JPH02140589A - Hot blast temperature control device for grain drier - Google Patents

Hot blast temperature control device for grain drier

Info

Publication number
JPH02140589A
JPH02140589A JP29334088A JP29334088A JPH02140589A JP H02140589 A JPH02140589 A JP H02140589A JP 29334088 A JP29334088 A JP 29334088A JP 29334088 A JP29334088 A JP 29334088A JP H02140589 A JPH02140589 A JP H02140589A
Authority
JP
Japan
Prior art keywords
grain
hot air
grains
drying
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29334088A
Other languages
Japanese (ja)
Other versions
JPH0746028B2 (en
Inventor
Shinsaku Hidenaga
秀永 伸作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP63293340A priority Critical patent/JPH0746028B2/en
Publication of JPH02140589A publication Critical patent/JPH02140589A/en
Publication of JPH0746028B2 publication Critical patent/JPH0746028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To cause drying of grains constantly at a specified dryness factor or less and to prevent the occurrence of cracking of a grain body even when a amount of grain is low by a method wherein based on moisture content data obtained by measuring the moisture content value of grains, a dryness reduction factor is calculated, the given temperature of hot blast varied with plurality of variation widths preset according to an amount of grains is held for a given time so that the dryness reduction factor is varied along a given curve. CONSTITUTION:When a moisture content value of a specified sector M1 is determined, it is judged whether an average moisture content valve Mmu is below a stop moisture content value Mt. when it is not therebelow, according to a given computing formula, a set hot blast temperature Ts is calculated. Based on an amount W of grains and the average moisture content value Mmu, running of a circulating motor is controlled so that on full circulating time T1 of grains is adjusted to a value from 30 to 60 minutes. Based on the average moisture content value Mmu, it is judged whether a dryness reduction factor alpha (a set dryness reduction factor) is within a given value, for example, + or -0.1-+ or -0.2%/h based on an ideal dryness reduction factor curve. A given time T3 in which the adjusted set hot blast temperature Ts is held is set by a timer.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、穀物乾燥機の熱風温度制御装置に係り、常
に一定以下の乾減率で穀物を乾燥させ得て、特に穀物量
が少量の場合であっても、穀物の胴割れ等を防止し得る
熱風温度制御装置に関する。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to a hot air temperature control device for a grain dryer, which can dry grain at a constant drying loss rate of less than a certain level, and is particularly suitable for drying grains with a small amount of grain. The present invention relates to a hot air temperature control device that can prevent grain shell cracking, etc. even when

[従来の技術] 従来の穀物乾燥機の熱風温度制御装置としては、例えば
特公昭59−29794号公報に開示の如く、穀物に浴
びせる熱風の設定温度と検出温度とを比較し、その差に
応じてバーナへの送油量を増減させて熱風温度を制御す
るものが知られている。
[Prior Art] A conventional hot air temperature control device for a grain dryer, for example, as disclosed in Japanese Patent Publication No. 59-29794, compares a set temperature of hot air to be applied to grains with a detected temperature, and adjusts the temperature according to the difference. It is known that the hot air temperature is controlled by increasing or decreasing the amount of oil sent to the burner.

[発明が解決しようとする課題] ところで、この熱凰温度御装置にあっては、バーナへの
送油量の増減を穀物量に関係なく一定幅で行っているた
め、穀物に水分ムラが多いと、乾燥中に熱風温度が不要
に上下動し、乾減率を一定に維持することが難しく、特
に乾燥する穀物量が少量の場合に、穀物が高温の熱風を
mUる時間が相対的に長くなって、過乾燥あるいは吸湿
による胴割れが発生するという不都合があった。
[Problem to be solved by the invention] By the way, in this heating temperature control device, the amount of oil sent to the burner is increased or decreased within a fixed range regardless of the amount of grain, so there is often uneven moisture in the grain. During drying, the temperature of the hot air fluctuates unnecessarily, making it difficult to maintain a constant drying loss rate. Especially when the amount of grain to be dried is small, the amount of time the grain spends in the high-temperature hot air becomes relatively short. As the length increases, there is an inconvenience that the shell may crack due to overdrying or moisture absorption.

即ち、一般的に穀物乾燥機における乾減率αと熱風温度
Tc及び穀物量W(A:満量、B:中量、C:少量=端
数)との関係は、第6図に示すようになり、熱風温度T
cを一定幅ΔTc変更した場合、転減、率αの増減幅(
Δα1〜Δα3)は穀物量Wによって異なる。したがっ
て、穀物量Wに関係なく熱風温度Tcを一定幅ΔTc=
Δt1変更すると、穀物量Wが端数Cの場合の乾減率α
の増減幅Δα3は、Wが満量Aの場合の約2倍となって
、0.2〜0.3%/時間(h)ぐらい乾減率αが変化
することになり、特に水分ムラが多く熱風温度が上下動
する場合において、乾減率αを一定以下に抑えることが
極めて困難となる。
That is, in general, the relationship between the drying rate α, the hot air temperature Tc, and the grain amount W (A: full amount, B: medium amount, C: small amount = fraction) in a grain dryer is as shown in Figure 6. The hot air temperature T
When c is changed by a constant width ΔTc, the range of increase/decrease in rotation/decrease rate α (
Δα1 to Δα3) differ depending on the grain amount W. Therefore, regardless of the grain amount W, the hot air temperature Tc is set to a constant width ΔTc=
If Δt1 is changed, the drying rate α when the grain amount W is a fraction C
The increase/decrease width Δα3 is about twice that when W is full A, and the drying loss rate α changes by about 0.2 to 0.3%/hour (h), which is particularly important for moisture unevenness. When the hot air temperature fluctuates up and down a lot, it becomes extremely difficult to keep the drying loss rate α below a certain level.

