US3856581A - Annealing air-stable magnetic materials having superior magnetic characteristics and method - Google Patents

Annealing air-stable magnetic materials having superior magnetic characteristics and method Download PDF

Info

Publication number
US3856581A
US3856581A US00372688A US37268873A US3856581A US 3856581 A US3856581 A US 3856581A US 00372688 A US00372688 A US 00372688A US 37268873 A US37268873 A US 37268873A US 3856581 A US3856581 A US 3856581A
Authority
US
United States
Prior art keywords
particles
metal
alloy
cobalt
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00372688A
Inventor
J Smeggil
R Charles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US00372688A priority Critical patent/US3856581A/en
Priority to US451028A priority patent/US3892600A/en
Priority to CA197,270A priority patent/CA1022018A/en
Priority to IT24209/74A priority patent/IT1015238B/en
Priority to DE2429600A priority patent/DE2429600A1/en
Priority to FR7421575A priority patent/FR2234385A1/en
Priority to NL7408372A priority patent/NL7408372A/xx
Priority to JP49071799A priority patent/JPS5036999A/ja
Application granted granted Critical
Publication of US3856581A publication Critical patent/US3856581A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Definitions

  • the present invention relates generally to the art of making magnets. More particularly, it is concerned with novel annealed metal-coated magnetic material powders having superior magnetic characteristics, and with magnets wherein these annealed coated powders are the active magnetic components.
  • Magnetic properties of bulk magnetic materials hav ing large magnetocrystalline anisotropies can be enhanced by reducing them to powders particularly those having an average particle size of less than 10 microns.
  • the asground powders can be incorporated in bonding media to provide composite permanent magnets having properties substantially superior to those of the bulk source materials.
  • good magnetic prop erties are attained in the as-ground powders, for example, cobalt-rare earth alloy powders, they tend not to be stable.
  • H is a measure of a magnets resistance to demagnetization decreases irreversibly.
  • these magnetic powders are quite reactive'to oxygen and water vapor in the atmosphere at room temperature, and they are even more so reactive at even slightly elevated temperatures, i.e., about 100C, resulting in a significant loss in their intrinsic coercive force.
  • a comparatively low value of intrinsic coercive force can substantially diminish the advantages to be gained by converting the bulk body to a powder, or producing the powder by some other technique, and fabricating a composite finished article from the powder.
  • the art has used sintering to produce magnets with substantially stable properties from these powders.
  • This process comprises compacting the powder to form a green body and sintering the body at high temperatures, generally about l,0OC, in an inert atmosphere to produce a high density compact having a closed pore structure.
  • Such a structure protects the magnet from the atmosphere resulting in long term stability of its magnetic properties.
  • this method is expensive, since it requires power-consuming equipment and handling procedures which are time-consuming.
  • cobalt-rare earth particles by electroless plating techniques are not highly attractive since these methods require placing the very fine, generally 10 micron average particle size, and consequently very reactive cobalt-rare earth powders into contact with an aqueous solution which is highly acidic and results in the dissolution of significant amounts of material. These plating techniques also do not appear to produce a uniform coating on these fine particles.
  • long term deleterious effects on the magnetic properties of the cobalt-rare earth powders can be expected from the direct effects of the acidic aqueous solutions or from amounts of water entrapped within the metal coating in the thin layer of Co and Sm O surrounding each particle which reacts slowly with the base cobalt-rare earth alloy.
  • the process disclosed in that copending application comprises providing particles of a magnetic transition metal-rare earth alloy, heating an organometallic compound to decompose said compound and produce a metal vapor, and contacting said metal vapor with said particles to deposit a coating of metal thereon.
  • These metal-coated alloy particles can be magnetized and pressed into a compact to form a magnet. They can also be magnetized before or after distribution in. a non-magnetic matrix and the resulting mixture pressed into a compact useful as a magnet.
  • these metal-coated particles are annealed in air to increase their intrinsic coercive force by at least 10 percent.
  • the process of the present invention comprises providing particles of a magnetic transition metal-rare earth alloy, heating an organometallic compound to decompose said compound and produce a metal vapor, contacting said metal vapor with said particles to deposit a coating of metal thereon and heating said coated alloy particles at a temperature ranging from about to 200C for a period of time sufficient to increase their intrinsic coercive force by at least l0 percent.
  • a magnetic transition metalrare earth alloy e.g., TRE, where '11 is a transition metal and RE is a rare earth metal, is used in particle form.
  • the transition metal is selected from the group consisting of cobalt, iron, nickel, manganese and alloys thereof.
  • the rare earth metals useful in the present process are the elements of the lanthanideseries having atomic numbers 57 to 71 inclusive.
  • the element yttrium (atomic number 39) is commonly included in this group of metals and, in this specification, is considered a rare earth metal.
  • a plurality of rare earth metals can also be used to form the present intermetallic compounds which, for example may be ternary, quartenary or which may contain an even greater number of rare earth metals as desired. Mischmetal, an abundant common alloy of rare earth metals, is particularly advantageous.
  • cobalt-rare earth compounds useful in the present invention are cobalt-cerium. cobalt-praseodymium, cobalt-neodymium, cobaltpromethium, cobalt-samarium, cobalt-europium, cobalt-gadolinium, cobalt-erbium, cobalt-thulium, cobalt-ytterbium, cobalt-lutecium, cobalt-yttrium, cobaltlanthanum and cobalt-mischmetal.
  • specific ternary compounds include cobalt-ceriumpraseodymium-mischmetal.
  • T RE single phase is particularly preferred in the present invention since this phase has shown the most desirable combination of magnetic properties.
  • the transition metal-rare earth compound or alloy of the present process can be prepared by a number of methods. For example, it can be prepared by melting the transition metal and rare earth metal together in the proper amounts under a substantially inert atmosphere such as argon and allowing the melt to solidify.
  • a substantially inert atmosphere such as argon
  • the alloy can be converted to particulate form in a conventional manner. For example, it can be crushed to a coarse size and then pulverized to a finer form by, for example, fluid energy milling in a substantially inert atmosphere.
  • the powder can be produced initially by a reduction-diffusion process as set forth in copending application Ser. No. l72,290, now US. Pat, No. 3,748,193, filed on Aug. 16, 1971 in the name of Robert E. Cech.
  • the particle size of the transition metal-rare earth alloy used in the present process may vary. It can be in as finely divided a form as desired. For best magnetic properties, average particle size will range from about 1 micron or less to about 10 microns. Larger sized particles can be used, but as the particle size is increased, the maximum coercive force obtainable is lower because the coercive force decreases with increasing particle size.
  • an organometallic compound which can be a solid, liquid or gas at room temperature and which decomposes at temperatures lower than 500C to produce a metal vapor.
  • the metal vapor is contacted with the present TRE alloy powder to deposit metal thereon to form a continuous coating of metal which protects the powder from the atmosphere.
  • the present coating process yields a coherent substantially uniform layer of metal and is accomplished in an atmosphere in which the reactants are inert. Typical inert atmospheres which are suitable for the coating process include argon, nitrogen or a vacuum. No water vapor or oxygen gas is present to degrade the magnetic properties of the alloy materials.
  • the organometallic compound and the TRE alloy powder are preferably admixed to produce a substantially intimate mixture so that when the organometallic is decomposed, the resulting metal vapor, which deposits metal on contact with the surface of the alloy powder, will be distributed substantially uniformly throughout the powder to effectively deposit a continuous coating thereon and thereby provide a barrier to the atmosphere. If desired, mixing can be continued during decomposition of the organometallic to maintain a substantially intimate mixture.
  • the organometallic compound is a solid at room temperature, it is preferably used in a fine powder form in order that it can form an intimate mixture with the TRE allow powder.
  • the organometallic When the organometallic is a liquid at room temperature, it should be admixed with the alloy powder to thoroughly wet the surfaces thereof. Alternatively, the organometallic compound may be vaporized and flowed through the alloy particles in such form. In yet another technique, the organometallic can be decomposed and the resulting metal vapor carried by an inert gas, such as argon, into contact with the alloy powder to deposit a coating thereon.
  • an inert gas such as argon
  • the uniform deposition of a metallic coating on TRE alloy powder may be hindered because the organometallic is not ferromagnetic in nature while the TRE alloy powder is.
  • This problem may particularly occur when the organometallic compound is a solid at room temperature and when the organometallic and TRE allow powder are simply mixed together prior to and/or during the coating process itself. Due to their magnetic nature, the TRE alloy powders may tend to conglomerate and so separate from the organometallic compound resulting in the deposition of an uneven metallic coating.
  • the solution to this problem is to use a liquid organic carrier compound which will not attack and so magnetically degrade the TRE alloy powders and which will dissolve at least to a minor extent the organometallic desired for the coating operation.
  • the organic carrier liquid can then be used to either dissolve or to form a slurry with the desired organometallic. Then this solution or slurry can be admixed with the TRE alloy powders in a conventional manner, e.g., either mechanically or magnetically agitated, to produce a substantially intimate mixture.
  • the organic carrier liquid can then be removed by either gentle heating or the application of a vacuum or a combination of both of these.
  • the organometallic will precipitate from the solution or slurry and coat the TRE alloy particles substantially uniformly.
  • the TRE alloy particles now coated with an organometallic powder can then be heated under the appropriate conditions to decompose the organometallic and leave the desired metallic coating.
  • Representative of the organic liquid carriers useful in the present invention are carbon tetrachloride; 1,1 ,l trichlorotrichloroethylene; 1,1,1 trichloroethane and dimethyl sulfoxide.
  • a number of conventional techniques can be used to carry out the present process. However, best results are obtained by the use of a fluid bed reactor supporting the transition metal-rare earth alloy powder across which flows an inert gas stream bearing a significant partial pressure of the organometallic compound to be decomposed.
  • Around-the fluid bed is a furnace supplying a sufficient amount of heat to decompose the organometallic compound in the gas phase to produce a metal vapor which deposits a metal coating on the powder particles.
  • the partial pressure of the organometallic compound should be sufficient to yield, when decomposed, a partial pressure of metal vapor sufficient to effectively deposit a metal coating on the particles which substantially envelops the particles in a reasonable period of time, i.e., less than 8 hours.
  • the particular useful partial pressure of organometallic compound is determinable empirically and generally is at least about 10' atmosphere.
  • another coating technique makes use of the magnetic properties of the particles themselves to help produce continuous coatings.
  • a mixture of the transition metal-rare earth alloy powder and the desired organometallic is stirred in a nonmagnetic container by an external magnet while the temperature is raised to the point at which the organometallic decomposes producing a metal vapor which deposits metal on contact with the particles.
  • an inert gas stream is passed through the container or a vacuum is pulled on the container during processing.
