JPH02141579A - Production of amorphous metal - Google Patents

Production of amorphous metal

Info

Publication number
JPH02141579A
JPH02141579A JP29687388A JP29687388A JPH02141579A JP H02141579 A JPH02141579 A JP H02141579A JP 29687388 A JP29687388 A JP 29687388A JP 29687388 A JP29687388 A JP 29687388A JP H02141579 A JPH02141579 A JP H02141579A
Authority
JP
Japan
Prior art keywords
amorphous
transition metal
solvent
metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29687388A
Other languages
Japanese (ja)
Inventor
Yasuzo Uchida
内田 安三
Tamotsu Takahashi
保 高橋
Yoshiteru Kageyama
景山 芳輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP29687388A priority Critical patent/JPH02141579A/en
Publication of JPH02141579A publication Critical patent/JPH02141579A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the particle or film of an amorphous transition metal having excellent magnetic characteristics with good productivity by dissolving or dispersing the carbonyl compd. of a transition metal or the deriv. thereof into a specific solvent, then thermally decomposing the same. CONSTITUTION:The carbonyl compd. of the transition metal, such as Fe, Ni, Co, Mo, W or Cr or the deriv. thereof, more particularly the carbonyl compd. of the Fe and the Co or the deriv. thereof is put into the org. solvent, such as diphenyl methane, phenyl toluene, phenyl hexane or tridecene, having at least one arm. ring or unsatd. bond within the molecule and is heated and stirred to cause the thermal decomposition thereof, by which the amorphous particle or amorphous film of the transition metal is formed. The amorphous particle or film of the transition metal having the excellent magnetic characteristics is produced with the high productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アモルファス金属の製造方法に関し、特に、
遷移金属カルボニル化合物又はその誘導体を溶媒中で分
解させて、アモルファス遷移金属の膜又は粒子を形成さ
せるアモルファス金属の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing amorphous metal, and in particular,
The present invention relates to a method for producing an amorphous metal by decomposing a transition metal carbonyl compound or a derivative thereof in a solvent to form an amorphous transition metal film or particles.

[従来の技術] 一般に、原子配列に規則性の無い非晶質構造のアモルフ
ァス遷移金属は、結晶質構造には見られない優れた機械
的特性や電磁気特性、特に、優れた磁気特性を備えてお
り、磁気センサー、磁気シールド材などとして有用であ
ることが知られている。
[Prior Art] In general, amorphous transition metals, which have an amorphous structure with no regularity in atomic arrangement, have excellent mechanical and electromagnetic properties that are not found in crystalline structures, especially excellent magnetic properties. It is known to be useful as a magnetic sensor, magnetic shielding material, etc.

従来、この種のアモルファス遷移金属を製造する方法と
しては、一般に、高速で回転する双ロール間に溶融金属
流を通過させて急冷するキャビテーション法や、低温下
での真空蒸着、不活性ガス中でのスパッタリングなどの
物理蒸着法が知られている。
Conventional methods for producing this type of amorphous transition metal include the cavitation method, in which a molten metal flow is passed between twin rolls rotating at high speed to rapidly cool it, vacuum evaporation at low temperatures, and inert gas. Physical vapor deposition methods such as sputtering are known.

[発明が解決しようとする課題] しかしながら、前記キャビテーション法は、電気部品を
磁気シールドする場合などに必要とされる複雑な形状の
コーテイング膜や、数ミクロン以下の粒子を製造するこ
とが極めて困難な方法であり、また、前記物理蒸着法は
、コーテイング膜や薄膜を製造することが可能であって
も、微粒子を形成させることは不可能で、しかも、高価
な真空装置を必要としたり、生産性も低いなど量産性や
経済性の点で問題がある。
[Problems to be Solved by the Invention] However, the cavitation method is extremely difficult to produce coating films with complex shapes and particles of several microns or less, which are required when magnetically shielding electrical components. In addition, although the physical vapor deposition method can produce coating films or thin films, it is impossible to form fine particles, and furthermore, it requires expensive vacuum equipment and has low productivity. There are problems in terms of mass production and economy, such as low yield.