また、熱風温度の変更幅を穀物量Wの端数Cに合わせ、
所定の乾減率αの増減幅になるように制御する方法も考
えられるが、この方法にあっては、穀物mwが満量Aの
場合に、乾減率αの増減幅が少なすぎて、乾減率αの補
正に時間がかかり、乾燥時間を長びかすという不都合が
あった。
Also, adjust the range of change in hot air temperature to the fraction C of grain amount W,
A method of controlling the drying loss rate α to a predetermined increase/decrease range may also be considered, but in this method, when the grain mw is the full amount A, the increase/decrease range of the drying loss rate α is too small. There was an inconvenience that it took time to correct the drying loss rate α, prolonging the drying time.

そこで、この発明の目的は上述の不都合を除去し、常に
一定以下の乾減率で穀物を乾燥させ得て、特に穀物量が
少量の場合でも、胴割れが生じることがなく、かつ満量
の場合でも乾燥時間を長びかすことのない穀物乾燥機の
熱風温度制御装置を実現するにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to eliminate the above-mentioned disadvantages, to be able to dry grain at a constant drying loss rate below a certain level, to avoid shell cracking even when the amount of grain is small, and to maintain a full amount of grain. To realize a hot air temperature control device for a grain dryer that does not prolong drying time even in the case of drying.

[課題を解決するための手段] この目的を達成するためにこの発明は、穀物に所定温度
の熱風を浴びせる乾燥室と穀物を非通風−下にてテンパ
リングする貯留室とを有し、前記両室に穀物を循環させ
て乾燥する穀物乾燥機において、穀物の水分値を測定す
るとともに、この測定した水分値データに基づいて乾減
率を算出する手段と、この乾減率が所定の曲線に沿うべ
く、穀物量に応じて予め設定した複数の変更幅で前記熱
風の所定温度を変更する手段と、この変更した熱風の所
定温度を所定時間保持する手段とを具備することを特徴
とする。
[Means for Solving the Problems] In order to achieve this object, the present invention has a drying chamber in which grains are exposed to hot air at a predetermined temperature and a storage chamber in which grains are tempered in a non-ventilated environment. In a grain dryer that circulates grain in a chamber for drying, there is a means for measuring the moisture value of the grain and calculating a drying loss rate based on the measured moisture value data, and a means for calculating a drying loss rate based on the measured moisture value data, and a means for calculating a drying loss rate based on the measured moisture value data, and a means for calculating a drying loss rate based on the measured moisture value data. In order to meet the above requirements, the method is characterized by comprising means for changing the predetermined temperature of the hot air by a plurality of change ranges preset according to the amount of grain, and means for maintaining the changed predetermined temperature of the hot air for a predetermined period of time.

[作 用] 上述の如く構成したことにより、測定した穀物の水分値
データから乾減率を算出し、この乾減率が常に一定以下
になるように、熱風温度を変更させる。その際、例えば
穀物の張り込みfl(穀物量)が少ない場合には変更幅
を小さく、張り込み量が多い場合には変更幅を大きくす
る等、穀物量に応じて変更幅を変化させるとともに、−
旦変更した熱風の所定温度を所定時間保持するため、水
分ムラによる不要な熱風温度の上下動を避けることがで
きて、乾減率を常に一定以下に維持し、少量の穀物でも
胴割れを防止し得るとともに、満量の場合でも乾燥時間
を長びかせることなく乾燥し得る。
[Function] With the above-described configuration, the drying rate is calculated from the measured grain moisture value data, and the hot air temperature is changed so that the drying rate is always below a certain level. At that time, the change width is changed according to the amount of grain, for example, when the grain tension fl (grain amount) is small, the change width is small, and when the grain tension amount is large, the change width is increased.
Since the predetermined temperature of the hot air is maintained for a predetermined period of time, it is possible to avoid unnecessary fluctuations in the hot air temperature due to uneven moisture content, and the drying rate is always maintained below a certain level, preventing shell cracking even with a small amount of grain. In addition, even when the amount is full, drying can be performed without prolonging the drying time.

[実施例] 次に、この発明の一実施例を図面に基づいて詳細に説明
する。第1〜3図においてこの発明を実施した穀物乾燥
機の構成を説明する。
[Example] Next, an example of the present invention will be described in detail based on the drawings. The structure of a grain dryer embodying the present invention will be explained with reference to FIGS. 1 to 3.

