JPS63181305A - Manufacture of iron oxide vertically magnetized thin film - Google Patents

Manufacture of iron oxide vertically magnetized thin film

Info

Publication number
JPS63181305A
JPS63181305A JP1290087A JP1290087A JPS63181305A JP S63181305 A JPS63181305 A JP S63181305A JP 1290087 A JP1290087 A JP 1290087A JP 1290087 A JP1290087 A JP 1290087A JP S63181305 A JPS63181305 A JP S63181305A
Authority
JP
Japan
Prior art keywords
compound
iron
film
iron oxide
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1290087A
Other languages
Japanese (ja)
Inventor
Hideo Torii
秀雄 鳥井
Teruyuki Fujii
映志 藤井
Masaki Aoki
正樹 青木
Nobuyuki Aoki
青木 延之
Keiichi Ochiai
落合 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1290087A priority Critical patent/JPS63181305A/en
Priority to US07/110,852 priority patent/US4975324A/en
Priority to DE3789271T priority patent/DE3789271T2/en
Priority to EP87309310A priority patent/EP0265246B1/en
Publication of JPS63181305A publication Critical patent/JPS63181305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics by plasma-exciting and chemically evaporating an oxygen mixed gas with vapor wherein only an organic iron compound is heated and vaporized or the mixed vapor of this vapor and another vapor wherein a different sort of organic metal compound is heated and vaporized. CONSTITUTION:Vapor wherein an organic iron compound is heated and vaporized or the mixed vapor of this vapor and another vapor wherein an organic metal compound 4 of such as CO, Ni, Mn or Zn is used for a raw material gas and an oxygen gas is selected for a reaction gas. By a method of plasma-exciting and chemically evaporating the mixed gas of the raw material gas and the reaction gas, a film structure wherein a specific crystallographical plane consisting of dense pillar-shaped particles grown in the vertical direction of a ground substrate 8 is orientated with priority can be obtained. This improves magnetic characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度磁気記録方式として注目されている垂
直磁気記録方式の媒体に発展でき、かつ耐環境性に優れ
た特定の結晶軸方向に、すなわち結晶学的な面が優先配
向していて、かつ、その面を保ったまま下地の基板に対
して垂直方向に柱状に成長して生成した微細な柱状粒子
を密に下地基板に敷きつめた形状の膜構造をもつスピネ
ル型結晶構造の酸化鉄垂直磁化薄膜の製造方法を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a specific crystal axis direction that can be developed into a perpendicular magnetic recording medium, which is attracting attention as a high-density magnetic recording system, and has excellent environmental resistance. In other words, the crystallographic plane is preferentially oriented, and the crystallographic plane is grown in a columnar shape perpendicular to the base substrate while maintaining that plane, resulting in fine columnar particles densely spread over the base substrate. The present invention provides a method for producing a perpendicularly magnetized iron oxide thin film having a spinel crystal structure.

従来の技術 従来から超高密度磁気記録用媒体には、磁性粉の塗布型
媒体よりも磁性体の連続薄膜を用いた媒体の方が適して
いるとされ盛んに研究されている。そして磁性体連続薄
膜の製造方法として、真空蒸着法あるいはスパッタ法が
主に用いられている。材料的には、従来からCo−Cr
系などの合金薄膜が特に垂直磁化膜になり易く、超高密
度磁気記録方式として注目されている垂直磁気記録用の
媒体に成り得るポテンシャルがあるとして、非常に多く
の研究者が検討して来た。しかし、空気中の湿気などに
よって磁性膜が腐蝕するなど、耐環境性の面で多くの問
題を含んでいることがわかり、実用化のために、表面に
別種の非磁性酸化物層をコーティングするなどの手段に
よって耐触性を向上させようという試みがなされている
が、磁性媒体として、製造工程が複雑になるなどの新た
な問題も発生し、まだまだ多くの問題をかかえているの
が現状である。これに比べて、スピネル型の結晶構造を
もつ酸化鉄であるF ea O4(マグネタイト)やγ
−F 6203  (ガンマ酸化鉄)は、それ自身がフ
ェリ磁性を示す酸化物であり、特にr−Fe203は耐
環境性に極めて優れた性質をもっており、塗布型磁性媒
体の磁性粉として使用されているなどの長い実績がある
ことから最近、高い関心を集めていて、これらのスピネ
ル型酸化鉄の磁性薄膜媒体の製造がいろいろ検討されて
いる。
BACKGROUND OF THE INVENTION It has been believed that media using a continuous thin film of magnetic material are more suitable for ultra-high density magnetic recording media than media coated with magnetic powder, and have been actively researched. The vacuum evaporation method or the sputtering method is mainly used as a method for producing a continuous magnetic thin film. In terms of materials, Co-Cr has traditionally been used.
A large number of researchers have been considering alloy thin films such as those that have the potential to become perpendicular magnetic recording media, which is particularly easy to become perpendicularly magnetized films, and which have the potential to become a medium for perpendicular magnetic recording, which is attracting attention as an ultra-high density magnetic recording method. Ta. However, it was found that there were many problems in terms of environmental resistance, such as the magnetic film being corroded by moisture in the air, so in order to put it into practical use, the surface was coated with a different type of non-magnetic oxide layer. Attempts have been made to improve the contact resistance through methods such as these, but as magnetic media, new problems have arisen, such as complicating the manufacturing process, and the current situation is that many problems still exist. be. In comparison, F ea O4 (magnetite), which is an iron oxide with a spinel-type crystal structure, and γ
-F 6203 (gamma iron oxide) is an oxide that itself exhibits ferrimagnetism, and r-Fe203 in particular has extremely excellent environmental resistance and is used as magnetic powder for coated magnetic media. These spinel-type iron oxide magnetic thin film media have been attracting a lot of attention recently because of their long track record, and various studies are being conducted on the production of these spinel-type iron oxide magnetic thin film media.

従来、γ−F e 203薄膜は、スパッタ法で作製さ
れていた。金属鉄のターゲットを用い、酸素ガスを流し
つつスパッタする反応スパッタ法により、まず、非磁性
でコランダム型の結晶構造を持つα−F 8203  
(アルファ酸化鉄)の薄膜を作製し、これを水素気流中
で還元してスピネル型の結晶構造を持つFe3O4に変
態させ、これをわずかに酸化させて、同じ結晶構造をも
つr  F e 203の連vt膜を作製するのが一般
的であった〔例えばジェー、ケイ、ホワード、ジャーナ
ル オプ バキューム サイエンス テクノロジーA、
4巻61ペ一ジ1986年、(J、に、Howa rd
、J、Va c。
Conventionally, γ-F e 203 thin films have been produced by sputtering. α-F 8203, which is non-magnetic and has a corundum crystal structure, was first produced using a reactive sputtering method using a metal iron target and sputtering while flowing oxygen gas.
A thin film of (alpha iron oxide) is prepared, and this is reduced in a hydrogen stream to transform it into Fe3O4, which has a spinel-type crystal structure, and this is slightly oxidized to form rFe203, which has the same crystal structure. It was common to fabricate a continuous VT film [for example, J., K., Howard, Journal of Vacuum Science and Technology A;
Volume 4, page 61, 1986, (J, Howard
, J. Va. c.