[課題を解決するための手段] 本発明者等は、磁気特性の優れたアモルファス金属の粒
子又は膜を生産性良く製造することを目的として、鋭意
研究を重ねた結果、遷移金属カルボニル化合物を特定の
有機溶媒の存在下に分解させることによって上記目的が
達成できることを見出し、本発明を完成した6 すなわち、本発明は、遷移金属カルボニル化合物又はそ
の誘導体を溶媒中で分解してアモルファス遷移金属の膜
又は粒子を形成させる方法において、前記溶媒として、
少なくとも一つの芳香環又は不飽和結合を有する高沸点
の非プロトン性溶媒を用いることを特徴とするアモルフ
ァス金属の製造方法である。
[Means for Solving the Problems] The present inventors have conducted extensive research with the aim of producing amorphous metal particles or films with excellent magnetic properties with high productivity, and have identified transition metal carbonyl compounds. The present invention has been completed based on the discovery that the above object can be achieved by decomposing a transition metal carbonyl compound or its derivative in a solvent to form an amorphous transition metal film. Or in the method of forming particles, as the solvent,
A method for producing an amorphous metal characterized by using a high boiling point aprotic solvent having at least one aromatic ring or unsaturated bond.

[発明の詳細な説明] 遷 金属カルボニル化人物 本発明のアモルファス金属の製造方法において使用され
る遷移金属カルボニル化合物又はその誘導体としては、
Fe、 Ni、 Go、  W 、 Mo、 Crなど
の遷移金属のカルボニル化合物及びその誘導体、もしく
は、それらの混合物が使用される。これら遷移金属のカ
ルボニル化合物及びその誘導体としては、例えば、Fe
(COI 5. Fez (COI 9. Fe5(C
O) +2゜Fe[CJsl fco)、 、 Fe(
CsH5)+(CO)4などの鉄カルボニル化合物及び
その誘導体、Ni Ic0) 4Nlll (CsHs
) 2 LGOl 2などのニッケルカルボニル化合物
及びその誘導体、Co2(GOI n、 Co4(Co
) + 2 。
[Detailed Description of the Invention] Transition Metal Carbonyl Compounds or derivatives thereof used in the method for producing amorphous metal of the present invention include:
Carbonyl compounds of transition metals such as Fe, Ni, Go, W, Mo, Cr, derivatives thereof, or mixtures thereof are used. These transition metal carbonyl compounds and their derivatives include, for example, Fe
(COI 5. Fez (COI 9. Fe5(C
O) +2°Fe[CJsl fco), , Fe(
Iron carbonyl compounds and their derivatives such as CsH5) + (CO)4, Ni Ic0) 4Nllll (CsHs
) 2 Nickel carbonyl compounds and their derivatives such as LGOl 2, Co2(GOI n, Co4(Co
) + 2.

Co (NO) (CO) −、Go (CsHsl 
fcol 2などのコバルトカルボニル化合物及びその
誘導体、WICO)、。
Co (NO) (CO) −, Go (CsHsl
cobalt carbonyl compounds and their derivatives, such as fcol 2 (WICO);

W (ctnsl (col 3などのタングステンカ
ルボニル化合物及びその誘導体、Mo 1cO16など
のモリブデンカルボニル化合物及びその誘導体、Cr 
(CO) eなどのクロムカルボニル化合物及びその誘
導体などがある。
Tungsten carbonyl compounds and their derivatives such as W (ctnsl (col 3), molybdenum carbonyl compounds and their derivatives such as Mo 1cO16, Cr
Examples include chromium carbonyl compounds such as (CO)e and derivatives thereof.