まず、第1.2図において、穀物乾燥機1は、乾燥部2
と貯留部3と集穀部4とを有し、揚穀機5で積上された
穀物は、図示しない上部搬送手段により搬送されて貯留
部3内に均分落下され、乾燥部2で乾燥された後、集穀
部4下部に集められ、図示しない下部搬送手段により揚
穀機5下部まで移送されて再び貯留部3まで揚上される
という循環を繰り返しつつ乾燥される。6は揚穀機5上
部から穀物を機外に排出するときに使用する排出管であ
る。
First, in Fig. 1.2, the grain dryer 1 has a drying section 2.
The grain stacked by the grain lifting machine 5 is transported by an upper conveying means (not shown), is evenly dropped into the storage part 3, and is dried in the drying part 2. After that, the grains are collected at the lower part of the grain collection section 4, transferred to the lower part of the grain lifting machine 5 by a lower conveyance means (not shown), and lifted up again to the storage section 3, and are dried while repeating the cycle. Reference numeral 6 denotes a discharge pipe used to discharge grain from the upper part of the grain lifting machine 5 to the outside of the machine.

この循環を行うべく、揚穀機5と上・下部搬送手段とを
駆動する搬送機モータ7と、繰り出しバルブ(図示せず
)を駆動する循環モータ8とを設け、この搬送機モータ
7と循環モータ8は、後述する穀物種、穀物量により回
転速度が変化する。
In order to perform this circulation, a conveyor motor 7 that drives the grain lifting machine 5 and the upper and lower conveying means, and a circulation motor 8 that drives a feeding valve (not shown) are provided. The rotation speed of the motor 8 changes depending on the type of grain and the amount of grain, which will be described later.

また、穀物中の夾雑物を排出する排塵機モータ9を揚穀
機5上部に設ける。
Further, a dust ejector motor 9 for discharging impurities in the grain is provided on the upper part of the grain lifting machine 5.

前記乾燥部2には、穀物を熱風により乾燥させる熱風発
生装置を設ける。即ち、乾燥部2の前面には高温の空気
を発生するバーナ1oを設けるとともに、背面側には排
風機モータ11の回転により高温の空気を吸引し、機外
に排出する排風機12を設ける。これにより、乾燥部2
に熱風を貫流させ穀物を乾燥する。このバーナ1oの前
面には、制御盤13を設け、また、揚穀機5の前面には
、穀物を乾燥機l内に張り込むときに使用するホッパー
14及び張込まれた穀物の水分値を一粒もしくは複数校
ずつ採取して検知する水分計15とを設ける。
The drying section 2 is provided with a hot air generator for drying grains with hot air. That is, a burner 1o that generates high-temperature air is provided on the front side of the drying section 2, and an exhaust fan 12 is installed on the back side to draw in high-temperature air by rotating an exhaust fan motor 11 and discharge it to the outside of the machine. As a result, the drying section 2
The grains are dried by passing hot air through them. A control panel 13 is provided on the front of the burner 1o, and a hopper 14 used for loading grain into the dryer 1 and a moisture value of the loaded grain are installed on the front of the grain lifting machine 5. A moisture meter 15 for collecting and detecting one grain or a plurality of grains at a time is provided.

第3図は、制御装置の要部たる制御回路のブロック図で
ある。図において、16〜18は各種センサ\群で、1
6は外気温度センサ、17は熱風温度センサ、18は穀
温センサ、19〜21は乾燥条件設定スイッチ群で、1
9は停止水分設定スイッチ、20は穀物種設定スイッチ
、21は穀物量設定スイッチ、22〜25は操作スイッ
チ群で、22は張込スイッチ、23は乾燥運転スイッチ
、24は排出スイッチ、25は停止スイッチである。
FIG. 3 is a block diagram of a control circuit that is a main part of the control device. In the figure, 16 to 18 are various sensor groups, 1
6 is an outside air temperature sensor, 17 is a hot air temperature sensor, 18 is a grain temperature sensor, 19 to 21 are a group of drying condition setting switches;
9 is a stop moisture setting switch, 20 is a grain type setting switch, 21 is a grain amount setting switch, 22 to 25 are a group of operation switches, 22 is a loading switch, 23 is a drying operation switch, 24 is a discharge switch, and 25 is a stop switch. It's a switch.

また、26は各種安全スイッチ群、27は乾燥モードを
切換えるモード切換スイッチ、28はA/D変換回路、
29はエンコーダ、30はCPU (中央演算処理装置
)である。このCPU30は、ROM(リードオンリー
メモリ)、RAM(ランダム・アクセスメモリ)等を中
心としたマイクロ・コンピュータで構成され、後述の如
く穀物乾燥機1の各種運転を制御する。
Further, 26 is a group of various safety switches, 27 is a mode changeover switch for changing the drying mode, 28 is an A/D conversion circuit,
29 is an encoder, and 30 is a CPU (central processing unit). The CPU 30 is composed of a microcomputer mainly including a ROM (read-only memory), a RAM (random access memory), etc., and controls various operations of the grain dryer 1 as described later.