  • the amount of organometallic compound used is determinable empirically. It should be used in an amount which, on decomposition, is sufficient to produce an amount of metal vapor which condenses on the exposed surfaces of the alloy particles to form a continuous coating of metal thereby preventing penetration by the atmosphere. Specifically, the amount of organometallic compound used should, upon decomposition, yield a significant partial pressure of metal vapor, generally at least about 10" atmosphere, sufficient to effectively coat the exposed surfaces of the alloy particles with a continuous coating of metal.
  • the organometallic compound may decompose initially to yield the metal vapor or it may decompose to yield another organometallic vapor which is then decomposed to give the metal vapor.
  • the organometallic compound should be used in an amount which on decomposition, produces the metal in an amount ranging from 1 to 5 percent by weight of the alloy powder. From formulas and atomic weights, the weight relationships between the substances in the reaction can be calculated readily. Amounts of deposited metal less than 1 percent by weight of the alloy powder are likely to result in a discontinuous coating whereas amounts of deposited metal significantly greater than 5 percent by weight of the alloy powder will dilute the magnetic properties of the powder. Best Results are attained with the metal being deposited in an amount of 2 percent by weight of the alloy powder.
  • the minimum thickness of the metal coating need only be sufficient to make it continuous, e.g., at least a film-forming thickness which is about 1 microinch, to prevent air from penetrating to the surface of the alloy particles.
  • a metal may form a porous oxide
  • thicker continuous coatings of the metal should be deposited to make the outer portion of such a metal coating available to be oxidized by the air leaving an inner continuous metal coating to maintain the stability of the magnetic properties of the alloy particles.
  • a number of metals, for example, aluminum form non-porous oxides which are effective barriers to air.
  • Metal coatings significantly thicker than that necessary to provide the alloy particles with an effective barrier to the atmosphere provide no particular ad vantage since they do not improve magnetic stability and prevent a close packing of the: alloy particles in the non-magnetic matrix thereby diluting the magnetic properties.
  • Metal coatings thicker than necessary can be useful if such metal is also to serve as a matrix or partial matrix for supporting the particles.
  • the metal coating should have a number of properties. Specifically. it should provide a barrier to the atmosphere, and also. if desired. the metal coating can be chosen for some other desired property, e.g., ductility.
  • the metal, itself. should have no significant deteriorating effect on the magnetic properties of the powder. It should be non-magnetic or so weakly magnetic as not to diminish the magnetic properties of the powder significantly.
  • the particular deposited coating can be composed of more than one metal to form an alloy depending on the particular properties desired.
  • a plurality of metals for example Cu and Zn, can either be deposited sequentially or concommitantly in any proportion to form an alloy coating on the particles.
  • the non-metallic products of decomposition are gaseous, or will usually be evaporated from the alloy particles during the decomposition step, or can be evaporated therefrom at tempertures below 500C, such removal being preferably promoted by a flowing atmosphere or a substantial vacuum.
  • a typical example of an organometallic useful in the present invention for the vapor deposition of copper is phenylcopper C H Cu, which thermally degrades according to the following reaction:
  • This reaction affords advantages similar to those listed for the Al deposition, and in addition, it takes place at a very low temperature.
  • Table 1 lists a partial series of elemental metals useful as coatings and their organometallic compounds suitable for the present process.
  • metal carbonyls are assumed to be organometallic compounds.
  • Rh Rhodium carbonyl Rh (CO)
  • Ti Dicyclopentadienyl titanium C H Ti
  • trifluoroacetylacetonates and hexafluoroacetylacetonates of various metals e.g., Zn and Zr which could yield the desired metal coating.
  • the present solid metal-coated particles are annealed to increase their intrinsic coercive force by at least 10 percent.
  • the coated particles are heated at a temperature ranging from about 50 to about 200C.
  • the annealing temperature should not be so high as to deteriorate the barrier coating of the particles significantly.
  • temperatures below 50C are not effective.
  • Annealing can be carried out in an atmosphere in which the coated particles are inert, for example, argon, or in a substantial vacuum or in air.
  • the particular annealing period of time to increase intrinsic coercive force by at least 10 percent depends largely on annealing temperature and can range from 30 minutes to 100 hours with the longer times being required at lower temperatures.
  • the present annealed coated particles are useful in the manufacture of magnets which are air-stable. e.g.. their magnetic properties do not deteriorate significantly in air, at room temperature as well as at elevated temperatures that do not affect the barrier coating significantly.
  • the annealed coated alloy particles of the present invention can be incorporated in a non-magnetic matrix to form magnets.
  • the annealed coated particles can be magnetized before or after incorporation in the non-magnetic matrix. as desired. to produce the magnet.
  • the non-magnetic matrix used in forming the magnets of the present invention can vary widely. It can be. for example, a plastic or resin, an elastomer, or rubber, or a non-magnetic metal such as, for example, lead, tin, zinc, copper or aluminum.
  • a plastic or resin for example, polyethylene glycol dimethacrylate copolymer
  • an elastomer for example, polystyrene
  • rubber or a non-magnetic metal such as, for example, lead, tin, zinc, copper or aluminum.
  • a non-magnetic metal such as, for example, lead, tin, zinc, copper or aluminum.
  • the extent to which the coated alloy particles are packed in the matrix depends largely upon the particular magnet properties desired.
  • Magnets having useful magnetic properties for a wide range of applications are produced when the annealed coated alloy particles of the present invention are incorporated in a non-magnetic matrix and magnetized.
  • the magnets of the present invention are useful in telephones. electric clocks, radios, television, and phonographs. They are also useful in portable appliances, such as electric toothbrushes and electric knives, and to operate automobile accessories. ln industrial equipment, the present magnets can be used in such diverse applications as meters and instruments, magnetic separators, computers and microwave devices.
  • the intrinsic coercive force of each sample was measured at room temperature. Specifically, a specimen of the powder was prepared for magnetic measurement by introducing it into a body of molten paraffin wax in a small glass tube and cooling the wax in an aligning magnetic field of 20,000 oersteds to align the particles along their easy axis until the paraffin solidified. The intrinsic coercive force of the sample was then measured after applying a magnetizing field of 30,000 oersteds.
  • EXAMPLE 1 A sintered body of compacted CoSm alloy powder, prepared substantially as set forth in US. Pat. No. 3,655,464, was ground to a powder using a jaw crusher and a jet mill.
  • the alloy powder was comprised substantially of Co Sm phase and a minor amount of Co Sm phase.
  • a slow stream of argon gas was passed through the U-tube across the mixture which was mixed by moving a magnet beneath it. After a few minutes, a period of time considered suitable for the removal of the majority of oxygen present by the argon stream, the mixture was first gently heated with Meeker burner and occasionally during the entire heating process a magnet was used to stir p the mixture to assist both in driving off the water of hydration and in obtaining a more uniform metal coating on the alloy particles. The temperature of the mixture was then raised slowly to about 400C to accelerate the decomposition of the copper acetylacetonate.
  • the alloy particles were examined under an optical microscope and by scanning electron microcopy. They appeared to be enveloped by a continuous uniform brown coating of copper metal.
  • the copper-coated particles, as well as the uncoated particles of the same composition and size, were placed in an oven having an air atmosphere and maintained at a temperature of 92C. At the end of each period of time indicated in Table II, a portion of the copper coated particles as well as a portion of the uncoated particles were removed from the oven and cooled in air to room temperature. The intrinsic coercive force, H of each such portion was then determined and the results are shown in Table II.
  • the copper-coated particles had an intrinsic coercive force initially higher than that of the uncoated particles, and after being heated at 92C in air for periods of time as long as 112 hours, the intrinsic coercive force of the copper-coated particles improved significantly whereas that of the uncoated particles deteriorated significantly.
  • the copper coating was continuous and provided an effective barrier to the atmosphere to prevent atmospheric oxygen from reacting with and degrading the magnetic properties of the Co Sm powder.
  • the significant increase in intrinsic coercive force of the copper-coated particles after heating may be due to re moval of sites for reverse domain initiation on the now protected surface of the alloy particles.
  • EXAMPLE 2 In this example the cobalt-samarium alloy powder used was substantially the same as that set forth in Example l. The intrinsic coercive force of portions of the powder was determined before and after annealing in an air oven at 150C for 30 minutes and the results are shown in Run No. 6 of Table III.
  • Portions of the alloy powder were coated with metal substantially as set forth in Example 1. Specifically, chromium hexacarbonyl, Cr(CO) in an amount of 4 percent by weight of the alloy powder, was admixed therewith and the mixture placed in a U-tube where it was maintained under a stream of argon and substantially continuously mixed with a magnet. It was calculated that in this mixture chromium hexacarbonyl would yield chromium in an amount of 1 percent by weight of the alloy powder. At a temperature of 400C the chromium hexacarbonyl decomposed, and after about a minute, a silvery coating was observed on the alloy powder and on the walls of the tube.
  • Run No. 8 The procedure used in Run No. 8 was the same as that of Run No. 7 except that chromium hexacarbonyl was used in an amount of 20 percent by weight of the alloy powder which was calculated to yield chromium in an amount of 5 percent by weight of the alloy powder.
  • triisobutylaluminum was used in an amount which coated the alloy particles with aluminum in an amount of about 2 percent by weight of the alloy powder.
  • the coating procedure differed from Run No. 7 in that a double U-tube was used wherein the triisobutylaluminum was placed in one U-curve and the alloy powder was placed in the second U-curve.
  • the triiso butylaluminum was decomposed at a temperature of 250C and the resulting aluminum vapor was carried by the argon stream into contact with the alloy powder where it condensed on the powder which was being continuously mixed with a magnet to insure the deposition of a continuous uniform coating of aluminum.
  • the metal-coated particles-of Runs 7-9 were examined under an optical microscope and a scanning elec tron microscope. They appeared to be completely and substantially uniformly coated by metal.
  • the present metal-coated particles provided an effective barrier to the atmosphere to prevent atmospheric oxygen and moisture from reacting with and deteriorating the magnetic properties of the present alloy powder.
  • a process for increasing the intrinsic coercive force of magnetically air-stable cobalt-rare earth alloy particles coated with a metal having a melting point above 500C which comprises annealing the coated particles in an inert atmosphere or in a substantial vacuum orin air at a temperature ranging from about 50 to 200C for a period of time ranging from 30 minutes to hours, said annealing increasing the intrinsic coercive force of said coated cobalt-rare earth alloy particles by at least 10 percent, said magnetically air-stable particles having been produced by providing particles of cobalt-rare earth alloy having an average size up to about 10 microns, providing an organometallic compound which at a temperature below 500C decomposes and yields products of decomposition consisting of gaseous non-metallic product and a metal vapor.
  • a process according to claim 1 wherein said organometallic compound is copper acetylacetonate.