これら遷移金属のカルボニル化合物又はその誘導体の中
ではFe又はCoのカルボニル化合物又はその誘導体が
好ましい。
Among these carbonyl compounds of transition metals or derivatives thereof, carbonyl compounds of Fe or Co or derivatives thereof are preferred.

これら遷移金属のカルボニル化合物又はその誘導体は、
カルボニル基の一部をオレフィンやホスフィンのような
中性の配位子で置換したものを使用することもできる。
These transition metal carbonyl compounds or derivatives thereof are
It is also possible to use carbonyl groups partially substituted with neutral ligands such as olefins and phosphine.

また、これら化合物に対して、磁気特性を向上させるた
めに、B、AIなどの周期律表第1II b族又はSi
、 Zrなどの第1Vb族の金属化合物を添加して合金
生成物とすることもできる。これらの添加物としては、
分解により金属化する化合物、例えば有機硼素化合物、
有機アルミニウム化合物、有機珪素化合物、有機ジルコ
ニウム化合物などが好ましい。これら添加物の使用量は
遷移金属に対して、原子比で0,01〜0.30の範囲
、好ましくは0.1〜0.2の範囲である。
In addition, in order to improve the magnetic properties of these compounds, B, AI, etc., Group 1II b of the periodic table, or Si
, Zr, etc., can also be added to form an alloy product. These additives include:
Compounds that metallize upon decomposition, such as organoboron compounds,
Preferred are organoaluminum compounds, organosilicon compounds, organozirconium compounds, and the like. The amount of these additives to be used is in an atomic ratio of 0.01 to 0.30, preferably 0.1 to 0.2, relative to the transition metal.

止旌反迎 本発明のアモルファス金属の製造は、遷移金属カルボニ
ル化合物又はその誘導体を、後記の特定の溶媒に溶解又
は分散させて熱分解させることにより行なわれる。
The amorphous metal of the present invention is produced by dissolving or dispersing a transition metal carbonyl compound or a derivative thereof in a specific solvent described below and thermally decomposing it.

熱分解反応は、生成するアモルファス遷移金属が結晶転
移して炭化金属を形成する温度以下で行なわれ、通常2
50℃以下、−40℃以上、好ましくは200℃以下、
0℃以上の温度である。250℃を超えると結晶構造が
発達し、アモルファス性が不十分となる傾向がある。ま
た、−40℃未満の温度では分解反応が遅いので生産性
が低下する。
The thermal decomposition reaction is carried out at a temperature below the temperature at which the amorphous transition metal produced undergoes crystal transition to form metal carbide, and is usually
50°C or lower, -40°C or higher, preferably 200°C or lower,
The temperature is 0°C or higher. If the temperature exceeds 250°C, the crystal structure tends to develop and the amorphous property tends to become insufficient. Further, at temperatures below -40°C, the decomposition reaction is slow, resulting in a decrease in productivity.

上記反応における微粒子の粒子径の調整は、通常、濃度
、温度、反応時間、溶媒及び出発原料となる化合物の種
類などを適宜選択することにより、自由にコントロール
することができるが、般に5〜40重量%程度の濃度で
、0.5〜5時間程度の反応時間で行なわれる。
Adjustment of the particle size of the fine particles in the above reaction can be freely controlled by appropriately selecting the concentration, temperature, reaction time, solvent, and type of compound serving as the starting material, but generally 5 to The reaction time is about 0.5 to 5 hours at a concentration of about 40% by weight.

また、金属膜の形成は、通常、固体材料の表面に形成さ
せることが望ましい。このような固形材料としては、有
機系及び無機系いずれも使用することが可能であり、粉
末状、繊維状、板状などの如何なる形状の固形材料表面
にも形成することができる。
Further, it is usually desirable to form a metal film on the surface of a solid material. Both organic and inorganic solid materials can be used, and the solid material can be formed on the surface of any shape such as powder, fiber, or plate.