さらに、31は穀物乾燥機1の故障箇所を表示するモニ
ター表示器、32は数字表示器で前記水分計15で測定
した水分値と熱風温度センサ17で検出した熱風温度と
を交互にデジタル表示する。33は各種警報を発生する
ブザー、34はバーナ駆動回路、35はモータ駆動回路
で、前記CPU30の出力する制御信号に従って夫々の
負荷を駆動する。即ち、バーナ駆動回路34は、点火ヒ
ータ36、点火バルブ37、電磁ポンプ38、バーナ用
ファンモータ39を駆動制御し、また、モータ駆動回路
35は、前記搬送機モータ7、循環モータ8、排塵機モ
ータ9、排風機モータ11及び水分計モータ40を駆動
制御する。
Further, numeral 31 is a monitor display for displaying the malfunction location of the grain dryer 1, and numeral 32 is a numerical display that alternately digitally displays the moisture value measured by the moisture meter 15 and the hot air temperature detected by the hot air temperature sensor 17. . 33 is a buzzer that generates various alarms, 34 is a burner drive circuit, and 35 is a motor drive circuit, each of which drives each load according to a control signal output from the CPU 30. That is, the burner drive circuit 34 drives and controls the ignition heater 36, the ignition valve 37, the electromagnetic pump 38, and the burner fan motor 39, and the motor drive circuit 35 drives and controls the conveyor motor 7, circulation motor 8, and dust exhaust. It drives and controls the machine motor 9, the exhaust fan motor 11, and the moisture meter motor 40.

次に、この発明に係る制御装置の動作の一例を第4図の
フローチャートに基づき説明する。
Next, an example of the operation of the control device according to the present invention will be explained based on the flowchart of FIG. 4.

まず、穀物乾燥機1の電源をON (50) L/、前
記穀物種設定スイッチ20により、乾燥する穀物の品種
K(籾、麦、ビール麦等)を設定(51)するとともに
、前記穀物量設定スイッチ21により穀物fiWを設定
(52)する。
First, turn on the power to the grain dryer 1 (50) L/, set the grain type K (paddy, barley, beer barley, etc.) to be dried using the grain type setting switch 20 (51), and set the grain amount. Grain fiW is set using the setting switch 21 (52).

そして、乾燥運転スイッチ23をオン(53)すると、
CPU30は、前記ステップ(52)で設定した穀物1
iWに応じ、予め定めた、設定熱風温度Tsの変更幅Δ
txを記憶(54)する。この設定熱風温度Tsの変更
幅Δtxは、例えば、Wが2以下の場合は、熱風温度を
一回当り2度C上下させ得る周波数f1であり、Wが3
〜4の場合は、−回当り3度C上下させ得る周波数f2
であり、Wが5以上の場合は、−回当り4度C上下させ
得る周波数f3である。なお、この穀物量Wを表わす数
字1〜5は穀物乾燥機lに付された数字で、例えば数字
2は10〜14石の穀物量に相当する。
Then, when the drying operation switch 23 is turned on (53),
The CPU 30 selects the grain 1 set in step (52) above.
A predetermined change width Δ of the set hot air temperature Ts according to iW
tx is stored (54). For example, when W is 2 or less, the change width Δtx of the set hot air temperature Ts is a frequency f1 that can raise or lower the hot air temperature by 2 degrees C per time, and W is 3
In the case of ~4, the frequency f2 can be raised or lowered by 3 degrees C per -
When W is 5 or more, the frequency f3 can be raised or lowered by 4 degrees C per -times. Note that the numbers 1 to 5 representing the grain amount W are numbers attached to the grain dryer 1, and for example, the number 2 corresponds to a grain amount of 10 to 14 koku.

次に、CPU30は、モータ駆動回路35及びバーナ駆
動回路34に制御信号を出力し、各モータを駆動させる
とともに、バーナ10を点火(55)する。
Next, the CPU 30 outputs control signals to the motor drive circuit 35 and the burner drive circuit 34 to drive each motor and ignite the burner 10 (55).

そして、水分計15が作動して乾燥機1内の穀物を一粒
ずつ、例えば200個採取してその水分値を測定(56
) シ、この測定した200個の水分値データに基うき
次のようなデータ処理(57)を行う。即ち、200個
のデータから平均水分値Mμと最大値と最小値を求め、
この最大値と最小値の区間を、例えば0.5%毎に分け
て複数の区間を設定して、各区間の度数(データ数)を
求めるとともに、各区間の度数を最高値側からチエツク
し、その度数が所定数以上、例えば5個以上になる最初
の区間の水分値Mlを求める。なお、この区間水分値M
lとしては、その区間の中央値が好ましいが、区間の幅
が小さい場合は、区間の最小値あるいは最大値を用いて
もよい。
Then, the moisture meter 15 operates, and the grains in the dryer 1 are collected one by one, for example, 200 grains, and the moisture value is measured (56 grains).
) Based on the 200 measured moisture value data, the following data processing (57) is performed. That is, find the average moisture value Mμ, maximum value, and minimum value from 200 data,
Divide this maximum and minimum value interval into multiple intervals, for example, by 0.5%, calculate the frequency (number of data) of each interval, and check the frequency of each interval from the highest value side. , the moisture value Ml of the first section in which the frequency is greater than or equal to a predetermined number, for example, five or more, is determined. In addition, this section moisture value M
As l, the median value of the interval is preferable, but if the width of the interval is small, the minimum value or maximum value of the interval may be used.