Abstract

A process for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500*C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50*C to 200*C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent.

Description

United States Patent 1191 Smeggil et al.
1451 Dec.24, 1974 ANNEALING AIR-STABLE MAGNETIC MATERIALS HAVING SUPERIOR MAGNETIC CHARACTERISTICS AND METHOD [75] Inventors: John G. Smeggil, Elnora; Richard J.
Charles, Schenectady, both of NY.
[73] Assignee: General Electric Company,
Schenectady, NY.
22 F1166; June 22,1973
21 App1.No.:372,688
[52] US. Cl. 148/105, 75/.5 BA, 148/3157, 148/103, 117/107.2 [51] Int. Cl. H0lf l/02 [58] Field of Search 148/105, 31.57, 103,101, 148/613; 75/.5 B, .5 BA; 117/100 M, 107.2 R, 127,, 130; 29/192 CP [56] References Cited UNITED STATES PATENTS 2,933,415 4/1960 Homer et al. 117/100 M 3,219,482 11/1965 Jenkin 148/63 3,342,587 9/1967 Goodrich et al. 117/100 M 3,385,725 5/1968 Schmeckenbecher 117/130 3,479,219 11/1969 Haines et a1. 117/107.2 R 3,511,683 5/1970 Espenscheid et al 117/100 M 3,591,428 7/1971 Buschow et a1 148/3157 3,615,914 10/1971 Becker 148/101 3,632,401 1/1972 Sanlaville 117/100 M 3,684,593 8/1972 Benz et a1. 148/3157 OTHER PUBLICATIONS Heslop, R. et al., Organometallic Compounds, in Inorganic Chemistry, New York, 1967, p. 393 (QDl5lH47).
I-Iarwood, Applications of Organometaliic Compounds, New York, 1963, pp. 339-343 (TP247A35).
Primary Examiner--Wa1ter R. Satterfield Attorney, Agent, or Firm-Jane M. Binkowski; Joseph T. Cohen; Jerome C. Squiilaro [57] ABSTRACT 3 Claims, N0 Drawings ANNEALING AIR-STABLE MAGNETIC MATERIALS HAVING SUPERIOR MAGNETIC CHARACTERISTICS AND METHOD The present invention relates generally to the art of making magnets. More particularly, it is concerned with novel annealed metal-coated magnetic material powders having superior magnetic characteristics, and with magnets wherein these annealed coated powders are the active magnetic components.
Magnetic properties of bulk magnetic materials hav ing large magnetocrystalline anisotropies can be enhanced by reducing them to powders particularly those having an average particle size of less than 10 microns. The asground powders can be incorporated in bonding media to provide composite permanent magnets having properties substantially superior to those of the bulk source materials. However, when good magnetic prop erties are attained in the as-ground powders, for example, cobalt-rare earth alloy powders, they tend not to be stable. As the powders are exposed to air at room tem perature and at slightly elevated temperatures, their intrinsic coercive force, H which is a measure of a magnets resistance to demagnetization decreases irreversibly. Specifically, these magnetic powders are quite reactive'to oxygen and water vapor in the atmosphere at room temperature, and they are even more so reactive at even slightly elevated temperatures, i.e., about 100C, resulting in a significant loss in their intrinsic coercive force. Thus, a comparatively low value of intrinsic coercive force can substantially diminish the advantages to be gained by converting the bulk body to a powder, or producing the powder by some other technique, and fabricating a composite finished article from the powder.
The art has used sintering to produce magnets with substantially stable properties from these powders. This process comprises compacting the powder to form a green body and sintering the body at high temperatures, generally about l,0OC, in an inert atmosphere to produce a high density compact having a closed pore structure. Such a structure protects the magnet from the atmosphere resulting in long term stability of its magnetic properties. However, this method is expensive, since it requires power-consuming equipment and handling procedures which are time-consuming.
A more desirable approach to the fabrication of magnets using these powders, for example cobalt-rare earth alloy powders, would delete the sintering process and merely compact the aligned particles into the desired shape with the aid of some kind of binder. However, to do this requires the use of air-stable, accordingly coated, cobalt-rare earth alloy particles.
Attempts to provide cobalt-rare earth alloy powder with a protective metal coating deposited from metal vapor of a molten metal have yielded limited success. For example, temperatures of 500C and higher significantly deteriorate the magnetic properties of the loose powder. Such a method, therefore, can utilize only a very few low melting metals, which also must produce sufficient vapor pressures for effective coating deposition at temperatures not much higher than their melting point, such as lead with a melting point of 328C or zinc with a melting point of4l9C. However, most metals, especially those which are most inert and generally the most desirable, have very high melting points and usually require temperatures significantly higher than their melting points to produce vapor pressures which are effective for coating. For example, aluminum, a highly inert and desirable metal, melts at 660C and requires significantly higher temperatures to produce vapor pressures useful for coating, and tungsten, another desirable metal, melts at 3,370C. Not only do such high temperatures make deposition of the metal from the vapor of the molten metal impractical, but also these vapors would be so hot as to significantly deteriorate the properties of the present magnetic transition metal-rare earth alloy powders.
Similarly, the coating of cobalt-rare earth particles by electroless plating techniques is not highly attractive since these methods require placing the very fine, generally 10 micron average particle size, and consequently very reactive cobalt-rare earth powders into contact with an aqueous solution which is highly acidic and results in the dissolution of significant amounts of material. These plating techniques also do not appear to produce a uniform coating on these fine particles. In addition, long term deleterious effects on the magnetic properties of the cobalt-rare earth powders can be expected from the direct effects of the acidic aqueous solutions or from amounts of water entrapped within the metal coating in the thin layer of Co and Sm O surrounding each particle which reacts slowly with the base cobalt-rare earth alloy.
In copending US. Pat. application Ser. No. 372,691 filed of even date herewith in the names of Richard J. Charles and J ohn G. Smeggil entitled Air-Stable Magnetic Materials And Method, which is incorporated herein by reference, there is disclosed a process which overcomes the disadvantages of the prior art. It provides a solution to the oxidation problem of these reactive materials and obviates the sintering procedure by coating the powders with a coherent and non-reactive metal without significantly affecting the magnetic properties of the powder. Briefly stated, the process disclosed in that copending application comprises providing particles of a magnetic transition metal-rare earth alloy, heating an organometallic compound to decompose said compound and produce a metal vapor, and contacting said metal vapor with said particles to deposit a coating of metal thereon. These metal-coated alloy particles can be magnetized and pressed into a compact to form a magnet. They can also be magnetized before or after distribution in. a non-magnetic matrix and the resulting mixture pressed into a compact useful as a magnet. In the present invention, these metal-coated particles are annealed in air to increase their intrinsic coercive force by at least 10 percent.
Briefly stated, the process of the present invention comprises providing particles of a magnetic transition metal-rare earth alloy, heating an organometallic compound to decompose said compound and produce a metal vapor, contacting said metal vapor with said particles to deposit a coating of metal thereon and heating said coated alloy particles at a temperature ranging from about to 200C for a period of time sufficient to increase their intrinsic coercive force by at least l0 percent.
In the present process a magnetic transition metalrare earth alloy, e.g., TRE, where '11 is a transition metal and RE is a rare earth metal, is used in particle form. The transition metal is selected from the group consisting of cobalt, iron, nickel, manganese and alloys thereof.
The rare earth metals useful in the present process are the elements of the lanthanideseries having atomic numbers 57 to 71 inclusive. The element yttrium (atomic number 39) is commonly included in this group of metals and, in this specification, is considered a rare earth metal. A plurality of rare earth metals can also be used to form the present intermetallic compounds which, for example may be ternary, quartenary or which may contain an even greater number of rare earth metals as desired. Mischmetal, an abundant common alloy of rare earth metals, is particularly advantageous.