Sc i、Techno l、A+  1.l、198
6)) 。
Sci, Technol, A+ 1. l, 198
6)).

発明が解決しようとする問題点 上記したスパッタ法によるr−Fe203連続膜の作製
は、ターゲツト材として金属鉄を用い、酸素ガスを少し
導入したチャンバー内で反応スパッタリングを行なうこ
とによって、はしめにα−Fe203連続膜を形成し、
この膜を還元処理して結晶構造の異なるFe3O4膜に
変化させ、さらにゆるやかに酸化して γ−Fe203連続膜に変化させる方法でr−Fe20
.磁性連続膜の作製を行なうものである。したがって、
α−F e 203→F e a O□−γ−Fe2O
3の変化過程における大きな体積変化が原因で、膜表面
に細かなりランクが発生し易くなり、膜表面性が良好で
なくなり、膜に欠陥ができやすいこと、また、膜組織が
微細な多結晶から成っていて、ある定まった結晶面が優
先配向した単結晶様の膜に比べて、磁気特性の能率がや
や低下し、かつ垂直磁化膜にするのが困難であること、
また、製造工程が複雑で多いことなど、問題点が多く存
在していた。
Problems to be Solved by the Invention The continuous r-Fe203 film is fabricated by the sputtering method described above by using metallic iron as a target material and performing reactive sputtering in a chamber into which a small amount of oxygen gas is introduced. Forming a Fe203 continuous film,
The r-Fe20
.. This is to fabricate a magnetic continuous film. therefore,
α-F e 203→F e a O□-γ-Fe2O
Due to the large volume change during the change process in step 3, fine ranks tend to occur on the film surface, resulting in poor film surface properties and defects in the film. The efficiency of the magnetic properties is slightly lower than that of a single-crystal-like film in which certain crystal planes are preferentially oriented, and it is difficult to form a film with perpendicular magnetization.
In addition, there were many problems such as the complicated manufacturing process.

これらの欠点を取り除く製造方法として、ターゲツト材
にスピネル型酸化鉄の粉体を圧粉成型したものを用いて
、スパッタ法で直接的にスピネル型酸化鉄薄膜を得る方
法も検討されている(例えば星陽−3直江正彦、電気通
信学会技術研究報告、85巻阻87.9ページ、198
5年)。この方法では、下地基板の材料を選ぶことによ
って結晶面が配向した磁性薄膜も得られるが、成膜速度
が遅いことなどの欠点があり、あまり、多量生産に適し
た製造方法であるとは言えないのが現状である。
As a manufacturing method to eliminate these drawbacks, a method of directly obtaining a spinel-type iron oxide thin film by sputtering using a compacted spinel-type iron oxide powder as a target material is also being considered (for example, Seiyo-3 Masahiko Naoe, Institute of Electrical Communication Engineers Technical Research Report, Volume 85, Page 87.9, 198
5 years). With this method, it is possible to obtain a magnetic thin film with oriented crystal planes by selecting the material of the base substrate, but it has disadvantages such as slow film formation speed, so it cannot be said that it is a manufacturing method suitable for mass production. The current situation is that there is no such thing.

そこで、本発明は、比較的低温で成膜でき、かつその成
膜速度も高(、特定の結晶学的な面が優先配向しており
、かつその面が下地の基板に対して垂直方向に柱状に成
長して成る微細な柱状粒子を密に敷きつめた形状の膜構
造をもつスピネル型酸化鉄の垂直磁化薄膜を製造する方
法を提供することを目的としている。
Therefore, the present invention can form a film at a relatively low temperature and has a high film formation rate (a specific crystallographic plane is preferentially oriented, and the plane is perpendicular to the underlying substrate). The object of the present invention is to provide a method for producing a perpendicularly magnetized spinel-type iron oxide thin film having a film structure in which fine columnar particles grown in a columnar shape are densely spread.

問題点を解決するための手段 上記問題点を解決するために、本発明の酸化鉄垂直磁化
薄膜の製造方法は、有機鉄化合物を加熱気化した蒸気、
あるいは、この蒸気に別種の有機金属化合物を加熱気化
した蒸気の混合蒸気を原料ガスとし、酸素ガスを反応ガ
スに選んで、これらの原料ガスと反応ガスの三者の混合
ガスをプラズマ励起して、化学蒸着(CVD)する方法
によって、下地の基板に垂直方向に成長した密な柱状粒
子からなる、特定の結晶学的な面が優先配向した膜構造
をもつスピネル型酸化鉄の垂直磁化膜を作製するもので
ある。
Means for Solving the Problems In order to solve the above problems, the method for producing a perpendicularly magnetized iron oxide thin film of the present invention uses a vapor obtained by heating and vaporizing an organic iron compound,
Alternatively, a mixture of steam obtained by heating and vaporizing another type of organometallic compound in this steam is used as the raw material gas, oxygen gas is selected as the reaction gas, and the mixture of these raw material gases and the reaction gas is excited into plasma. By chemical vapor deposition (CVD), we created a perpendicularly magnetized spinel-type iron oxide film with a film structure in which specific crystallographic planes are preferentially oriented, consisting of dense columnar grains grown perpendicular to the underlying substrate. It is to be manufactured.

作用 一般に化学蒸着法(CVD法)は、原料ガスと反応ガス
を多量に高速で反応容器内へ流すことによって成膜速度
を高くでき、かつ他の一般的な成膜法である真空蒸着法
やスパッタ法による成膜の場合のように、高い真空度を
必要としないという特徴がある。すなわち多量生産が容
易に行なえる方法である。
Generally speaking, chemical vapor deposition (CVD) can increase the film formation rate by flowing a large amount of raw material gas and reaction gas into a reaction vessel at high speed, and is superior to other common film formation methods such as vacuum evaporation and A feature of this method is that it does not require a high degree of vacuum, unlike film formation by sputtering. In other words, it is a method that allows for easy mass production.