区間水分値Mlが求まると、CP U30は、この区間
水分値Ml、既に設定しである穀物種■く及び穀物IW
、前記外気温度センサ16で検出した外気温度等の各デ
ータを読み込み(58) 、平均水分値Mμが停止水分
値Mt以下か否かを判断(59)する。この判断(59
)でNOの場合は、所定の演算式に基づいて設定熱風温
度Tsを算出(60)するとともに、穀物量W、平均水
分値Mμ等に基づき、穀物の一循環時間T1が30分か
ら60分となるように前記循環モータ8等の回転を制御
(61) L/、前記ステップ(57)で算出した平均
水分値Mμに基づき、乾減率α(測定乾減率)が一定態
内、例えば理想的な乾減率曲線に対して、±0.1〜士
帆2%/h以内か否かを判断(62)する。ここで、乾
減率αは、例えば次の式により算出する。
When the section moisture value Ml is determined, the CPU 30 calculates the section moisture value Ml, the grain type and grain IW that have already been set.
, each data such as the outside air temperature detected by the outside air temperature sensor 16 is read (58), and it is determined whether the average moisture value Mμ is less than or equal to the stop moisture value Mt (59). This judgment (59
), the set hot air temperature Ts is calculated based on a predetermined calculation formula (60), and the grain circulation time T1 is set from 30 to 60 minutes based on the grain amount W, average moisture value Mμ, etc. Control the rotation of the circulation motor 8, etc. so that (61) L/, the average moisture value Mμ calculated in the step (57), the drying rate α (measured drying rate) is within a constant state, for example, ideal It is determined whether the drying rate curve is within ±0.1 to 2%/h (62). Here, the drying loss rate α is calculated, for example, by the following formula.

α=Mo/2XT2 但し、 Mo=(Mμを3+MJ、14N−z) −(Mμ屯−
++Mμへ)T2:水分測定間隔 そして、判断(62)でNOの場合は、所定時間T3経
過したか否かを判断(63) L/、続いて乾減率αが
所定乾減率α0より大きいか否かを判断(64)する。
α=Mo/2XT2 However, Mo=(Mμ3+MJ, 14N−z) −(Mμtun−
++Mμ) T2: Moisture measurement interval Then, in the case of NO in the judgment (62), it is judged whether the predetermined time T3 has elapsed (63) L/, and then the drying loss rate α is greater than the predetermined drying loss rate α0. It is determined whether or not (64).

この判断(64)でYES、即ちαがα。This judgment (64) is YES, that is, α is α.

より大きい場合は、設定熱風温度Tsを、前記ステップ
(54)で穀物量Wに応じて記憶した変更幅Δtxだけ
下げ、また逆に、判断(64)でNOの場合、即ちαが
α0より小さい場合は、設定熱風温度TsをΔtxだけ
上げる。そして、上下させた設定熱風温度Tsを保持す
るための所定時間T3をダイマーに設定(67) L/
、設定熱風温度Tsと前記熱風温度センサ17で検出し
た(測定)熱風温度Tbとを比較するステップ(68)
〜(69)に移る。
If it is larger, the set hot air temperature Ts is lowered by the change range Δtx stored in accordance with the grain amount W in the step (54), and conversely, if the judgment (64) is NO, that is, α is smaller than α0. If so, increase the set hot air temperature Ts by Δtx. Then, a predetermined time T3 for maintaining the set hot air temperature Ts that has been raised or lowered is set in the dimer (67) L/
, a step (68) of comparing the set hot air temperature Ts and the hot air temperature Tb detected (measured) by the hot air temperature sensor 17;
-Move to (69).

なお、判断(62)でYESの場合、及び判断(63)
でNoの場合は、共にステップ(68)ヘジヤンブする
。ここで、判断(63)は、前述したように所定時間T
3、即ちステップ(67)で設定した時間T3が経過し
たか否かを判断するものであり、設定熱風温度Tsの変
更が一度も行われてζ4ない場合、T3はOとなる。
In addition, if the judgment (62) is YES, and the judgment (63)
If the answer is No, step (68) is carried out. Here, the judgment (63) is made for the predetermined time T as described above.
3, that is, it is determined whether or not the time T3 set in step (67) has elapsed. If the set hot air temperature Ts has never been changed and ζ4 has not been reached, T3 becomes O.