Representative of the cobalt-rare earth compounds useful in the present invention are cobalt-cerium. cobalt-praseodymium, cobalt-neodymium, cobaltpromethium, cobalt-samarium, cobalt-europium, cobalt-gadolinium, cobalt-erbium, cobalt-thulium, cobalt-ytterbium, cobalt-lutecium, cobalt-yttrium, cobaltlanthanum and cobalt-mischmetal. Examples of specific ternary compounds include cobalt-ceriumpraseodymium-mischmetal.
'Transition metal-rare earth intermetallic alloys or compounds exist in a variety of phases and each phase may vary in composition. A material substantially comprised of the T RE single phase is particularly preferred in the present invention since this phase has shown the most desirable combination of magnetic properties.
The transition metal-rare earth compound or alloy of the present process can be prepared by a number of methods. For example, it can be prepared by melting the transition metal and rare earth metal together in the proper amounts under a substantially inert atmosphere such as argon and allowing the melt to solidify.
The alloy can be converted to particulate form in a conventional manner. For example, it can be crushed to a coarse size and then pulverized to a finer form by, for example, fluid energy milling in a substantially inert atmosphere. Alternatively, the powder can be produced initially by a reduction-diffusion process as set forth in copending application Ser. No. l72,290, now US. Pat, No. 3,748,193, filed on Aug. 16, 1971 in the name of Robert E. Cech. Also, in some instances, it may be desirable to grind sintered compacts of these powders to a desired particle size.
The particle size of the transition metal-rare earth alloy used in the present process may vary. It can be in as finely divided a form as desired. For best magnetic properties, average particle size will range from about 1 micron or less to about 10 microns. Larger sized particles can be used, but as the particle size is increased, the maximum coercive force obtainable is lower because the coercive force decreases with increasing particle size.
In the present process, an organometallic compound is used which can be a solid, liquid or gas at room temperature and which decomposes at temperatures lower than 500C to produce a metal vapor. The metal vapor is contacted with the present TRE alloy powder to deposit metal thereon to form a continuous coating of metal which protects the powder from the atmosphere. The present coating process yields a coherent substantially uniform layer of metal and is accomplished in an atmosphere in which the reactants are inert. Typical inert atmospheres which are suitable for the coating process include argon, nitrogen or a vacuum. No water vapor or oxygen gas is present to degrade the magnetic properties of the alloy materials.
In carrying out the present process, the organometallic compound and the TRE alloy powder are preferably admixed to produce a substantially intimate mixture so that when the organometallic is decomposed, the resulting metal vapor, which deposits metal on contact with the surface of the alloy powder, will be distributed substantially uniformly throughout the powder to effectively deposit a continuous coating thereon and thereby provide a barrier to the atmosphere. If desired, mixing can be continued during decomposition of the organometallic to maintain a substantially intimate mixture. When the organometallic compound is a solid at room temperature, it is preferably used in a fine powder form in order that it can form an intimate mixture with the TRE allow powder. When the organometallic is a liquid at room temperature, it should be admixed with the alloy powder to thoroughly wet the surfaces thereof. Alternatively, the organometallic compound may be vaporized and flowed through the alloy particles in such form. In yet another technique, the organometallic can be decomposed and the resulting metal vapor carried by an inert gas, such as argon, into contact with the alloy powder to deposit a coating thereon.
In some instances the uniform deposition of a metallic coating on TRE alloy powder may be hindered because the organometallic is not ferromagnetic in nature while the TRE alloy powder is. This problem may particularly occur when the organometallic compound is a solid at room temperature and when the organometallic and TRE allow powder are simply mixed together prior to and/or during the coating process itself. Due to their magnetic nature, the TRE alloy powders may tend to conglomerate and so separate from the organometallic compound resulting in the deposition of an uneven metallic coating. The solution to this problem is to use a liquid organic carrier compound which will not attack and so magnetically degrade the TRE alloy powders and which will dissolve at least to a minor extent the organometallic desired for the coating operation. The organic carrier liquid can then be used to either dissolve or to form a slurry with the desired organometallic. Then this solution or slurry can be admixed with the TRE alloy powders in a conventional manner, e.g., either mechanically or magnetically agitated, to produce a substantially intimate mixture. The organic carrier liquid can then be removed by either gentle heating or the application of a vacuum or a combination of both of these. The organometallic will precipitate from the solution or slurry and coat the TRE alloy particles substantially uniformly. The TRE alloy particles now coated with an organometallic powder can then be heated under the appropriate conditions to decompose the organometallic and leave the desired metallic coating. Representative of the organic liquid carriers useful in the present invention are carbon tetrachloride; 1,1 ,l trichlorotrichloroethylene; 1,1,1 trichloroethane and dimethyl sulfoxide.
A number of conventional techniques can be used to carry out the present process. However, best results are obtained by the use of a fluid bed reactor supporting the transition metal-rare earth alloy powder across which flows an inert gas stream bearing a significant partial pressure of the organometallic compound to be decomposed. Around-the fluid bed is a furnace supplying a sufficient amount of heat to decompose the organometallic compound in the gas phase to produce a metal vapor which deposits a metal coating on the powder particles. The partial pressure of the organometallic compound should be sufficient to yield, when decomposed, a partial pressure of metal vapor sufficient to effectively deposit a metal coating on the particles which substantially envelops the particles in a reasonable period of time, i.e., less than 8 hours. The particular useful partial pressure of organometallic compound is determinable empirically and generally is at least about 10' atmosphere.
Alternatively, another coating technique makes use of the magnetic properties of the particles themselves to help produce continuous coatings. For example, a mixture of the transition metal-rare earth alloy powder and the desired organometallic is stirred in a nonmagnetic container by an external magnet while the temperature is raised to the point at which the organometallic decomposes producing a metal vapor which deposits metal on contact with the particles. In this embodiment an inert gas stream is passed through the container or a vacuum is pulled on the container during processing.
In the present process, the amount of organometallic compound used is determinable empirically. It should be used in an amount which, on decomposition, is sufficient to produce an amount of metal vapor which condenses on the exposed surfaces of the alloy particles to form a continuous coating of metal thereby preventing penetration by the atmosphere. Specifically, the amount of organometallic compound used should, upon decomposition, yield a significant partial pressure of metal vapor, generally at least about 10" atmosphere, sufficient to effectively coat the exposed surfaces of the alloy particles with a continuous coating of metal. The organometallic compound may decompose initially to yield the metal vapor or it may decompose to yield another organometallic vapor which is then decomposed to give the metal vapor. Preferably, the organometallic compound should be used in an amount which on decomposition, produces the metal in an amount ranging from 1 to 5 percent by weight of the alloy powder. From formulas and atomic weights, the weight relationships between the substances in the reaction can be calculated readily. Amounts of deposited metal less than 1 percent by weight of the alloy powder are likely to result in a discontinuous coating whereas amounts of deposited metal significantly greater than 5 percent by weight of the alloy powder will dilute the magnetic properties of the powder. Best Results are attained with the metal being deposited in an amount of 2 percent by weight of the alloy powder.