本発明は上記した新規の製造方法であるので原料ガスの
有機金属化合物の蒸気の流量と反応ガスである酸素ガス
の流量の比や、励起に用いるプラズマ発生高周波の出力
等の条件を選ぶことによって、一工程でスピネル型酸化
鉄の薄膜が成膜できることになる。したがって前記した
一C的な方法であるα−F e 20 B膜から変成し
て製造する際の体積変化や結晶構造変化に原因する膜表
面のマイクロクラ7りの発生という問題点が解決される
。また、α−1’i 62Q3−Fe30.−5r−F
e20.の変成のために多くの工程が必要であるという
問題点も解決されまた、膜生成条件を選ぶことにより、
下地基板面に対して柱状に成長した粒子からなる膜が生
成する。さらに条件を選べば、粒子の大きさやその柱状
粒子の断面積等も制御でき、その柱状粒子の大きさを選
ぶことによって、各柱状粒子に大きな形状磁気異方性を
もたせて間密度磁気記録メディアに発展可能な垂直磁化
膜にすることができる。
Since the present invention is a novel manufacturing method as described above, it is possible to select conditions such as the ratio of the flow rate of organic metal compound vapor as a raw material gas and the flow rate of oxygen gas as a reaction gas, and the output of plasma generation high frequency waves used for excitation. , a spinel-type iron oxide thin film can be formed in one step. Therefore, the problem of generation of microcracks on the film surface caused by changes in volume and crystal structure when manufacturing from an α-F e 20 B film using the above-mentioned 1C method can be solved. . Also, α-1'i 62Q3-Fe30. -5r-F
e20. The problem that many steps are required for the metamorphosis of
A film consisting of particles grown in a columnar manner on the surface of the underlying substrate is generated. Furthermore, by selecting conditions, it is possible to control the particle size and the cross-sectional area of the columnar particles, and by selecting the size of the columnar particles, each columnar particle has a large shape magnetic anisotropy, and the density magnetic recording medium is It can be made into a perpendicularly magnetized film that can be developed.

さらに、プラズマ励起して化学蒸着を行なうため、比較
的低温で結晶性の薄膜を成膜できるので、従来のプラズ
マ励起を行なわない化学蒸着法による成膜のように下地
基板を高温に加熱する必要が無くなり、下地基板の加熱
温度を高温にすると変質してしまうような基板材料など
も下地基板として使用できることになって、基板材料の
種類の幅が広がることになる。したがって、より安価な
材料でできた基板を用いることによって、磁気記録メデ
ィアの低コスト化をはかれる。
Furthermore, since chemical vapor deposition is performed using plasma excitation, crystalline thin films can be formed at relatively low temperatures, so there is no need to heat the underlying substrate to high temperatures, unlike in conventional chemical vapor deposition methods that do not use plasma excitation. As a result, substrate materials that would deteriorate if the heating temperature of the base substrate is raised to high temperatures can be used as the base substrate, expanding the range of substrate materials. Therefore, by using a substrate made of cheaper material, the cost of magnetic recording media can be reduced.

実施例 以下に、本発明の酸化鉄垂直磁化薄膜の製造方法の一実
施例について図面を用いて述べる。
EXAMPLE An example of the method for manufacturing a perpendicularly magnetized iron oxide thin film of the present invention will be described below with reference to the drawings.

実施例1 本実施例は、第1図に示すような製造装置を用いて行な
った。本製造装置は大まかに、管状チャンバー1と、内
蔵されたヒーターによって一定温度に加熱できる原料気
化用バブラー2と排気ポンプ3から成っている。このバ
ブラー2中に有機金属化合物4を入れ加熱するとを機金
属化合物の蒸気が発生するが、キャリヤーガスとして窒
素ガス5を用いてこの蒸気を管状チャンバー1内へ導入
する。一方、反応ガスである酸素ガス6も同時に管状チ
ャンバー1内へ導入されるような構造になっている。管
状チャンバーi内では、キャリヤーガスの窒素ガスによ
って運ばれた有機金属化合物の蒸気と反応ガスの酸素ガ
スの混合ガスの吹き出し管7の正面中央部に基板加熱ヒ
ーター9が配置されていて、その上に基板8が保持され
る構造になっている。
Example 1 This example was carried out using a manufacturing apparatus as shown in FIG. This manufacturing apparatus roughly consists of a tubular chamber 1, a bubbler 2 for vaporizing raw materials that can be heated to a constant temperature by a built-in heater, and an exhaust pump 3. When an organometallic compound 4 is placed in this bubbler 2 and heated, vapor of the organometallic compound is generated, and this vapor is introduced into the tubular chamber 1 using nitrogen gas 5 as a carrier gas. On the other hand, the structure is such that oxygen gas 6, which is a reactive gas, is also introduced into the tubular chamber 1 at the same time. Inside the tubular chamber i, a substrate heating heater 9 is disposed at the center in front of a blowout tube 7 for blowing out a mixed gas of organic metal compound vapor carried by a carrier gas of nitrogen gas and a reaction gas of oxygen gas. The substrate 8 is held in the structure.

また、管状チャンバーの外側にはプラズマ発生用の高周
波コイル10が設置されていて、高周波電源を用いて、
管状チャンバー内を流れるキャリヤーガスによって導入
された有機金属化合物の蒸気と酸素ガスの混合ガスをプ
ラズマ励起できるようになっている。なお、製造装置の
反応管内は常に、排気ポンプ3を用いて強制排気するこ
とによって、一定の真空度を保っている。
In addition, a high frequency coil 10 for plasma generation is installed outside the tubular chamber, and a high frequency power source is used to generate the plasma.
A mixed gas of organometallic compound vapor and oxygen gas introduced by a carrier gas flowing inside the tubular chamber can be excited into plasma. Note that a constant degree of vacuum is always maintained within the reaction tube of the manufacturing apparatus by forcibly evacuating the inside using the exhaust pump 3.

基板8として、膜形成面を鏡面加工した直径50mの円
板状の強化ガラス板を用い、有機金属化合物原料として
鉄(III)アセチルアセトナート粉体25.Ogをバ
ブラー2の中に入れて135±0.5℃に加熱して、キ
ャリヤーガスとして水素ガスを10%含む窒素ガスを2
0m jl / m t nの流量でバブラー2を通し
て、管状チャンバー1内に導入した。同時に反応ガスと
して酸素ガスを10mj!/minの流量で同チャンバ
ー内に導入した。この際、同チャンバー1内を1.2X
10(Torrの真空度に保持できるように排気系を調
整した。高周波出力を50Wに設定し、20分間、プラ
ズマ励起を行ない、基板上にCVD膜を形成した。なお
、基板は300℃に加熱保持して成膜した。
A disk-shaped tempered glass plate with a diameter of 50 m with a mirror-finished film forming surface was used as the substrate 8, and iron (III) acetylacetonate powder 25. was used as the organometallic compound raw material. Og was placed in bubbler 2 and heated to 135 ± 0.5°C, and nitrogen gas containing 10% hydrogen gas was added as a carrier gas.
It was introduced into the tubular chamber 1 through the bubbler 2 at a flow rate of 0 m jl / m t n. At the same time, 10mj of oxygen gas is used as a reaction gas! was introduced into the same chamber at a flow rate of /min. At this time, the inside of the same chamber 1 is 1.2X
The exhaust system was adjusted to maintain a vacuum level of 10 (Torr).The high frequency output was set to 50W, and plasma was excited for 20 minutes to form a CVD film on the substrate.The substrate was heated to 300°C. A film was formed by holding it.