前記ステップ(68)〜(69)は、測定した熱風温度
Tbが設定熱風温度Tsに対して規格値β内か否かを判
断するもので、ステップ(68)で上限側の規格値十β
に対する比較を、ステップ(69)で下限側の規格値−
βに対する比較を行う。このステップ(68)でNoの
場合、即ち、熱風温度Tbが、上限の規格値βを上回る
場合は、穀物に浴びせる熱風温度を下げるべく、バーナ
10に燃料を送る電磁ボン138の駆動周波数を温度差
に応じて所定数fnだけ減少(70)させ、また、ステ
・ンプ(64)でNOの場合、即ち、熱風温度Tbが、
下限の規格値βを下回る場合は、電磁ポンプ38の駆動
周波数を所定数fnだけ増加(71)させ、それぞれ規
格値β外に出た熱風温度Tbを規格値β内に戻すように
制御する。
The steps (68) to (69) are for determining whether or not the measured hot air temperature Tb is within the standard value β with respect to the set hot air temperature Ts.
In step (69), the lower limit side standard value -
A comparison is made with respect to β. If No in this step (68), that is, if the hot air temperature Tb exceeds the upper limit standard value β, the driving frequency of the electromagnetic bong 138 that sends fuel to the burner 10 is changed to The temperature is decreased by a predetermined number fn (70) according to the difference, and if NO in step (64), that is, the hot air temperature Tb is
If the lower limit of the standard value β is exceeded, the drive frequency of the electromagnetic pump 38 is increased by a predetermined number fn (71), and the hot air temperature Tb, which has fallen outside the standard value β, is controlled to return to within the standard value β.

ステップ(70)、(71)で電磁ボン138の駆動周
波数を所定数fn増減させた場合、又は、ステップ(6
8)、(69)で共にYES、即ち、熱風温度Tbが設
定熱風温度Tsの上下の規格値β内にあるときは、電磁
ボン138の駆動周波数を増減させることなく、水分測
定間隔T2  (、但しTI<72<2T1)、例えば
30分が経過したか否かを判断(72) L/、この判
断(72)でYESの場合は、前記ステップ(56)に
戻り、NOの場合はステップ(68)へ戻る。また、前
記判断(59)でYESの場合、即ち、平均水分値Mμ
が停止水分値Mt以下になった場合は、バーナ10を停
止(73)させるとともに、各モータを停止(74)さ
せ、乾燥を終了(75)する。
When the driving frequency of the electromagnetic bong 138 is increased or decreased by a predetermined number fn in steps (70) and (71), or in step (6)
8) and (69) are both YES, that is, when the hot air temperature Tb is within the standard value β above and below the set hot air temperature Ts, the moisture measurement interval T2 (, However, if TI<72<2T1), for example, it is determined whether 30 minutes have passed (72) L/, if YES in this determination (72), the process returns to step (56), and if NO, step ( Return to 68). In addition, if the judgment (59) is YES, that is, the average moisture value Mμ
When it becomes below the stop moisture value Mt, the burner 10 is stopped (73), each motor is stopped (74), and the drying is finished (75).

な狛、ステップ(57)で区間水分値Mlを算出するた
めの区間の度数は、測定する穀物が100〜300個の
場合、3〜lO個であれば、良質粒の分布の立ち下がり
を的確にとらえることが実験により確認されている。
When the number of grains to be measured is 100 to 300, the frequency of the interval for calculating the interval moisture value Ml in step (57) should be 3 to 10 to accurately determine the fall of the distribution of good quality grains. It has been confirmed through experiments that this is true.

このようにこの発明に係る熱風温度制御装置にあっては
、−粒ずつ測定した水分値データから乾減率αを算出し
、この乾減率αが一定の乾減率曲線に沿うように、穀物
に浴びせる熱風温度を穀物量Wに応じて予め設定した変
更幅で変更するとともに、この変更した熱風温度を所定
時間T3保持するため、水分ムラによる不要な熱風温度
の上下動を防止し得て、少量の穀物であっても胴割れを
発生させることなく乾燥することができる。また、穀物
量Wが満量の場合に、熱風温度の変更幅を大きく設定し
ているため、乾減率αの増減が大きく、乾減率αの補正
を短時間に行うことができて、乾燥時間を長びかせるこ
とがない。
As described above, in the hot air temperature control device according to the present invention, the drying rate α is calculated from the moisture value data measured for each particle, and the drying rate α is adjusted so that the drying rate α follows a constant drying rate curve. The temperature of the hot air that is applied to the grains is changed by a preset change range according to the amount of grain W, and this changed hot air temperature is maintained for a predetermined period of time T3, thereby making it possible to prevent unnecessary vertical fluctuations in the hot air temperature due to uneven moisture content. , even a small amount of grain can be dried without causing cracking. In addition, when the grain amount W is full, the range of change in hot air temperature is set large, so the drying loss rate α increases or decreases greatly, and the drying loss rate α can be corrected in a short time. Does not prolong drying time.