直置 本発明のアモルファス金属の製造方法においては、使用
溶媒として特定の有機溶媒を選択することが重要である
In the method for producing an amorphous metal according to the present invention, it is important to select a specific organic solvent as the solvent used.

溶媒としては、分子内に少なくとも一つ以上の芳香環又
は不飽和結合を有する高沸点の、具体的には、沸点が8
0℃以上の、好ましくは100℃以上の、特に好ましく
は120〜300℃の非プロトン性有機溶媒(apro
tic 5olventlが使用される。このような溶
媒としては、例えば、ジフェニルメタン、フェニルトル
エン、フェニルヘキサン、トリデセン、ドデセン、ビペ
ンジルなどを挙げることができる。これらの中でも、二
個以上の芳香環を有する化合物、例えば、ジフェニルメ
タン、ビベンジルなどが好ましい。これらの溶媒は混合
して用いることもできる。このような溶媒を用いること
によって安定なアモルファスの遷移金属を製造すること
ができる。
As a solvent, a high boiling point having at least one aromatic ring or unsaturated bond in the molecule, specifically, a boiling point of 8
Aprotic organic solvents (apro
tic 5olventl is used. Examples of such solvents include diphenylmethane, phenyltoluene, phenylhexane, tridecene, dodecene, bipenzyl, and the like. Among these, compounds having two or more aromatic rings, such as diphenylmethane and bibenzyl, are preferred. These solvents can also be used in combination. By using such a solvent, a stable amorphous transition metal can be produced.

これに対し、芳香環や不飽和結合を全く分子内に持たな
い炭化水素やエーテル類、例えばセタンやジエチレング
リコールジブチルエーテルなどでは、空気中で非常に不
安定な粉末を与え、目的とする安定なアモルファス金属
が得られない。また、プロトン性の溶媒、例えばアルコ
ール類な溶媒として用いたり、あるいは、これを溶媒に
添加したりすると、溶液中で金属と安定な化合物を形成
して析出が起こらず、金属粉末や膜が全く得られない。
On the other hand, hydrocarbons and ethers that do not have any aromatic rings or unsaturated bonds in their molecules, such as cetane and diethylene glycol dibutyl ether, give powders that are extremely unstable in air, and cannot be used as stable amorphous particles. I can't get metal. In addition, if a protic solvent, such as an alcohol, is used as a solvent, or if it is added to the solvent, a stable compound is formed with the metal in the solution, and precipitation does not occur, resulting in no metal powder or film. I can't get it.

アモルファス遷 金 本発明の方法によって製造されるアモルファス遷移金属
は、一般式MeC,(ここでMeは遷移金属)で表わさ
れ、炭素をl≧X≧0.旧の範囲、好ましくは0,9≧
X≧0.02の範囲で含有している。アモルファス性と
炭素含有量は関連性を有しており、磁気特性上からの好
ましい炭素含有量は0.8≧X≧0.05の範囲、好ま
しくは0.6≧X≧0.1の範囲である。
Amorphous transition metal The amorphous transition metal produced by the method of the present invention is represented by the general formula MeC, (where Me is a transition metal), where carbon is l≧X≧0. Old range, preferably 0,9≧
It is contained within the range of X≧0.02. Amorphousness and carbon content are related, and from the viewpoint of magnetic properties, the preferable carbon content is in the range of 0.8≧X≧0.05, preferably in the range of 0.6≧X≧0.1. It is.

本発明のアモルファス金属の製造方法によって得られた
アモルファス遷移金属の膜及び微粒子は優れた磁気特性
を備えており、各種磁気材料として使用できるが、特に
磁気センサー、磁気シールド材、トランスの磁心などに
好適である。
The amorphous transition metal film and fine particles obtained by the amorphous metal manufacturing method of the present invention have excellent magnetic properties and can be used as various magnetic materials, but especially for magnetic sensors, magnetic shielding materials, transformer cores, etc. suitable.