この生成膜のX線回折、化学組成分析および遠赤外スペ
クトル測定を行ない解析して、(1)1)面が基板表面
に完全配向したスピネル型酸化鉄γ−Fe2o3薄膜で
あった。この膜のヒステリシスループを第2図に示した
This produced film was analyzed by X-ray diffraction, chemical composition analysis, and far-infrared spectrum measurement, and was found to be a spinel-type iron oxide γ-Fe2O3 thin film in which the (1) 1) plane was completely oriented on the substrate surface. The hysteresis loop of this membrane is shown in FIG.

FeS?核のメスバウア測定から、この膜は3価のみか
らなり室温で内部磁場が507kOeで、かつ2番目、
5番目の吸収がほとんど無いことからかつスピン軸が膜
面に対して完全に垂直であることもわかった。得られた
磁性薄膜の断面を高分解能走査型電子顕微鏡を用いて観
察した結果、膜面に垂直に柱状に成長した粒子でおおわ
れた膜構造をしており、その柱状粒子のコラム径が約4
50人であることがわかった。この断面状態を第3図に
示した。すなわち、本発明の方法によって、一工程で、
形状磁気異方性により垂直磁化膜となった微細な柱状粒
子を密につめた膜構造のスピネル型酸化鉄 γ−Fe2O3が得られた。
FeS? From the Mössbauer measurements of the nucleus, this film is composed of only trivalent ions, has an internal magnetic field of 507 kOe at room temperature, and has a second
It was also found that the fifth absorption was almost absent and that the spin axis was completely perpendicular to the film surface. Observation of the cross section of the obtained magnetic thin film using a high-resolution scanning electron microscope revealed that it had a film structure covered with columnar particles grown perpendicular to the film surface, and the column diameter of the columnar particles was approximately 4.
It turned out that there were 50 people. This cross-sectional state is shown in FIG. That is, by the method of the present invention, in one step,
A spinel-type iron oxide γ-Fe2O3 having a film structure densely packed with fine columnar particles, which became a perpendicularly magnetized film due to shape magnetic anisotropy, was obtained.

なお、有機金属化合物として、上記の鉄(1)アセチル
アセトナートのかわりに、鉄(I[[)  トリフルオ
ロアセチルアセトナートあるいは、鉄(III)ヘキサ
フルオロアセチルアセトナートあるいは、鉄(III)
ジピバロイルメタンキレートあるいはフェロセンあるい
はビニルフェロセンを用い、第1表に示す条件でプラズ
マ励起CV1))を行なえば、柱状粒子のコラム径が約
350〜450人の範囲の大きさの上述と同様の膜構造
のr−Fe20gの垂直磁化膜が得られた。
In addition, as an organometallic compound, instead of the above-mentioned iron (1) acetylacetonate, iron (I[[) trifluoroacetylacetonate, iron (III) hexafluoroacetylacetonate, or iron (III)
If dipivaloylmethane chelate, ferrocene or vinylferrocene is used and plasma excitation CV1) is carried out under the conditions shown in Table 1, the column diameter of the columnar particles is similar to that described above in the range of about 350 to 450 particles. A perpendicular magnetization film of 20 g of r-Fe having the film structure was obtained.

(以 下 空 白) 実施例2 製造装置は、実施例1と同様の装置を用いた。(hereafter empty white) Example 2 The same manufacturing equipment as in Example 1 was used.

下地基板8として、膜形成面を鏡面加工した実施例1と
同形状のアルミ円板を用い、有機金属化合物原料として
、鉄(III)アセチルアセトナート粉体25.Ogを
バブラー2の中に入れ、135±0.5℃に加熱し、キ
ャリヤーガスとして5 ca ll/ m i nの流
量の窒素ガスを用い、反応ガスとして3fflβ/ m
 i nの流量の酸素ガスを用いて、これらの両者の混
合ガスを管状チャンバー1の中に導入しながら、プラズ
マ励起とVDを行なった。この際、プラズマ励起の高周
波出力および管状チャンバー1内の真空度は実施例1と
同じ条件を選んで行なった。下地基板は280℃に加熱
保持して成膜した。
As the base substrate 8, an aluminum disk having the same shape as in Example 1 with a mirror-finished film forming surface was used, and as the organometallic compound raw material, iron (III) acetylacetonate powder 25. Og was placed in bubbler 2 and heated to 135 ± 0.5 °C, using nitrogen gas at a flow rate of 5 call/min as a carrier gas and 3 fflβ/m as a reaction gas.
Plasma excitation and VD were performed while introducing a mixture of both gases into the tubular chamber 1 using oxygen gas at a flow rate of in. At this time, the same conditions as in Example 1 were selected for the high frequency output for plasma excitation and the degree of vacuum in the tubular chamber 1. The base substrate was heated and maintained at 280° C. to form a film.

得られた生成膜について、X線回折、化学組成分析およ
び遠赤外スペクトル測定を行ない解析した。その結果(
ioo)面が基板表面に完全配向したスピネル型酸化鉄
Fe80t′gi膜であった。この膜のX線回折パター
ンを第4図に示した。FeS?核のメスバウア測定から
、この膜は、2価と3価からなり、かつスピン軸が膜面
に対して完全に垂直であることもわかった。
The resulting film was analyzed by X-ray diffraction, chemical composition analysis, and far-infrared spectrum measurement. the result(
It was a spinel-type iron oxide Fe80t'gi film with the ioo) plane completely oriented on the substrate surface. The X-ray diffraction pattern of this film is shown in FIG. FeS? Mössbauer measurements of the nuclei revealed that this film is composed of divalent and trivalent molecules, and that the spin axis is completely perpendicular to the film surface.

また、膜の断面を高分解能走査型電子顕微鏡を用いて観
察すると実施例1の第3図に酷似しており膜面に垂直に
柱状粒子が密に林立てし覆われた膜構造をしており、そ
の−個の柱状粒子のコラム径が約400〜450人であ
ることがわかった。すなわち、本発明の方法によって、
一工程で、形状磁気異方性により垂直磁化膜となった微
細な柱状粒子を密につめた膜構造のスピネル型酸化鉄F
 e a O4が得られた。
In addition, when the cross section of the film was observed using a high-resolution scanning electron microscope, it looked very similar to FIG. 3 of Example 1, and it was found that the film structure was covered with a dense forest of columnar particles perpendicular to the film surface. It was found that the column diameter of each columnar particle was about 400 to 450 particles. That is, by the method of the present invention,
Spinel-type iron oxide F with a film structure densely packed with fine columnar particles that becomes a perpendicularly magnetized film due to shape magnetic anisotropy in one process.
e a O4 was obtained.