The minimum thickness of the metal coating need only be sufficient to make it continuous, e.g., at least a film-forming thickness which is about 1 microinch, to prevent air from penetrating to the surface of the alloy particles. In some instances where a metal may form a porous oxide, thicker continuous coatings of the metal should be deposited to make the outer portion of such a metal coating available to be oxidized by the air leaving an inner continuous metal coating to maintain the stability of the magnetic properties of the alloy particles. However, a number of metals, for example, aluminum, form non-porous oxides which are effective barriers to air. Metal coatings significantly thicker than that necessary to provide the alloy particles with an effective barrier to the atmosphere provide no particular ad vantage since they do not improve magnetic stability and prevent a close packing of the: alloy particles in the non-magnetic matrix thereby diluting the magnetic properties. Metal coatings thicker than necessary can be useful if such metal is also to serve as a matrix or partial matrix for supporting the particles.
In the present invention the metal coating should have a number of properties. Specifically. it should provide a barrier to the atmosphere, and also. if desired. the metal coating can be chosen for some other desired property, e.g., ductility. The metal, itself. should have no significant deteriorating effect on the magnetic properties of the powder. It should be non-magnetic or so weakly magnetic as not to diminish the magnetic properties of the powder significantly.
In the present invention, the particular deposited coating can be composed of more than one metal to form an alloy depending on the particular properties desired. A plurality of metals, for example Cu and Zn, can either be deposited sequentially or concommitantly in any proportion to form an alloy coating on the particles.
The non-metallic products of decomposition are gaseous, or will usually be evaporated from the alloy particles during the decomposition step, or can be evaporated therefrom at tempertures below 500C, such removal being preferably promoted by a flowing atmosphere or a substantial vacuum.
In the present process, there are a number of useful organometallic compounds which decompose at temperatures below 500C. Typical of these is triisobutylaluminum as a source of aluminum. Specifically, the metal coating of aluminum can be deposited according to the following reactions:
This operation must be accomplished at reduced pressures because the triisobutylalumlinum cant be successfully distilled above 10mm Hg.
There are a number of advantages to the use of triisobutylaluminum and other organo'metallics which decompose in a similar manner. One advantage is that the low temperature at which this organometallic decomposes will not affect the magnetic properties of the transition metal-rare earth alloy powder. Another advantage is that the amount of chemical interaction be tween the aluminum and the alloy powder should be minimal at these temperatures. Yet another advantage is that the hydrogen gas present can be expected to reduce any surface oxides present on the alloy particles. Also, although it has been reported that cobalt-rare earth alloy powder absorbs hydrogen, pressures of H somewhat in excess of 76cm Hg are needed. Therefore this proposed process working with a low residual pressure, -lOmm Hg, should minimize deleterious effects due to hydrogen absorption. In addition, the organometallic decomposition reaction is relatively clean and yields products, except for elemental Al, which are gases and are accordingly easily removed from the coated powders.
A typical example of an organometallic useful in the present invention for the vapor deposition of copper is phenylcopper C H Cu, which thermally degrades according to the following reaction:
This reaction affords advantages similar to those listed for the Al deposition, and in addition, it takes place at a very low temperature.
Table 1 lists a partial series of elemental metals useful as coatings and their organometallic compounds suitable for the present process. in the present invention, metal carbonyls are assumed to be organometallic compounds.
TABLE I Metal Organometallic Compound Cu Copper formate, Cu(CH O Copper acetylacetonate [Cu(CH COCHCOCHM] 4 Methylcopper, CuCH Ni Nickel carbonyl. Ni(CO) Fe lron carbonyl Fe(CO) 'Cr Chromium carbonyl. Cr(CO) Bisbenzene chromium. Cr(C.,H.,) Mo Molybdenum carbonyl. Mo(CO) Bisbenzene molybdenum. Mo(C H Benzene molybdenum carbonyl. C H Mo(CO) W Dibenzene tungsten, W (C m) Mesitylenc tungsten carbonyl. (CH C H. W(CO);, Tungsten carbonyl. W(CO) Ru Ruthenium carbonyl, Ru(CO),. and/or Ru (CO),. lr Iridium carbonyl, lrflCO), V Vanadium carbonyl. VtCO) Bisbenzene vanadium. (C,,-H,,),V Hf Dicyclopentadienyl hafnium dichloride, (C,,H l-lf 2 Ta Tantalum methylcyclopentadienyl tetracarbonyl,
CH C H TMCO). Nb Niobium methylcyclopendadienyl tetracarbonyl.
CH C5H Nb(CO)4 Zn Diethylzinc, Zn(C H Dimethyl zinc. Zn(CH )2 Zinc acetylacetonate [Zn(CH COCHCOCH Be Diethyl beryllium, (C HQ Be Mg Diphenylmagnesium. Mg(C l-l Diethylmagnesium. Mg(C H Sn Tetramethyl tin. Sn(CH Bi Trimethyl bismuth. Bi(CH Au Diethyl gold bromide. [(C H AuBi1 Pb Tetraethyl lead. Pb(C H Mn Dicyclopentadienyl manganese. (C H Mn Re Rhenium carbonyl. Re CO) Rh Rhodium carbonyl, Rh (CO),, Ti Dicyclopentadienyl titanium. (C H Ti In addition to the above organometallics listed in Table I, there are a number of trifluoroacetylacetonates and hexafluoroacetylacetonates of various metals, e.g., Zn and Zr which could yield the desired metal coating.
The present solid metal-coated particles are annealed to increase their intrinsic coercive force by at least 10 percent. To carry out the annealing, the coated particles are heated at a temperature ranging from about 50 to about 200C. Specifically, the annealing temperature should not be so high as to deteriorate the barrier coating of the particles significantly. On the other hand, temperatures below 50C are not effective. Annealing can be carried out in an atmosphere in which the coated particles are inert, for example, argon, or in a substantial vacuum or in air. The particular annealing period of time to increase intrinsic coercive force by at least 10 percent depends largely on annealing temperature and can range from 30 minutes to 100 hours with the longer times being required at lower temperatures.
The present annealed coated particles are useful in the manufacture of magnets which are air-stable. e.g.. their magnetic properties do not deteriorate significantly in air, at room temperature as well as at elevated temperatures that do not affect the barrier coating significantly. Specifically, the annealed coated alloy particles of the present invention can be incorporated in a non-magnetic matrix to form magnets. The annealed coated particles can be magnetized before or after incorporation in the non-magnetic matrix. as desired. to produce the magnet.
The non-magnetic matrix used in forming the magnets of the present invention can vary widely. It can be. for example, a plastic or resin, an elastomer, or rubber, ora non-magnetic metal such as, for example, lead, tin, zinc, copper or aluminum. The extent to which the coated alloy particles are packed in the matrix depends largely upon the particular magnet properties desired.
Magnets having useful magnetic properties for a wide range of applications are produced when the annealed coated alloy particles of the present invention are incorporated in a non-magnetic matrix and magnetized. The magnets of the present invention are useful in telephones. electric clocks, radios, television, and phonographs. They are also useful in portable appliances, such as electric toothbrushes and electric knives, and to operate automobile accessories. ln industrial equipment, the present magnets can be used in such diverse applications as meters and instruments, magnetic separators, computers and microwave devices.
All parts and percentages used herein are by weight unless otherwise noted.
The invention is further illustrated by the following examples.
In the following examples the intrinsic coercive force of each sample was measured at room temperature. Specifically, a specimen of the powder was prepared for magnetic measurement by introducing it into a body of molten paraffin wax in a small glass tube and cooling the wax in an aligning magnetic field of 20,000 oersteds to align the particles along their easy axis until the paraffin solidified. The intrinsic coercive force of the sample was then measured after applying a magnetizing field of 30,000 oersteds.
EXAMPLE 1 A sintered body of compacted CoSm alloy powder, prepared substantially as set forth in US. Pat. No. 3,655,464, was ground to a powder using a jaw crusher and a jet mill. The alloy powder was comprised substantially of Co Sm phase and a minor amount of Co Sm phase. Approximately 5 grams of the alloy powder having a size of 325 mesh (US. Standard Screen Size), e.g., an average particle size of about 6 microns, were placed in a U-tube along with about 1 gram of copper acetylacetonate, present as the hydrate Cu(CH COCHCOCH .2H- O, and in powder form which was calculated to yield copper in an amount of about 2% by weight of the alloy powder. A slow stream of argon gas was passed through the U-tube across the mixture which was mixed by moving a magnet beneath it. After a few minutes, a period of time considered suitable for the removal of the majority of oxygen present by the argon stream, the mixture was first gently heated with Meeker burner and occasionally during the entire heating process a magnet was used to stir p the mixture to assist both in driving off the water of hydration and in obtaining a more uniform metal coating on the alloy particles. The temperature of the mixture was then raised slowly to about 400C to accelerate the decomposition of the copper acetylacetonate.