[実施例] 本発明のアモルファス金属の製造方法について、以下に
実施例を挙げて具体的に説明するが、本発明はこれに限
定されるものではない。
[Example] The method for manufacturing an amorphous metal of the present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例1 窒素ガスで十分に置換したフラスコ内に、溶媒としてジ
フェニルメタン20 +nJ2を入れ、次いで。
Example 1 Diphenylmethane 20 + nJ2 was placed as a solvent in a flask that had been sufficiently purged with nitrogen gas, and then.

原料としてFe1CO)52.Ogを加えた後、177
℃まで徐々に加熱し、更にその温度で4時間撹拌しなが
ら反応させて、Fe 1col sの分解を行なった。
Fe1CO as a raw material) 52. After adding Og, 177
The mixture was gradually heated to .degree. C. and reacted at that temperature for 4 hours with stirring to decompose Fe 1col s.

その結果、溶媒中に黒色の金属粒子が生成した。この生
成物を濾過して金属粒子を分離した後、ヘキサン5 m
jで三回洗浄し、真空下に170℃の温度で2時間乾燥
して黒色のアモルファス鉄粉末粒子0.50gを得た。
As a result, black metal particles were generated in the solvent. After filtering the product to separate the metal particles, 5 m of hexane
The powder was washed three times with water and dried under vacuum at a temperature of 170° C. for 2 hours to obtain 0.50 g of black amorphous iron powder particles.

得られたアモルファス鉄粉末粒子の平均径は3umであ
り、その組成は原子比でFe:C= l:0.14であ
った。また、X線回折測定による回折ピークは極めて小
さく、完全にブロードな非晶質状態を示した。更にメス
バラワースベクトルもアモルファス鉄に特徴的な結果を
示していた。また、結晶への転移温度は310℃であっ
た。
The average diameter of the obtained amorphous iron powder particles was 3 um, and the composition was Fe:C=l:0.14 in atomic ratio. Furthermore, the diffraction peak measured by X-ray diffraction was extremely small, indicating a completely broad amorphous state. Furthermore, the Mössborough Worth vector also showed results characteristic of amorphous iron. Further, the transition temperature to crystal was 310°C.

得られた金属粉末粒子について、更に、振動型磁力計に
より磁気特性を測定した結果、飽和磁化は160 (e
mu/gl、保持力は35 (Oelであった。
The magnetic properties of the obtained metal powder particles were further measured using a vibrating magnetometer. As a result, the saturation magnetization was 160 (e
mu/gl, retention power was 35 (Oel).

実施例2 実施例1のFe Ic0I sをFe21(:0) e
l、 Ogに代えた以外は実施例1と同様の方法で分解
反応を行なったところ、実施例1と同様なアモルファス
鉄粉が得られた。
Example 2 FeIc0Is of Example 1 was replaced with Fe21(:0)e
When the decomposition reaction was carried out in the same manner as in Example 1 except that 1 and Og were used, the same amorphous iron powder as in Example 1 was obtained.

得られたアモルファス鉄粉の組成は原子比でFe:C=
 l:0.24であった。また、飽和磁化は155(e
mu/gl 、保持力は28 (Oelであった。
The composition of the obtained amorphous iron powder is Fe:C= in atomic ratio
l:0.24. Also, the saturation magnetization is 155(e
mu/gl, retention was 28 (Oel).

実施例3 実施例1において、 Fe (COI sをCO2(c
ot a l 、 Ogに代え、また分解温度を177
℃から140℃に代えた以外は実施例1と同様の方法で
分解反応を行なった。
Example 3 In Example 1, Fe (COI s was converted to CO2 (c
ot a l, Og, and the decomposition temperature is 177
The decomposition reaction was carried out in the same manner as in Example 1 except that the temperature was changed from 140°C.

得られたGo粉末粒子の平均径は2.5μmであり、そ
の組成は原子比でCo:C=l:0.16であった。
The average diameter of the obtained Go powder particles was 2.5 μm, and the composition was Co:C=l:0.16 in atomic ratio.