第5図はこの発明の他の実施例を示すフローチャートで
あり、上記実施例と同一ステップには同一符号を付して
、その詳細な説明は省略する。この実施例の特徴は、設
定熱風温度Ts変更(ステップ66.67)後の保持時
間T3を水分測定間隔T2(ステップ65)の2倍とし
た点にある。即ち、図に示すように、ステップ(62)
で乾減率αが一定以下か否かを判断し、この判断(62
)で、乾減率αが一定以下でなく熱風温度を変更する必
要がある場合(Noの場合)に、判断(62)のNOが
連続して発生したか否かを判断(80) L/、この判
断(80)でNOの場合、即ち連続してNOが発生して
いない場合は設定熱風温度Tsを変更し、判断(80)
でYESの場合、即ち連続してNoが発生した場合は、
設定熱風温度Tsを変更せずにステップ(68)ヘジャ
ンブする。
FIG. 5 is a flowchart showing another embodiment of the present invention, in which the same steps as in the above embodiment are given the same reference numerals, and detailed explanation thereof will be omitted. The feature of this embodiment is that the holding time T3 after changing the set hot air temperature Ts (steps 66 and 67) is twice the moisture measurement interval T2 (step 65). That is, as shown in the figure, step (62)
Determine whether the drying loss rate α is below a certain level or not by
), if the drying loss rate α is not below a certain level and it is necessary to change the hot air temperature (in the case of No), determine whether NO in judgment (62) has occurred continuously (80) L/ , If NO in this judgment (80), that is, if NO is not occurring continuously, change the set hot air temperature Ts and make a judgment (80).
If YES, that is, if No occurs continuously,
Jump to step (68) without changing the set hot air temperature Ts.

したがって、この実施例においては、連続しての熱風温
度の変更を行わないため、熱風温度変更後の保持時間T
3を水分測定間隔T2の2倍とすることができ構成を簡
略化し得る。この実施例においても、上記実施例と同様
の作用効果が得られることは明らかである。
Therefore, in this embodiment, since the hot air temperature is not changed continuously, the holding time T after changing the hot air temperature is
3 can be twice the moisture measurement interval T2, and the configuration can be simplified. It is clear that the same effects as in the above embodiment can be obtained in this embodiment as well.

なお、上記各実施例においては、設定熱風温度の変更幅
Δtxが3段階である場合について説明したが、この発
明はこれに何ら限定されず、例えば、変更幅を大・小の
2段階あるいは穀物量設定スイッチの目盛毎に対応した
複数段階に設定してもよく、また、各段階の変更幅も、
穀物量Wが多い場合には大きく、Wが少ない場合には小
さくなる範囲で適宜に設定し得るものである。
In each of the above embodiments, a case has been described in which the range of change Δtx of the set hot air temperature is in three stages, but the present invention is not limited to this in any way. It may be set in multiple stages corresponding to each scale of the amount setting switch, and the change width of each stage can also be changed.
It can be set appropriately within a range where it is large when the grain amount W is large and small when the grain amount W is small.

さらに、設定熱風温度Tsの変更幅を、熱風上昇温度(
Ts−外気温度)の所定の割合だけ変更、即ち、Ts=
Ts±(Ts−外気温度)Xr(但しr =0.1−0
.2)の如く変更させてもよい。また、上記各実施例に
おけるフローチャートも一例であって、この発明の要旨
を逸脱しない範囲において、適宜変更が可能であること
はいうまでもない。
Furthermore, the change range of the set hot air temperature Ts is changed to the hot air rising temperature (
Ts−outside temperature) is changed by a predetermined ratio, that is, Ts=
Ts±(Ts-outside temperature)Xr(r=0.1-0
.. 2) may be changed. Further, the flowcharts in each of the above-described embodiments are merely examples, and it goes without saying that changes can be made as appropriate without departing from the gist of the present invention.

[発明の効果] 以上詳細に説明したように、この発明に係る穀物乾燥機
の熱風温度制御装置にあっては、測定した水分値データ
から乾減率を算出し、この乾減率が一定の乾減率曲線に
沿うように、穀物に浴びせる熱風温度を乾燥する穀物量
に応じて予め設定した複数の幅で変更するとともに、こ
の変更した熱風温度を所定時間保持するため、水分ムラ
による不要な熱風温度の上下動を防止し得て、少量の穀
物であっても胴割れを発生させることなく乾燥すること
ができるとともに、満量の穀物の場合に乾燥時間を長び
かせることがない等の効果を奏する。
[Effects of the Invention] As explained in detail above, in the hot air temperature control device for a grain dryer according to the present invention, the drying loss rate is calculated from the measured moisture value data, and the drying loss rate is determined to be constant. In order to follow the drying rate curve, the temperature of the hot air applied to the grain is changed in multiple preset ranges depending on the amount of grain to be dried, and this changed hot air temperature is maintained for a predetermined period of time, thereby eliminating unnecessary moisture caused by uneven moisture. It is possible to prevent the hot air temperature from fluctuating up and down, and it is possible to dry even a small amount of grain without causing shell cracking, and it does not prolong the drying time when the grain is full. be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は穀物乾燥機の正面図、第2図は第1図の右側面
図、第3図は制御回路のブロック図、第4図は制御装置
の動作の一例を示すフローチャート、第5図は同地の実
施例を示すフローチャート、第6図は乾減率と熱風温度
等との関係を示すグラフである。 1・・・穀物乾燥機、2・・・乾燥部、3・・・貯留部
、4・・・集穀部、5・・・揚穀機、13・・・制御盤
、15・・・水分計、30・・・CPU、W・・・穀物
量、Mμ・・・平均水分値、Ml・・・区間水分値、T
s・・・設定熱風温度、Δtx・・・変更幅。 第5図 特許出願人  静岡製機株式会社 代表者 鈴木重夫
Figure 1 is a front view of the grain dryer, Figure 2 is a right side view of Figure 1, Figure 3 is a block diagram of the control circuit, Figure 4 is a flowchart showing an example of the operation of the control device, and Figure 5. 6 is a flowchart showing the example of the same site, and FIG. 6 is a graph showing the relationship between the drying loss rate and the hot air temperature. DESCRIPTION OF SYMBOLS 1... Grain dryer, 2... Drying section, 3... Storage section, 4... Grain collecting section, 5... Grain lifting machine, 13... Control panel, 15... Moisture Total, 30...CPU, W...Grain amount, Mμ...Average moisture value, Ml...Interval moisture value, T
s...Set hot air temperature, Δtx...Change width. Figure 5 Patent applicant: Shigeo Suzuki, representative of Shizuoka Seiki Co., Ltd.