After a minute or two a brown coating was observed being deposited on the alloy particles and on the walls of the U-tube. Heating was continued for several more minutes then stopped. The coated alloy particles were allowed to cool to room temperature with argon continuing to flow over them. After the powders were cool a magnet was used to separate the coated alloy particles from a small amount of non-magnetic material present, presumably unreacted copper acetylacetonate and elemental Cu metal.
The alloy particles were examined under an optical microscope and by scanning electron microcopy. They appeared to be enveloped by a continuous uniform brown coating of copper metal.
The intrinsic coercive force, H ofa portion of these copper-coated particles, as well as of a portion of the uncoated particles of the same composition and size, was determined and the results are shown in Run No. I of Table II.
The copper-coated particles, as well as the uncoated particles of the same composition and size, were placed in an oven having an air atmosphere and maintained at a temperature of 92C. At the end of each period of time indicated in Table II, a portion of the copper coated particles as well as a portion of the uncoated particles were removed from the oven and cooled in air to room temperature. The intrinsic coercive force, H of each such portion was then determined and the results are shown in Table II.
As shown by Table II, the copper-coated particles had an intrinsic coercive force initially higher than that of the uncoated particles, and after being heated at 92C in air for periods of time as long as 112 hours, the intrinsic coercive force of the copper-coated particles improved significantly whereas that of the uncoated particles deteriorated significantly. This indicates that the copper coating was continuous and provided an effective barrier to the atmosphere to prevent atmospheric oxygen from reacting with and degrading the magnetic properties of the Co Sm powder. In addition, the significant increase in intrinsic coercive force of the copper-coated particles after heating may be due to re moval of sites for reverse domain initiation on the now protected surface of the alloy particles.
EXAMPLE 2 In this example the cobalt-samarium alloy powder used was substantially the same as that set forth in Example l. The intrinsic coercive force of portions of the powder was determined before and after annealing in an air oven at 150C for 30 minutes and the results are shown in Run No. 6 of Table III.
Portions of the alloy powder were coated with metal substantially as set forth in Example 1. Specifically, chromium hexacarbonyl, Cr(CO) in an amount of 4 percent by weight of the alloy powder, was admixed therewith and the mixture placed in a U-tube where it was maintained under a stream of argon and substantially continuously mixed with a magnet. It was calculated that in this mixture chromium hexacarbonyl would yield chromium in an amount of 1 percent by weight of the alloy powder. At a temperature of 400C the chromium hexacarbonyl decomposed, and after about a minute, a silvery coating was observed on the alloy powder and on the walls of the tube. Heating and mixing was continued for about 10 additional minutes to insure complete coating of the particles with chromium and then stopped. The chromium-coated alloy particles were cooled to room temperature under argon. A magnet was then used to separate the coated particles from a small amount of non-magnetic material present. The intrinsic coercive force of a portion of the coated powder was determined and is shown in Run No. 7. The remaining coated powder was heated in an air oven at C for 30 minutes, then cooled to room temperature and its intrinsic coercive force determined as shown in Run No. 7 of Table III.
The procedure used in Run No. 8 was the same as that of Run No. 7 except that chromium hexacarbonyl was used in an amount of 20 percent by weight of the alloy powder which was calculated to yield chromium in an amount of 5 percent by weight of the alloy powder.
In Run No. 9 triisobutylaluminum was used in an amount which coated the alloy particles with aluminum in an amount of about 2 percent by weight of the alloy powder. The coating procedure differed from Run No. 7 in that a double U-tube was used wherein the triisobutylaluminum was placed in one U-curve and the alloy powder was placed in the second U-curve. The triiso butylaluminum was decomposed at a temperature of 250C and the resulting aluminum vapor was carried by the argon stream into contact with the alloy powder where it condensed on the powder which was being continuously mixed with a magnet to insure the deposition of a continuous uniform coating of aluminum.
The metal-coated particles-of Runs 7-9 were examined under an optical microscope and a scanning elec tron microscope. They appeared to be completely and substantially uniformly coated by metal.
The intrinsic coercive forces of the uncoated and coated powders, before and after annealing in air, are given in Table III.
As illustrated by Table III, the intrinsic coercive force of Run No. 6, the uncoated control powder, deterioilll rated significantly after 30 minutes at 150C whereas the intrinsic coercive force of the metal coated particles of Run Nos. 7 through 9, which illustrate the present invention, increased significantly after the annealing treatment in air. This indicates that the present metal-coated particles provided an effective barrier to the atmosphere to prevent atmospheric oxygen and moisture from reacting with and deteriorating the magnetic properties of the present alloy powder.
In copending US. Pat. application Ser. No. 372,690 entitled Fabrication Of Matrix Bonded Transition Metal-Rare Earth AlloyMagnets filed of even date herewith in the names of Richard J. Charles and John G, Smeggil there is disclosed a process for producing an air-stable porous magnetic compact which comprises admixing particles of a transition metal-rare earth alloy with an organometallic compound which decomposes at a temperature below 500C and pressing the misture to form a green body. The green body is heated to decompose the organometallic compound to produce a non-metallic product and a metal vapor. The metal vapor deposits an interconnecting continuous coating of metal on the exposed surfaces of the pressed alloy particles thereby preventing penetration by the atmosphere, and the non-metallic product is outgassed from the body leaving the resulting coated compact porous.
The above cited application is, by reference, made part of the disclosure of the present application.
What is claimed is:
l. A process for increasing the intrinsic coercive force of magnetically air-stable cobalt-rare earth alloy particles coated with a metal having a melting point above 500C which comprises annealing the coated particles in an inert atmosphere or in a substantial vacuum orin air at a temperature ranging from about 50 to 200C for a period of time ranging from 30 minutes to hours, said annealing increasing the intrinsic coercive force of said coated cobalt-rare earth alloy particles by at least 10 percent, said magnetically air-stable particles having been produced by providing particles of cobalt-rare earth alloy having an average size up to about 10 microns, providing an organometallic compound which at a temperature below 500C decomposes and yields products of decomposition consisting of gaseous non-metallic product and a metal vapor. placing said compound and said particles in a substantially inert atmosphere which is a flowing atmosphere or a substantial vacuum, heating said organometallic compound at a temperature below 500C and substantially completely decomposing it and producing said gaseous product of decomposition and a metal vapor, contacting the resulting metal vapor with the cobaltrare earth alloy particles depositing a coherent substantially uniform metal coating which at least envelops the particles providing an effective barrier to the atmosphere and which has no significant deteriorating effect on their magnetic properties and diffusing away the non-metallic gaseous product of decomposition, said organometallic compound being used in an amount which on decomposition yields a partial pressure of metal vapor of at least about 10 atmosphere and produces the metal in an amount ranging from 1 percent to 5 percent by weight of said cobalt-rare earth alloy particles and said deposited metal having a melting point above 500C.
2. A process according to claim 1 wherein said alloy is a cobalt-Samarium alloy.
3. A process according to claim 1 wherein said organometallic compound is copper acetylacetonate.

