosslinking of water absorptive resin
JPH11349689A (en) * 1998-04-09 1999-12-21 Nippon Shokubai Co Ltd Crosslinked polymer particle and its preparation and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509915A (en) * 1994-12-06 1998-09-29 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbable material
JPH11302391A (en) * 1998-02-18 1999-11-02 Nippon Shokubai Co Ltd Surface crosslinking of water absorptive resin
JPH11349689A (en) * 1998-04-09 1999-12-21 Nippon Shokubai Co Ltd Crosslinked polymer particle and its preparation and use thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059214A1 (en) * 2001-01-26 2002-08-01 Nippon Shokubai Co., Ltd. Water absorbing agent and method for production thereof, and water absorbing article
JP2003062460A (en) * 2001-01-26 2003-03-04 Nippon Shokubai Co Ltd Water absorbent, method for preparing the same, and water-absorbing material
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
JP2005213400A (en) * 2004-01-30 2005-08-11 Kawamura Inst Of Chem Res Hydrogel, crosslinked hydrogel, and manufacturing method for them
JP2007526941A (en) * 2004-02-23 2007-09-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Crosslinked polymer containing biomass-derived material
JP2010047688A (en) * 2008-08-21 2010-03-04 Nitto Boseki Co Ltd Allylamine crosslinked polymer and deodorant
WO2019171985A1 (en) * 2018-03-06 2019-09-12 日産化学株式会社 Electroless plating primer including polymer and metal fine particles
CN111868302A (en) * 2018-03-06 2020-10-30 日产化学株式会社 Electroless plating base agent comprising polymer and metal fine particles
JPWO2019171985A1 (en) * 2018-03-06 2021-03-04 日産化学株式会社 Electroless plating base material containing polymer and metal fine particles
JP7280559B2 (en) 2018-03-06 2023-05-24 日産化学株式会社 Electroless plating primer containing polymer and fine metal particles
WO2019188669A1 (en) * 2018-03-29 2019-10-03 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor
JPWO2019188669A1 (en) * 2018-03-29 2021-03-18 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
JP7257090B2 (en) 2018-03-29 2023-04-13 Sdpグローバル株式会社 Water-absorbing resin particles and method for producing the same

Also Published As

Publication number Publication date
JP4704559B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4489957B2 (en) Hydrophilic and highly swellable hydrogel, its manufacture and use
TWI251004B (en) Powdered, crosslinked polymers which absorb aqueous liquids, as well as blood, a process for producing same, and their use
JP5430620B2 (en) Method for producing water absorbent resin
JP4150252B2 (en) Method for producing water absorbent resin
US7429009B2 (en) Process for production of water-absorbing material
EP1113037B1 (en) Production processes for basic water-absorbing agent
EP2891520A1 (en) Particulate water-absorbing agent and method for manufacturing same
JP2002536471A (en) Crosslinked hydrophilic, high swelling hydrogels, methods for their preparation and their use
JP2008528751A (en) Polyamine-coated super absorbent polymer
JP4879423B2 (en) Method for producing water absorbent resin
JP2008528752A (en) Polyamine-coated super absorbent polymer
CA2345727A1 (en) Method for producing water-swellable hydrophilic polymers, said polymers and use thereof
JP2008528750A (en) Polyamine-coated super absorbent polymer
WO2000063295A1 (en) Hydrogel-forming polymer mixture
JP2013034942A (en) Method for producing granular water absorbent
JPH02153903A (en) Production of highly hygroscopic resin
JP3970818B2 (en) Granulated particles of water absorbent resin, absorbent article containing the same, and method for producing granulated particles of water absorbent resin
JP4704559B2 (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof
JP3822812B2 (en) Water absorbing agent and method for producing the same
JP4550256B2 (en) Manufacturing method of water absorbent resin
JP3712453B2 (en) Water-absorbing resin, water-absorbing resin composition and absorber
WO2020059762A1 (en) Method for producing particulate water-absorbing agent and particulate water-absorbing agent
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin
JP7291686B2 (en) Water-absorbing resin particles and method for producing the same
JP2901480B2 (en) Water-absorbing resin and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

LAPS Cancellation because of no payment of annual fees