Claims (1)

【特許請求の範囲】 イ、穀物に所定温度の熱風を浴びせる乾燥室と穀物を非
通風下にてテンパリングする貯留室とを有し、前記両室
に穀物を循環させて乾燥する穀物乾燥機において、 ロ、穀物の水分値を測定するとともに、この測定した水
分値データに基づいて乾減率を算出する手段と、 ハ、この乾減率が所定の曲線に沿うべく、乾燥する穀物
量に応じて予め設定した複数の変更幅で前記熱風の所定
温度を変更する手段と、 ニ、この変更した熱風の所定温度を所定時間保持する手
段、 とを具備する穀物乾燥機の熱風温度制御装置。
[Scope of Claims] B. A grain dryer that has a drying chamber that blows hot air at a predetermined temperature onto the grains and a storage chamber that tempers the grains without ventilation, and that circulates the grains in both chambers for drying. , B. Means for measuring the moisture value of grains and calculating the drying loss rate based on the measured moisture value data, and C. A means for measuring the drying rate according to the amount of grain to be dried so that the drying rate follows a predetermined curve. A hot air temperature control device for a grain dryer, comprising: means for changing the predetermined temperature of the hot air by a plurality of change widths set in advance; and (d) means for maintaining the changed predetermined temperature of the hot air for a predetermined period of time.
JP63293340A 1988-11-18 1988-11-18 Hot air temperature controller for grain dryer Expired - Lifetime JPH0746028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293340A JPH0746028B2 (en) 1988-11-18 1988-11-18 Hot air temperature controller for grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293340A JPH0746028B2 (en) 1988-11-18 1988-11-18 Hot air temperature controller for grain dryer

Publications (2)

Publication Number Publication Date
JPH02140589A true JPH02140589A (en) 1990-05-30
JPH0746028B2 JPH0746028B2 (en) 1995-05-17

Family

ID=17793536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293340A Expired - Lifetime JPH0746028B2 (en) 1988-11-18 1988-11-18 Hot air temperature controller for grain dryer

Country Status (1)

Country Link
JP (1) JPH0746028B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181578A (en) * 1984-02-29 1985-09-17 金子農機株式会社 Method of drying cereal
JPS6373083A (en) * 1986-09-12 1988-04-02 井関農機株式会社 Drying controller for cereal grain drier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181578A (en) * 1984-02-29 1985-09-17 金子農機株式会社 Method of drying cereal
JPS6373083A (en) * 1986-09-12 1988-04-02 井関農機株式会社 Drying controller for cereal grain drier

Also Published As

Publication number Publication date
JPH0746028B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
CA2514660C (en) Full heat moving target grain drying system
JP2010054148A5 (en)
JP2010054148A (en) Grain dryer
JPH02140589A (en) Hot blast temperature control device for grain drier
JP3243819B2 (en) Hot air temperature correction method for grain dryer
JPH02133789A (en) Drying controller for grain dryer
JPH02140588A (en) Drying control device for cereal drier
JPH04203884A (en) Hot air temperature control device for grain dryer
JP2008298324A5 (en)
JP2009156482A (en) Grain drying machine
JP4985064B2 (en) Grain dryer
JPS63282476A (en) Drying controller for cereal drier
JPH0195282A (en) Method of controlling drying of cereal in drier
JPH02213691A (en) Dry controller for cereal drying machine
JP5359592B2 (en) Grain dryer
JPS62141493A (en) Drying controller for cereal grain drier
JPH01163591A (en) Dead time compensator in cereal drier
JPS63194181A (en) Drying controller for cereal drier
KR890003275B1 (en) A method for control of drying veneer
JPS63182557A (en) Grain water content data processor for grain drier
JPS62268983A (en) Drying controller for cereal grain drier
JPS5974486A (en) Controller for hot air of burner in cereal drier
JPS61125581A (en) Method of drying cereal grain
JPH01230982A (en) Grain drying machine
JPH0861851A (en) Drying control device for crop particle drying machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 14