Claims (3)

1. A PROCESS FOR INCREASING THE INTRINISIC COERCIVE FORCE OF MAGNETICALLY AIR-STABLE COBALT-RARE EARTH ALLOP PARTICLES COATED WITH A METAL HAVING A MELTING POINT ABOVE 500*C WHICH COMPRISES ANNEALING THE COATED PARTICLES IN AN INERT ATMOSPHERE OR IN A SUBSTANTIAL VACUUM OR IN A TEMPERATURE RANGING FROM ABOUT 50* TO 200*C FOR A PERIOD OF TIME RANGING FROM 30 MINUTES TO 100 HOURS, SAID ANNEALING INCREASING THE INTRINSIC COERCIVE FORCE OF SAID COATED COBALT-RARE EARTH ALLOY PARTICLES BY AT LEAST 10 PERCENT, SAID MAGNETICALLY AIR-STABLE PARTICLES HAVING BEEN PRODUCED BY PROVIDING PARTICLES OF COBALT-RARE EARTH ALLOY HAVING AN AVERAGE SIZE UP TO ABOUT 10 MICRONS, PROVVIDING AN ORGANOMETALLIC COMPOUND WHICH AT A TEMPERATURE BELOW 500*C DECOMPOSES AND YIELDS PRODUCTS OF DECOMPOSITION CONSISTING OF GASEOUS NON-METALLIC PRODUCT AND A METAL VAPOR, PLACING SAID COMPOUND AND SAID PARTICLES IN A SUBSTANTIALLY INERT ATMOSPHERE WHICH IS A FLOWING ATMOSPHERE OR A SUBSTANTIAL VACUUM, HEATING SAID ORGANOMETALLIC COMPOUND AT A TEMPERATURE BELOW 500*C AND SUBSTANTIALLY COMPLETELY DECOMPOSITING IT AND PRODUCING SAID GASEOUS PRODUCT OF DECOMPOSITION AND A METAL VAPOR, CONTACTING THE RESULTING METAL VAPOR WITH THE COBALT-RARE EARTH ALLOY PARTICLES DEPOSITING A COHERENT SUBSTANTIALLY UNIFORM METAL COATING WHICH AT LEAST ENVELOPS THE PARTICLES PROVIDING AN EFFECTIVE BARRIER TO THE ATMOSPHERE AND WHICH HAS NO SIGNIFICANT DETERIORATING EFFECT ON THEIR MAGNETIC PROPERTIES AND DIFFUSING AWAY THE NON-METALLIC GASEOUS PRODUCT OF DECOMPOSITION, SAID ORGANOMETALLIC COMPOUND BEING USED IN AN AMOUNT WHICH ON DECOMPOSITION YIELDS A PARTIAL PRESSURE OF METAL VAPOR OF AT LEAST ABOUT 10-7 ATMOSPHERE AND PRODUCES THE METAL IN AN AMOUNT RANGING FROM 1 PERCENT TO 5 PERCENT BY WEIGHT OF SAID COBALTRARE EARTH ALLOY PARTICLES AND SAID DEPOSITED METAL HAVING A MELTING POINT ABOVE 500*C.
2. A process according to claim 1 wherein said alloy is a cobalt-samarium alloy.
3. A process according to claim 1 wherein said organometallic compound is copper acetylacetonate.
US00372688A 1973-06-22 1973-06-22 Annealing air-stable magnetic materials having superior magnetic characteristics and method Expired - Lifetime US3856581A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00372688A US3856581A (en) 1973-06-22 1973-06-22 Annealing air-stable magnetic materials having superior magnetic characteristics and method
US451028A US3892600A (en) 1973-06-22 1974-03-14 Annealed coated air-stable cobalt-rare earth alloy particles
CA197,270A CA1022018A (en) 1973-06-22 1974-04-10 Annealed air-stable magnetic materials having superior magnetic characteristics and method
DE2429600A DE2429600A1 (en) 1973-06-22 1974-06-20 MAGNETIC MATERIALS STABLE IN AIR AND METHOD OF PRODUCTION
IT24209/74A IT1015238B (en) 1973-06-22 1974-06-20 ALL A RIA STABLE MAGNETIC MATERIALS AND THEIR MANUFACTURING METHOD
FR7421575A FR2234385A1 (en) 1973-06-22 1974-06-21 Air stable cobalt-rare earth magnet particles - coated with metal of M Pt more than 500 degrees centigrade by organometallic decompsn
NL7408372A NL7408372A (en) 1973-06-22 1974-06-21
JP49071799A JPS5036999A (en) 1973-06-22 1974-06-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00372688A US3856581A (en) 1973-06-22 1973-06-22 Annealing air-stable magnetic materials having superior magnetic characteristics and method