また、X線回折測定による回折ビークは極めて小さく、
完全にブロードな非晶質状態を示した。
In addition, the diffraction peak measured by X-ray diffraction is extremely small.
It showed a completely broad amorphous state.

磁気特性は、飽和磁化132 (emu/g)、保磁力
12(Oe)であった6 実施例4 実施例1のFe Ic0I5をCo3feel 9Si
 fcH=cH2)に代え、また分解温度を177℃か
ら230℃に代えた以外は実施例1と同様の方法で分解
反応を行なった5 得られたGo粉末粒子は、平均径4.LLLm、その組
成は原子比でCo:Si:C= l:0.22:0.0
5であり、X線回折ピークは非晶質状態を示した。
The magnetic properties were a saturation magnetization of 132 (emu/g) and a coercive force of 12 (Oe).6 Example 4 The Fe Ic0I5 of Example 1 was replaced with Co3feel 9Si.
The decomposition reaction was carried out in the same manner as in Example 1 except that fcH = cH2) and the decomposition temperature was changed from 177°C to 230°C.5 The obtained Go powder particles had an average diameter of 4. LLLm, its composition is Co:Si:C=l:0.22:0.0 in atomic ratio
5, and the X-ray diffraction peak showed an amorphous state.

磁気特性は、飽和磁化120 femu/gl 、保磁
力9 [Oe>であった。
The magnetic properties were a saturation magnetization of 120 femu/gl and a coercive force of 9 [Oe>.

実施例5 実施例1と同様の方法でFe [C015のジフェニル
メタン溶液を作り、内部に加熱源のあるガラス板を浸し
、このガラス板を177℃に加熱して分解反応を行なう
と、ガラス板の表面にアモルファス鉄の膜が生成した。
Example 5 A diphenylmethane solution of Fe[C015 was prepared in the same manner as in Example 1, a glass plate with a heating source inside was immersed, and the glass plate was heated to 177°C to carry out a decomposition reaction. An amorphous iron film was formed on the surface.

得られたアモルファス鉄の膜は、X線回折、メスバウワ
ースペクトルの測定により、実施例1と同様な非晶質状
態を示していることが判明した。
The obtained amorphous iron film was found to exhibit the same amorphous state as in Example 1 by X-ray diffraction and Mossbauer spectrum measurements.

また、このアモルファス鉄の膜厚は15μm、その組成
は原子比でFe:C= 1:0.21であった。
Further, the film thickness of this amorphous iron was 15 μm, and its composition was Fe:C=1:0.21 in atomic ratio.

また、磁気特性は飽和磁化が130 (emu/gl、
保持力は3. l 1Oe)であった。
In addition, the magnetic properties have a saturation magnetization of 130 (emu/gl,
The holding power is 3. 1 Oe).

[発明の効果] 本発明のアモルファス金属の製造方法は、従来のキャビ
テーション法や物理蒸着法によるアモルファス金属の製
造方法に比較して、複雑な形状のコーテイング膜や、数
ミクロン以下の粒子をも製造することができ、しかも、
高価な真空装置を必要とせず、生産性も良く量産性も高
い。
[Effects of the Invention] The amorphous metal production method of the present invention can produce complex-shaped coating films and particles of several microns or less, compared to conventional amorphous metal production methods using cavitation methods and physical vapor deposition methods. can be done, and
It does not require expensive vacuum equipment and has good productivity and high mass production.

また、得られたアモルファス金属の膜や粒子は、結晶質
構造には見られない優れた機械的特性や電磁気特性、特
に、優れた磁気特性を備えているので、磁気センサー、
磁気シールド材などとして有用である。
In addition, the obtained amorphous metal films and particles have excellent mechanical and electromagnetic properties that are not found in crystalline structures, especially excellent magnetic properties, so they can be used as magnetic sensors, etc.
It is useful as a magnetic shielding material.

