JP3243819B2 - Hot air temperature correction method for grain dryer - Google Patents

Hot air temperature correction method for grain dryer

Info

Publication number
JP3243819B2
JP3243819B2 JP02771492A JP2771492A JP3243819B2 JP 3243819 B2 JP3243819 B2 JP 3243819B2 JP 02771492 A JP02771492 A JP 02771492A JP 2771492 A JP2771492 A JP 2771492A JP 3243819 B2 JP3243819 B2 JP 3243819B2
Authority
JP
Japan
Prior art keywords
hot air
moisture
air temperature
grain
drying speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02771492A
Other languages
Japanese (ja)
Other versions
JPH05223456A (en
Inventor
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP02771492A priority Critical patent/JP3243819B2/en
Publication of JPH05223456A publication Critical patent/JPH05223456A/en
Application granted granted Critical
Publication of JP3243819B2 publication Critical patent/JP3243819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、穀粒乾燥機の熱風温
度補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting hot air temperature of a grain dryer.

【0002】[0002]

【従来の技術】従来は、張込穀粒量等によって設定され
た温度の熱風が熱風装置から発生し、この熱風に乾燥室
を繰出し流下される穀粒が晒されることにより乾燥さ
れ、乾燥中、循環する穀粒の一部は、水分センサにより
その水分が検出され、この検出穀粒水分が設定仕上目標
水分に達すると、穀粒の乾燥が終了したとして乾燥が停
止される。
2. Description of the Related Art Conventionally, hot air of a temperature set according to the amount of grain embedded or the like is generated from a hot air device, and the grains which are drawn out of a drying chamber and exposed to the hot air are dried by drying. The moisture of a part of the circulating grains is detected by a moisture sensor, and when the detected grain moisture reaches the set finish target moisture, the drying of the grains is stopped as the drying of the grains is completed.

【0003】この乾燥中は、張込穀粒量等により予め設
定された熱風温度と熱風装置から発生して検出された熱
風とが比較され、相違していると設定熱風温度と同じ温
度になるように熱風装置が制御されて乾燥される。
[0003] During the drying, the hot air temperature set in advance based on the amount of grain and the like and the hot air generated and detected by the hot air device are compared, and if they are different, the temperature becomes the same as the set hot air temperature. The hot air device is controlled as described above and dried.

【0004】[0004]

【発明が解決しようとする課題】従来の熱風温度の制御
は、乾燥作業中、予め設定された熱風温度と熱風装置か
ら発生して検出された熱風温度とが比較され、相違して
いると設定熱風温度と同じ温度になるように熱風装置が
制御される方法であった。
In the conventional hot air temperature control, during a drying operation, a preset hot air temperature is compared with a hot air temperature detected and generated from a hot air device, and it is determined that there is a difference. This is a method in which the hot air device is controlled so as to have the same temperature as the hot air temperature.

【0005】従来の方法では、熱風温度が張込穀粒量等
により予め設定されているだけのため、水分差、水分の
ばらつき、及び所定時間当たりの水分差から算出される
穀粒の平均乾燥速度の相互の影響が加味されておらず、
仕上がり水分が安定しないという欠点があった。
[0005] In the conventional method, since the hot air temperature is simply set in advance by the amount of the stuffed grain, etc., the moisture difference, the variation of the moisture, and the average dryness of the grain calculated from the moisture difference per a predetermined time period. The mutual influence of speed is not taken into account,
There was a drawback that the finished moisture was not stable.