なお、有機金属化合物として、上記の鉄(III)アセ
チルアセトナートのかわりに鉄(■)トリフルオロアセ
チルアセトナート、あるいは鉄(I[[)ヘキサフルオ
ロアセチルアセトナートあるいは鉄(I[I)ジピバロ
イルメタンキレートあるいはフェロセンあるいはビニル
フェロセンを用い、第2表に示す条件でプラズマ励起と
VDを行なえば、柱状粒子のコラム径が300〜450
人の範囲の大きさの上述と同様の膜構造のFe50□の
垂直磁化膜が得られた。
In addition, as an organometallic compound, iron (■) trifluoroacetylacetonate, iron (I[[)hexafluoroacetylacetonate, or iron (I[I) dipylacetonate] may be used instead of the above iron(III) acetylacetonate. If baroylmethane chelate, ferrocene, or vinyl ferrocene is used and plasma excitation and VD are performed under the conditions shown in Table 2, the column diameter of columnar particles will be 300 to 450.
A perpendicular magnetization film of Fe50□ having a film structure similar to that described above and having a size in the human range was obtained.

(以 下 空 白) 実施例3 下地基板8として、膜形成面を鏡面加工した実施例1と
同形状の強化ガラス円板を用い、製造装置は第5図に示
す構造のものを用いて、下地基板を300℃に加熱保持
しながら膜形成した。有機金属化合物原料として、有機
鉄化合物と有機コバルト化合物の二種類を用いて行なっ
た。有機鉄化合物として鉄(III)アセチルアセトナ
ートを有機コバルト化合物としてコバルトアセチルアセ
トナートを用いた。それぞれの原料試薬25.0gをそ
れぞれバブラー2と2′に入れ、異なった流量のキャリ
ヤーガスを各バブラーに通すことによって、異なった流
量をもつそれぞれの原料試薬の蒸気を、配管を通して、
管状チャンバー1に導入した。なお、バブラー内は加熱
して135±0.5℃に一定にして、管状チャンバー内
真空度を1. 2X10”Torrに保ち、高周波出力
50Wで一定に保持してプラズマ励起とVDを行ない成
膜した0作製した各磁性膜の成膜条件を第3表に示した
(Blank below) Example 3 A tempered glass disk having the same shape as Example 1 with a mirror-finished film-forming surface was used as the base substrate 8, and a manufacturing apparatus having the structure shown in FIG. 5 was used. The film was formed while heating and holding the base substrate at 300°C. Two types of organic iron compounds and organic cobalt compounds were used as organic metal compound raw materials. Iron (III) acetylacetonate was used as the organic iron compound, and cobalt acetylacetonate was used as the organic cobalt compound. By putting 25.0 g of each raw reagent into bubblers 2 and 2', and passing carrier gas at different flow rates through each bubbler, the vapors of each raw reagent at different flow rates were passed through the piping.
was introduced into the tubular chamber 1. The inside of the bubbler is heated to a constant temperature of 135 ± 0.5°C, and the degree of vacuum inside the tubular chamber is set to 1. Table 3 shows the film-forming conditions for each magnetic film that was formed by plasma excitation and VD at a constant high-frequency output of 50 W at 2×10” Torr.

得られたそれぞれの強化ガラス基板上に合成した膜につ
いて、実施例1.2と同様にX線回折、化学組成分析、
遠赤外吸収スペクトル測定、Fe57核メスバウア測定
および高分解能走査型電子顕微鏡観察を行なった結果、
第3表の膜の構造は、全て実施例1の第2図に酷似した
微細な柱状粒子からなる構造を呈していた。また、結晶
構造的には全て(1)1)面が下地基板表面に対して平
行に配向したスピネル型のCOがわずかに固溶した酸化
鉄COx F e s−x O4であった。磁気的には
メスバウアスペクトルの2番目、5番目の吸収がほとん
ど見えないことから、全て垂直磁化膜であった。さらに
、これらの膜について振動式磁力計を用いて室温におけ
る膜面に垂直方向と平行方向のB−Hループを調べた。
The films synthesized on each of the obtained tempered glass substrates were subjected to X-ray diffraction, chemical composition analysis, and chemical composition analysis in the same manner as in Example 1.2.
As a result of far-infrared absorption spectrum measurement, Fe57 nuclear Mössbauer measurement, and high-resolution scanning electron microscopy observation,
The structures of the films shown in Table 3 all had structures consisting of fine columnar particles very similar to that in FIG. 2 of Example 1. In addition, in terms of crystal structure, all of them were iron oxide COx Fe s-x O4 in which spinel-type CO, in which the (1)1) plane was oriented parallel to the surface of the base substrate, was slightly dissolved in solid solution. Magnetically, the second and fifth absorptions in the Mössbauer spectrum were almost invisible, indicating that they were all perpendicularly magnetized films. Furthermore, the B-H loops of these films in the direction perpendicular and parallel to the film surface at room temperature were investigated using a vibrating magnetometer.

各磁性膜とも、メスバウア測定の結果と同様に全て垂直
磁化膜となっていることを示していた。
Each of the magnetic films showed that they were all perpendicularly magnetized films, similar to the results of Mössbauer measurement.

各合成膜の膜面に垂直方向のB−Hループから測定した
垂直磁化方向の抗磁力Hciの値とそれらの膜のCo固
溶度の分析結果を第4表に示す。この表では、成膜磁は
第3表と対応している。
Table 4 shows the values of the coercive force Hci in the perpendicular magnetization direction measured from the B-H loop perpendicular to the film surface of each synthetic film and the analysis results of the Co solid solubility of those films. In this table, the film-forming magnetism corresponds to Table 3.

第4表 +N [ [ 第4表から、Co固溶量の増加と共に、合成膜のHci
値が大きく増大することがわかる。
Table 4+N [ [ From Table 4, as the amount of Co solid solution increases, the Hci of the synthetic membrane increases.
It can be seen that the value increases significantly.

すなわち、有機コバルト化合物の蒸気の流量のコントロ
ールによって、異なったH c上値をもつ垂直磁化膜を
製造することができることを示しており本発明の方法で
製造されたスピネル型酸化鉄垂直磁化膜が高密度磁気記
録用メディア材料に発展できることの一端をみせている
のもである。
This shows that by controlling the flow rate of the organic cobalt compound vapor, it is possible to produce perpendicularly magnetized films with different H c upper values. This shows a glimpse of what can be developed into a media material for density magnetic recording.