Claims (1)

【特許請求の範囲】[Claims] (1)遷移金属カルボニル化合物又はその誘導体を溶媒
中で分解してアモルファス遷移金属の膜又は粒子を形成
させるアモルファス金属の製造方法において、前記溶媒
として、少なくとも一つの芳香環又は不飽和結合を有す
る高沸点の非プロトン性溶媒を用いることを特徴とする
アモルファス金属の製造方法。
(1) In a method for producing an amorphous metal in which a transition metal carbonyl compound or its derivative is decomposed in a solvent to form an amorphous transition metal film or particles, the solvent is a polymer having at least one aromatic ring or an unsaturated bond. A method for producing an amorphous metal characterized by using an aprotic solvent having a boiling point.
JP29687388A 1988-11-22 1988-11-22 Production of amorphous metal Pending JPH02141579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29687388A JPH02141579A (en) 1988-11-22 1988-11-22 Production of amorphous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29687388A JPH02141579A (en) 1988-11-22 1988-11-22 Production of amorphous metal

Publications (1)

Publication Number Publication Date
JPH02141579A true JPH02141579A (en) 1990-05-30

Family

ID=17839270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29687388A Pending JPH02141579A (en) 1988-11-22 1988-11-22 Production of amorphous metal

Country Status (1)

Country Link
JP (1) JPH02141579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514238A (en) * 2005-10-28 2009-04-02 アプライド マテリアルズ インコーポレイテッド Method for selectively depositing a thin film material on a semiconductor junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514238A (en) * 2005-10-28 2009-04-02 アプライド マテリアルズ インコーポレイテッド Method for selectively depositing a thin film material on a semiconductor junction

Similar Documents

Publication Publication Date Title
JP4352258B2 (en) Metal nanoparticles and method for producing the same
US4385944A (en) Magnetic implements from glassy alloys
Pan et al. Growth mechanism of carbon nanocoils
US4537624A (en) Amorphous metal alloy powders and synthesis of same by solid state decomposition reactions
Xu et al. Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution
US7029514B1 (en) Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
US3856580A (en) Air-stable magnetic materials and method
Luo et al. Synthesis of carbon-encapsulated metal nanoparticles by a detonation method
Gou et al. The preparation and characterization of polymer-derived Fe/Si/C magnetoceramics
Boi et al. Tuning high magnetizations in foam-like carbon-based films completely filled with α-Fe
JPH02141579A (en) Production of amorphous metal
Terry et al. Catalytic growth of carbon nanofibers and nanotubes
Gou et al. Synthesis of hyperbranched polyferrocenylsilanes as preceramic polymers for Fe/Si/C ceramic microspheres with porous structures
KR19990037089A (en) Method of manufacturing metal composites
JPS61132600A (en) Whisker-shaped carbonaceous material
CN113717233B (en) Aminopyridyl chloride Co (II) compound for information storage material
JPS63181305A (en) Manufacture of iron oxide vertically magnetized thin film
US3856581A (en) Annealing air-stable magnetic materials having superior magnetic characteristics and method
Sówka et al. Processing and properties of composite magnetic powders containing Co nanoparticles in polymeric matrix
JP4661837B2 (en) Method for synthesizing FePt nanoparticles
Shahid et al. Deposition of crystalline copper films from tetranuclear copper (II) complexes without application of reducing atmosphere
Fard et al. Synthesis and characterization of a new nano lead (II) three-dimensional coordination polymer with 8-hydroxyquinolin ligand by sonochemical method: A precursor for preparation of PbO nano-structure
Shahid et al. Isostructural cage complexes of copper with cadmium or zinc for single source deposition of composite materials
JPH02233511A (en) Production of diamond
Harrison et al. The formation of nanoparticulate cobalt carbide, Co2C, encapsulated in an amorphous siliceous matrix