【0006】[0006]

【課題を解決するための手段】この発明は、前記欠点を
解決しようとするもので、乾燥室へ熱風を通風する熱風
装置と、循環する穀粒の水分を検出する水分センサ、該
水分のばらつきを算出する水分ばらつき算出手段、熱風
温度を検出する熱風温度検出手段、仕上目標水分を設定
する設定手段、および穀粒の平均乾燥速度を算出する乾
燥速度算出手段を有す穀粒乾燥機において、水分センサ
により検出した穀粒の水分と設定手段により設定した仕
上目標水分との水分差、水分ばらつき算出手段により算
出した水分のばらつき、及び乾燥速度算出手段により算
出した穀粒の平均乾燥速度と熱風温度の補正量との関係
をあらわすファジィルールを予め記憶する記憶手段を設
け、前記検出した水分差、水分のばらつき、及び穀粒の
平均乾燥速度を入力として、前記記憶手段に記憶された
ファジィルールに基づいて、熱風温度の補正量に対する
ファジィ推論を行い、該ファジィ推論により決定された
補正量により熱風温度を設定し、該設定された熱風温度
により前記熱風装置が制御されることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and has a hot air device for blowing hot air to a drying chamber, a moisture sensor for detecting moisture in circulating grains, and a variation in the moisture. In a grain dryer having a moisture variation calculating means for calculating the hot air temperature detecting means for detecting the hot air temperature, a setting means for setting the finish target moisture, and a drying speed calculating means for calculating the average drying speed of the grains, Moisture difference between the moisture of the grain detected by the moisture sensor and the finish target moisture set by the setting means, the variation of the moisture calculated by the moisture variation calculating means, and the average drying speed and hot air of the grain calculated by the drying speed calculating means A storage means for storing in advance a fuzzy rule indicating a relationship with the temperature correction amount is provided, and the detected moisture difference, moisture variation, and average drying speed of the grain are stored. Based on the fuzzy rules stored in the storage means, fuzzy inference for the correction amount of the hot air temperature is performed, the hot air temperature is set by the correction amount determined by the fuzzy inference, and the hot air temperature is set by the set hot air temperature. The hot air device is controlled.

【0007】[0007]

【発明の作用と効果】この発明により、熱風装置より発
生する熱風温度が、水分センサが検出する穀粒水分と仕
上目標水分との水分差、そのときに検出した穀粒水分の
ばらつき及びそれまでに検出した穀粒の平均乾燥速度を
入力とするファジィルールに基づいて補正されるため、
その時点における穀粒に最も適した熱風温度を自動的に
設定できるという利点があり、これにより仕上り水分が
安定すると共に、検出した穀粒の水分のばらつきが小さ
くなり精度が高まる。
According to the present invention, the temperature of the hot air generated from the hot air device is determined by the difference between the grain moisture detected by the moisture sensor and the finish target moisture, the variation of the grain moisture detected at that time, and It is corrected based on the fuzzy rule that inputs the average drying speed of the grain detected in
There is an advantage that the hot air temperature most suitable for the grain at that time can be automatically set, whereby the finished moisture is stabilized, and the variation in the moisture detected in the grain is reduced, thereby increasing the accuracy.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図例は、穀粒を乾燥する循環型の穀粒乾燥機1
に穀粒の水分を検出する水分センサ2及び熱風が発生す
るバーナ4等を内装した熱風装置3を装着した状態を示
す。
An embodiment of the present invention will be described below with reference to the drawings. The figure shows a circulation type grain dryer 1 for drying grains.
1 shows a state in which a moisture sensor 2 for detecting moisture in grains and a hot blast device 3 equipped with a burner 4 for generating hot air are mounted.

【0009】前記乾燥機1は、前後方向に長い長方形状
で機壁5上部には、移送螺旋を回転自在に内装した移送
樋6及び天井板7を設け、この天井板7下側には穀粒を
貯留する穀粒貯留室8を形成している。穀粒乾燥室9,
9は、該貯留室8下側において、左右両側の排風室1
0,10と中央の送風室11との間に設け、これら乾燥
室9,9下部には、穀粒を繰出し流下させる繰出バルブ
12を夫々回転自在に軸支している。該送風室11内に
は熱風温度を検出する熱風温センサ11′を設けてい
る。
The drying machine 1 is provided with a transfer trough 6 and a ceiling plate 7 having a rectangular shape which is long in the front-rear direction and in which a transfer spiral is rotatably provided above the machine wall 5, and a grain below the ceiling plate 7. A grain storage chamber 8 for storing grains is formed. Grain drying room 9,
9 is an exhaust chamber 1 on both the left and right sides below the storage chamber 8.
0, 10 and a central blowing chamber 11, and at the lower part of the drying chambers 9, 9 are respectively rotatably supported feed valves 12 for feeding and flowing down grains. A hot air temperature sensor 11 ′ for detecting hot air temperature is provided in the blower chamber 11.