なお、有機鉄(I[[)化合物については、上記の鉄C
I[I)アセチルアセトナートのかわりに、他の化合物
、β−ジケトン系の鉄(III)ヘキサフルオロアセチ
ルアセトナートやシクロペンタジェン系のフェロセンを
用いても、それらの原料を入れるバブラーの温度を制御
することによって同様のCo XF e 3− X O
4膜が製造できた。
For organic iron (I[[) compounds, the above iron C
I [I] Even if other compounds such as iron (III) hexafluoroacetylacetonate of β-diketone type or ferrocene of cyclopentadiene type are used instead of acetylacetonate, the temperature of the bubbler into which these raw materials are placed may be adjusted. Similar Co XF e 3-X O by controlling
Four films were manufactured.

また、有機コバルト化合物については、上記のコバルト
アセチルアセトナートのかわりに、例えばβ−ジケトン
系のコバルトトリフルオロアセチルアセトナートやシク
ロペンタジェン系のコバルトセンを用いても、同様にバ
ブラ一温度をコントロールして蒸気の流量を調節すれば
、上述と同様のCOX F e 3− X O4膜が製
造できた。
Regarding organic cobalt compounds, for example, β-diketone cobalt trifluoroacetylacetonate or cyclopentadiene cobaltocene may be used instead of cobalt acetylacetonate to control the bubbler temperature in the same way. By adjusting the flow rate of steam in this manner, a COX Fe 3-X O4 film similar to that described above could be produced.

実施例4 下地基板8として、実施例3と同じ強化ガラス円板を用
い、同じ製造装置(第5図)を用いて、有機鉄化合物と
各種の鉄以外の有機金属化合物を原料に用いて、反応ガ
スとして、酸素を用いて、わずかな別種の金属が固溶し
たスピネル型酸化鉄垂直磁化膜の製造を本発明の方法で
行なった。
Example 4 Using the same tempered glass disk as in Example 3 as the base substrate 8, using the same manufacturing equipment (Fig. 5), and using organic iron compounds and various organic metal compounds other than iron as raw materials, A spinel-type iron oxide perpendicularly magnetized film in which a small amount of another metal was dissolved in solid solution was produced by the method of the present invention using oxygen as a reactive gas.

有機鉄化合物として鉄(III)アセチルアセトナート
を用い、もう一方の有機金属化合物として、ニッケルア
セトナート、あるいは、マンガンアセチルアセトナート
あるいは、亜鉛アセチルアセトナートを用いて行なった
Iron (III) acetylacetonate was used as the organic iron compound, and nickel acetonate, manganese acetylacetonate, or zinc acetylacetonate was used as the other organic metal compound.

鉄(III)アセチルアセトナートの入ったバブラー2
は135±0.5℃に保持し、また、もう一方のバブラ
ー2には、鉄以外の金属の有機金属化合物を入れ、それ
が、ニッケルアセチルアセトナートあるいはマンガンア
セチルアセトナートの場合はバブラ一温度を135±0
.5℃に保持し、それが亜鉛アセチルアセトナートの場
合バブラ一温度を1)5±0.5℃に保持した。両方の
バブラー2,2′内にキャリヤーガスの窒素ガスを流入
して、それぞれの原料有機金属化合物の蒸気を管状チャ
ンバー1内に導入して、プラズマ励起とVDを行なった
。キャリヤーガス流量は、それぞれ、鉄([[[)アセ
チルアセトナートの入ったバブラー2に対して10mj
!/minとし、もう一方のバブラー2に対しては2m
 l / m i nとした。他の成膜条件は、実施例
3と全く同じ条件に設定した。
Bubbler 2 containing iron(III) acetylacetonate
is maintained at 135 ± 0.5°C, and the other bubbler 2 is charged with an organometallic compound of a metal other than iron, and if it is nickel acetylacetonate or manganese acetylacetonate, the bubbler temperature is kept at 135 ± 0.5°C. 135±0
.. If it was zinc acetylacetonate, the bubbler temperature was kept at 1) 5±0.5°C. Nitrogen gas as a carrier gas was flowed into both bubblers 2 and 2', and the vapors of the respective raw material organometallic compounds were introduced into the tubular chamber 1 to perform plasma excitation and VD. The carrier gas flow rate was 10 mj for bubbler 2 containing iron ([[[] acetylacetonate), respectively.
! /min, and 2m for the other bubbler 2.
l/min. Other film forming conditions were set to be exactly the same as in Example 3.

得られた膜については、X線回折、および高分解能走査
型電子顕微鏡観察更に、40KOeの外部磁場を用いた
Fe57核のメスバウア測定を行なうことによって、解
析した。その結果、得られた膜の形状は、断面が実施例
1の第1図に酷偵した微細な柱状粒子が密に林立した膜
構造をしていた。また、結晶学的には、それぞれの各金
属イオンが固溶したスピネル型の酸化鉄、Ni  Fe
   O(0<X<1)。
The obtained film was analyzed by X-ray diffraction, high-resolution scanning electron microscopy, and Mössbauer measurement of Fe57 nuclei using an external magnetic field of 40 KOe. As a result, the shape of the obtained film had a film structure in which fine columnar particles were densely arranged in a cross section as shown in FIG. 1 of Example 1. In addition, crystallographically, spinel-type iron oxide, NiFe, in which each metal ion is dissolved in solid solution,
O (0<X<1).

3−X4 Mn  F e   O(0<y < 1)。3-X4 Mn F e O (0<y<1).

3−Y4 Znz Fe8−2o、(0<、< 1)であり、(1
)1)面に配向した構造を示していた。また、メスバウ
アスペクトルの2番目、5番目の吸収がほとんどないこ
とから、それぞれの膜は全て磁気的には垂直磁化膜にな
っていた。さらに外部磁場を加えて測定したスペクトル
の解析から、Niが固溶した酸化鉄= N I X F
 ea−x O4中のNi、イオンは結晶学的に8位置
く八面***置)に入っていること、Mnが固溶した酸化
鉄、MnY Fe5−Y o、中のMnイオンもB位置
に入っていること、Znが固溶した酸化鉄、Z n z
 F e a−z Oを中のZnイオ、ンはA位置(四
面***置)に入っていることがわかった。
3-Y4 Znz Fe8-2o, (0<, <1), (1
)1) It showed a structure oriented in a plane. Furthermore, since there was almost no absorption in the second and fifth portions of the Mössbauer spectrum, each film was magnetically perpendicularly magnetized. Further, from the analysis of the spectrum measured by applying an external magnetic field, it was found that iron oxide with Ni in solid solution = N I X F
Ni in ea-x O4, the ion is located at the 8th octahedral position in crystallography, iron oxide with solid solution of Mn, MnY Fe5-Yo, the Mn ion is also located at the B position. iron oxide with solid solution of Zn, Zn z
It was found that the Zn ion in Fe a-z O was located at the A position (tetrahedral position).