Publications (1)

Publication Number Publication Date
US3856581A true US3856581A (en) 1974-12-24

Family

ID=23469222

Family Applications (1)

Application Number Title Priority Date Filing Date
US00372688A Expired - Lifetime US3856581A (en) 1973-06-22 1973-06-22 Annealing air-stable magnetic materials having superior magnetic characteristics and method

Country Status (2)

Country Link
US (1) US3856581A (en)
CA (1) CA1022018A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017303A (en) * 1974-07-16 1977-04-12 Basf Aktiengesellschaft Manufacture of acicular ferromagnetic metal pigments containing iron
US4262037A (en) * 1976-04-05 1981-04-14 Hitachi, Ltd. Method of producing ferromagnetic metal powder
US4592790A (en) * 1981-02-20 1986-06-03 Globus Alfred R Method of making particulate uranium for shaped charge liners
US4808326A (en) * 1985-06-10 1989-02-28 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom
US4882206A (en) * 1988-06-22 1989-11-21 Georgia Tech Research Corporation Chemical vapor deposition of group IIIB metals
US4888204A (en) * 1988-09-12 1989-12-19 Hughes Aircraft Company Photochemical deposition of high purity gold films

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933415A (en) * 1954-12-23 1960-04-19 Ohio Commw Eng Co Nickel coated iron particles
US3219482A (en) * 1962-06-25 1965-11-23 Union Carbide Corp Method of gas plating adherent coatings on silicon
US3342587A (en) * 1964-05-25 1967-09-19 Int Nickel Co Method for the production of metal and metal-coated powders
US3385725A (en) * 1964-03-23 1968-05-28 Ibm Nickel-iron-phosphorus alloy coatings formed by electroless deposition
US3479219A (en) * 1966-01-17 1969-11-18 Ibm Method of fabricating magnetic recording media
US3511683A (en) * 1967-06-20 1970-05-12 Mobil Oil Corp Method of electrolessly depositing metals on particles
US3591428A (en) * 1967-12-21 1971-07-06 Philips Corp Basic substance for the manufacture of a permanent magnet
US3615914A (en) * 1968-06-21 1971-10-26 Gen Electric Method of stabilizing permanent magnetic material powders
US3632401A (en) * 1968-11-08 1972-01-04 Ugine Kuhlmann Process for obtaining granular solids by the decomposition of gaseous reactants
US3684593A (en) * 1970-11-02 1972-08-15 Gen Electric Heat-aged sintered cobalt-rare earth intermetallic product and process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933415A (en) * 1954-12-23 1960-04-19 Ohio Commw Eng Co Nickel coated iron particles
US3219482A (en) * 1962-06-25 1965-11-23 Union Carbide Corp Method of gas plating adherent coatings on silicon
US3385725A (en) * 1964-03-23 1968-05-28 Ibm Nickel-iron-phosphorus alloy coatings formed by electroless deposition
US3342587A (en) * 1964-05-25 1967-09-19 Int Nickel Co Method for the production of metal and metal-coated powders
US3479219A (en) * 1966-01-17 1969-11-18 Ibm Method of fabricating magnetic recording media
US3511683A (en) * 1967-06-20 1970-05-12 Mobil Oil Corp Method of electrolessly depositing metals on particles
US3591428A (en) * 1967-12-21 1971-07-06 Philips Corp Basic substance for the manufacture of a permanent magnet
US3615914A (en) * 1968-06-21 1971-10-26 Gen Electric Method of stabilizing permanent magnetic material powders
US3632401A (en) * 1968-11-08 1972-01-04 Ugine Kuhlmann Process for obtaining granular solids by the decomposition of gaseous reactants
US3684593A (en) * 1970-11-02 1972-08-15 Gen Electric Heat-aged sintered cobalt-rare earth intermetallic product and process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Harwood, Applications of Organometallic Compounds, New York, 1963, pp. 339 343 (TP247A35). *
Heslop, R. et al., Organometallic Compounds, in Inorganic Chemistry, New York, 1967, p. 393 (QD151H47). *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017303A (en) * 1974-07-16 1977-04-12 Basf Aktiengesellschaft Manufacture of acicular ferromagnetic metal pigments containing iron
US4262037A (en) * 1976-04-05 1981-04-14 Hitachi, Ltd. Method of producing ferromagnetic metal powder
US4592790A (en) * 1981-02-20 1986-06-03 Globus Alfred R Method of making particulate uranium for shaped charge liners
US4808326A (en) * 1985-06-10 1989-02-28 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom
US4882206A (en) * 1988-06-22 1989-11-21 Georgia Tech Research Corporation Chemical vapor deposition of group IIIB metals
US4888204A (en) * 1988-09-12 1989-12-19 Hughes Aircraft Company Photochemical deposition of high purity gold films

Also Published As

Publication number Publication date
CA1022018A (en) 1977-12-06

Similar Documents

Publication Publication Date Title
US7029514B1 (en) Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
US4537624A (en) Amorphous metal alloy powders and synthesis of same by solid state decomposition reactions
JP4332220B2 (en) Method for forming dendritic metal particles
US20050000318A1 (en) Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
US5723799A (en) Method for production of metal-based composites with oxide particle dispersion
CN102768898A (en) Rare earth permanent magnets and their preparation
US3856580A (en) Air-stable magnetic materials and method
JP6813443B2 (en) Rare earth magnet manufacturing method
CN110942881B (en) Rare earth magnet and method for producing same
US3892600A (en) Annealed coated air-stable cobalt-rare earth alloy particles
KR20000058055A (en) Quenched thin ribbon of rare earth/iron/boron-based magnet alloy
US3856581A (en) Annealing air-stable magnetic materials having superior magnetic characteristics and method
Yamaguchi et al. Effects of nonmagnetic overlay metals on coercivity of Sm2Fe17N3 magnet powders
US3856582A (en) Fabrication of matrix bonded transition metal-rare earth alloy magnets
US3892599A (en) Air-stable compact of cobalt-rare earth alloy particles and method
US3655464A (en) Process of preparing a liquid sintered cobalt-rare earth intermetallic product
US3892601A (en) Coated air-stable cobalt-rare earth alloy particles and method
US7273509B1 (en) Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
WO1990014911A1 (en) Magnetic alloy compositions and permanent magnets
US2999777A (en) Antimonide coated magnetic materials
US3853640A (en) Lubricants for pressing transition metal-rare earth powder to be sintered
US4836979A (en) Manufacture of composite structures
EP0154548B1 (en) Amorphous metal alloy powders and bulk objects and synthesis of same by solid state decomposition reactions
US5338333A (en) Production of powdery intermetallic compound having very fine particle size