発明の効果 以上に述べてきたように、本発明の製造方法によれば容
易に耐環境性に優れたスピネル型酸化鉄の垂直磁化膜を
製造することが可能になる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, it is possible to easily manufacture a spinel type iron oxide perpendicular magnetization film having excellent environmental resistance.

また、原料ガスを制御すれば、鉄以外の金属イオンも容
易に添加できるので、膜の磁気特性の制御もできるよう
になり、この垂直磁化膜は垂直磁気記録用メディア材料
へ容易に発展できる。
In addition, metal ions other than iron can be easily added by controlling the raw material gas, making it possible to control the magnetic properties of the film, and this perpendicularly magnetized film can be easily developed into a media material for perpendicular magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例1で用いた製造装置の構造を
示す構成図、第2図は本発明の一実施例lで製造したγ
−F e 20 a垂直磁化膜のヒステリシスループ図
、ただし図中で1で示したループは膜面に垂直方向のヒ
ステリシスループであり、1)で示したループは、膜面
に平行方向のヒステリシスループ、第3図は本発明の一
実施例1で製造したγ−F e 20 a垂直磁化膜の
断面図、第4図は本発明の一実施例2で製造した F e a○4垂直磁化膜のX線回折パターン図、第5
図は本発明の一実施例3で用いた製造装置の構造を示す
構成図である。 1・・・・・・管状チャンバー、2・・・・・・原料気
化用バブラー、3・・・・・・排気ポンプ、4・・・・
・・有機金属化合物、5・・・・・・キャリヤーガスボ
ンへ、6・・・・・・反応ガスボンベ(酸素)、7・・
・・・・混合ガス吹き出し管、8・・・・・・基板、9
・・・・・・基板加熱ヒーター、lO・・・・・・高周
波コイル、1)・・・・・・真空計、12・・・・・・
真空度調整バルブ。 代理人の氏名 弁理士 中尾敏男 はか1名/−−−管
1大チャン八− ?−凛PV気化用バヅラー 5− 午ヤソアー〃゛スボンへ゛ 6− 反応力゛スボンベ(酸素) 7− う見合力゛スV欠き士し管 8、−−一基板 1)−−一真空言士 /Z−一一真空度調整バルフ゛ 第1図 1θ 第2図 第3図 第4図 10      203乙      ψ      
9     6ρ      762θ (Ctb−に
ベノ (cLel)第5図
FIG. 1 is a block diagram showing the structure of the manufacturing apparatus used in Example 1 of the present invention, and FIG. 2 is a γ
-F e 20 a Hysteresis loop diagram of a perpendicularly magnetized film. However, the loop indicated by 1 in the figure is a hysteresis loop in the direction perpendicular to the film surface, and the loop indicated by 1) is a hysteresis loop in the direction parallel to the film surface. , FIG. 3 is a cross-sectional view of a γ-F e 20 a perpendicular magnetization film manufactured in Example 1 of the present invention, and FIG. 4 is a cross-sectional view of a F e a 4 perpendicular magnetization film manufactured in Example 2 of the present invention. X-ray diffraction pattern diagram, 5th
The figure is a configuration diagram showing the structure of a manufacturing apparatus used in Example 3 of the present invention. 1...Tubular chamber, 2...Bubbler for raw material vaporization, 3...Exhaust pump, 4...
...organometallic compound, 5...to carrier gas cylinder, 6...reaction gas cylinder (oxygen), 7...
...Mixed gas outlet pipe, 8... Board, 9
...Substrate heating heater, lO ...High frequency coil, 1) ...Vacuum gauge, 12 ...
Vacuum adjustment valve. Name of agent: Patent attorney Toshio Nakao 1 person/---Kan 1 Daichan 8-? - Rin PV Vaporization Bazura 5 - Gasoer (to the pants) 6 - Reaction force (oxygen) cylinder (oxygen) 7 - Reaction force (oxygen) 7 - Reaction force (oxygen) 8, - 1 board 1) - 1 vacuum operator / Z-11 vacuum adjustment valve Fig. 1 1θ Fig. 2 Fig. 3 Fig. 4 Fig. 10 203 ψ
9 6ρ 762θ (Ctb-ni Beno (cLel) Fig. 5

Claims (4)

【特許請求の範囲】[Claims] (1)有機鉄化合物のみを加熱気化した蒸気、あるいは
、前述蒸気に別種の有機金属化合物を加熱気化した蒸気
の混合蒸気に、酸素ガスを混合した混合ガスをプラズマ
励起して化学蒸着(CVD)することで製造することを
特徴とし特定の結晶学的な面が優先配向しており、かつ
その結晶学的な面を保ったまま下地の基板に対して垂直
方向に柱状に成長して生成した微細な柱状粒子を密に下
地基板に敷きつめた形状の膜構造をもつことを特徴とす
る酸化鉄垂直磁化薄膜の製造方法。
(1) Chemical vapor deposition (CVD) by plasma-exciting a mixed gas of oxygen gas mixed with steam obtained by heating and vaporizing only an organic iron compound, or a vapor obtained by heating and vaporizing the above-mentioned vapor and another type of organometallic compound. It is characterized by the fact that a specific crystallographic plane is preferentially oriented, and it is produced by growing columnarly in a direction perpendicular to the underlying substrate while maintaining that crystallographic plane. A method for producing a perpendicularly magnetized iron oxide thin film characterized by having a film structure in which fine columnar particles are densely spread over a base substrate.
(2)有機鉄化合物が、鉄(III)アセチルアセトナー
ト、鉄(III)トリフルオロアセチルアセトナート、鉄
(III)ヘキサフルオロアセチルアセトナートなどのβ
−ジケトン系鉄錯体であることを特徴とする特許請求の
範囲第(1)項記載の酸化鉄垂直磁化薄膜の製造方法。
(2) When the organic iron compound is β such as iron (III) acetylacetonate, iron (III) trifluoroacetylacetonate, iron (III) hexafluoroacetylacetonate, etc.
- A method for producing a perpendicularly magnetized iron oxide thin film according to claim (1), wherein the iron oxide is a diketone-based iron complex.
(3)有機鉄化合物が、フェロセンあるいは、ビニルフ
ェロセンのようなフェロセン誘導体などの鉄シクロペン
タジエニル系化合物であることを特徴とする特許請求の
範囲第(1)項記載の酸化鉄垂直磁化薄膜の製造方法。
(3) The iron oxide perpendicular magnetization thin film according to claim (1), wherein the organic iron compound is an iron cyclopentadienyl compound such as ferrocene or a ferrocene derivative such as vinylferrocene. manufacturing method.
(4)有機金属化合物がコバルトアセチルアセトナート
やニッケルアセチルアセトナートやマンガンアセチルア
セトナートや亜鉛アセチルアセトナートなどのβ−ジケ
トン系化合物、あるいはコバルトセンなどシクロペンタ
ジエニル系化合物であり、コバルト化合物、あるいはニ
ッケル化合物、あるいはマンガン化合物、あるいは亜鉛
化合物であることを特徴とする特許請求の範囲第(1)
項記載の酸化鉄垂直磁化薄膜の製造方法。
(4) The organometallic compound is a β-diketone compound such as cobalt acetylacetonate, nickel acetylacetonate, manganese acetylacetonate or zinc acetylacetonate, or a cyclopentadienyl compound such as cobaltocene, and a cobalt compound, Claim No. (1) characterized in that it is a nickel compound, a manganese compound, or a zinc compound.
A method for producing a perpendicularly magnetized iron oxide thin film as described in .
JP1290087A 1986-10-21 1987-01-22 Manufacture of iron oxide vertically magnetized thin film Pending JPS63181305A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1290087A JPS63181305A (en) 1987-01-22 1987-01-22 Manufacture of iron oxide vertically magnetized thin film
US07/110,852 US4975324A (en) 1986-10-21 1987-10-21 Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
DE3789271T DE3789271T2 (en) 1986-10-21 1987-10-21 Magnetic iron oxide films and their production.
EP87309310A EP0265246B1 (en) 1986-10-21 1987-10-21 Magnetic iron oxide film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290087A JPS63181305A (en) 1987-01-22 1987-01-22 Manufacture of iron oxide vertically magnetized thin film

Publications (1)

Publication Number Publication Date
JPS63181305A true JPS63181305A (en) 1988-07-26

Family

ID=11818255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290087A Pending JPS63181305A (en) 1986-10-21 1987-01-22 Manufacture of iron oxide vertically magnetized thin film

Country Status (1)

Country Link
JP (1) JPS63181305A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443623A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of thin ni-zn ferrite film
JPH0444640A (en) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd Stationary magnetic disk and production thereof
JPH04333205A (en) * 1991-05-08 1992-11-20 Matsushita Electric Ind Co Ltd Manufacture of iron oxide soft magnetic thin film
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US6810575B1 (en) 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same
JP2007518663A (en) * 2004-01-26 2007-07-12 ピルキングトン・ノースアメリカ・インコーポレイテッド Deposition of iron oxide coatings on glass substrates
US7438946B2 (en) 2002-09-13 2008-10-21 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
KR20190049696A (en) 2016-09-01 2019-05-09 히타치가세이가부시끼가이샤 Method for producing nanocrystals, and method for manufacturing steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117225A (en) * 1981-01-12 1982-07-21 Semiconductor Energy Lab Co Ltd Manufacture of magnetic recorder
JPS60116118A (en) * 1983-11-29 1985-06-22 Tdk Corp Magnetic thin film
JPS6227576A (en) * 1985-07-26 1987-02-05 Matsushita Electric Ind Co Ltd Production of thin ferrite film
JPS63104313A (en) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd Manufacture of gamma iron oxide thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117225A (en) * 1981-01-12 1982-07-21 Semiconductor Energy Lab Co Ltd Manufacture of magnetic recorder
JPS60116118A (en) * 1983-11-29 1985-06-22 Tdk Corp Magnetic thin film
JPS6227576A (en) * 1985-07-26 1987-02-05 Matsushita Electric Ind Co Ltd Production of thin ferrite film
JPS63104313A (en) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd Manufacture of gamma iron oxide thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443623A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of thin ni-zn ferrite film
JPH0444640A (en) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd Stationary magnetic disk and production thereof
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film
JPH04333205A (en) * 1991-05-08 1992-11-20 Matsushita Electric Ind Co Ltd Manufacture of iron oxide soft magnetic thin film
US6810575B1 (en) 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same
US7438946B2 (en) 2002-09-13 2008-10-21 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
US7648774B2 (en) 2002-09-13 2010-01-19 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
JP2007518663A (en) * 2004-01-26 2007-07-12 ピルキングトン・ノースアメリカ・インコーポレイテッド Deposition of iron oxide coatings on glass substrates
KR20190049696A (en) 2016-09-01 2019-05-09 히타치가세이가부시끼가이샤 Method for producing nanocrystals, and method for manufacturing steel
US10927442B2 (en) 2016-09-01 2021-02-23 Showa Denko Materials Co., Ltd. Nanocrystal production method, and steel production method

Similar Documents

Publication Publication Date Title
US4975324A (en) Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
US20110027588A1 (en) Magnetic powder and method of manufacturing the same
Bando et al. Reactive condensation and magnetic properties of iron oxide films
Cherigui et al. Structural study of iron-based microstructured and nanostructured powders sprayed by HVOF thermal spraying
CN102534511A (en) Film vapor deposition device and application method thereof
WO2008026439A1 (en) Magnetic thin film
JPS63181305A (en) Manufacture of iron oxide vertically magnetized thin film
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
Zhou et al. Effects of substrate temperature and oxygen pressure on the magnetic properties and structures of CoFe2O4 thin films prepared by pulsed-laser deposition
Luciu et al. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target
JP3751767B2 (en) Method for producing layered cluster
Liu et al. The magnetic properties of cobalt films produced by glancing angle deposition
Wang et al. Influence of various substrate materials on the structure and magnetic properties of Fe–N thin films deposited by DC magnetron sputtering
JPS63104313A (en) Manufacture of gamma iron oxide thin film
JP3032820B2 (en) Monodisperse nanosized transition metal cluster aggregate and method for producing the same
Dhara et al. Parametric investigation for direct chemical vapour deposition of magnetite films
He et al. Effect of N on the microstructure and magnetic properties of FePdSi nanocomposite films
Peng et al. Formation and magnetic properties of the fcc-FeN compound clusters prepared by plasma-gas-condensation
Vidal et al. Thermal Plasma Synthesis of BaFe 12 O 19 (BaM) Films
JPH0664738B2 (en) Method for manufacturing magnetic thin film
Kamp et al. Change in Microstructure and Magnetic Properties of Transition Metal Nitride Thin Films by Substrate Temperature
Hayashi et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon
CN110359013A (en) A kind of high anisotropy rare earth Hard Magnetic nano particle and preparation method thereof
Wroge The plasma enhanced deposition of iron and iron oxide thin films
Hamakake et al. Preparation of Fe/Ag granular films by low energy cluster deposition