【0010】集穀樋13は、移送螺旋を回転自在に軸支
し、該各乾燥室9,9下側に設けて連通させている。前
記熱風装置3の前記バーナ4は、バーナケース14に内
装して設け、このバーナケース14は、前記機壁5正面
側において、前記送風室11入口側に対応すべくこの機
壁5外側面に着脱自在に設け、又このバーナ4、前記水
分センサ2及び前記乾燥機1を張込、乾燥及び排出の各
作業別に始動及び停止操作する前記操作装置15を前側
の該機壁5に着脱自在に設けている。
The grain collecting gutter 13 rotatably supports a transfer spiral, and is provided below each of the drying chambers 9 and 9 so as to communicate with each other. The burner 4 of the hot air device 3 is provided inside a burner case 14, and the burner case 14 is provided on the outer surface of the machine wall 5 on the front side of the machine wall 5 so as to correspond to the inlet side of the blower chamber 11. The operating device 15 which is detachably provided and which starts and stops the burner 4, the moisture sensor 2 and the dryer 1 for each of the work of inserting, drying and discharging is detachably attached to the machine wall 5 on the front side. Provided.

【0011】排風機16は、前記背面側の機壁5で、左
右の前記排風室10,10に連通すべく設けた排風路室
17中央後部側排風胴18に設け、又この背面側の機壁
5には、この排風機16を回転駆動する排風機モータ1
9を設けている。20は、バルブモータで前記繰出バル
ブ12,12を減速機構を介して回転駆動させている。
An exhaust fan 16 is provided on the rear wall 5 on the rear side of the rear wall 5 at the center rear side of the exhaust path chamber 17 provided to communicate with the left and right exhaust chambers 10 on the rear wall 5. A fan motor 1 for rotating and driving the fan 16 is provided on the side wall 5.
9 are provided. Reference numeral 20 denotes a valve motor for rotating the delivery valves 12, 12 via a speed reduction mechanism.

【0012】燃料ポンプ21は、燃料バルブを有して、
前記バーナケース14下板外側に設け、この燃料バルブ
の開閉により、この燃料ポンプ21で燃料タンク22内
の燃料を吸入して、前記バーナ4へ供給させている。送
風機23は、上板外側に設け、変速用の送風機モータ2
4で変速回転駆動させ、供給燃料量に見合った燃焼用空
気を該バーナ4へこの送風機23で送風させている。
The fuel pump 21 has a fuel valve,
The fuel pump 21 sucks the fuel in the fuel tank 22 and supplies the fuel to the burner 4 by opening and closing the fuel valve. The blower 23 is provided on the outer side of the upper plate, and the blower motor 2 for shifting is provided.
4, the combustion air corresponding to the supplied fuel amount is blown to the burner 4 by the blower 23.

【0013】拡散盤25は、前記移送樋6底板の前後方
向中央部で、移送穀粒を前記貯留室8へ供給する供給口
の下側に設け、この貯留室8へ穀粒を均等に拡散還元さ
せている。前記昇穀機26は、前記機壁5前側外部に設
けられ、内部にはバケットコンベア27付ベルトを張設
してなり、上端部は、前記移送樋6始端部との間におい
て投出筒28を設けて連通させ、下端部は、前記集穀樋
13終端部との間において供給樋29を設けて連通させ
ている。
The diffusion board 25 is provided at the center in the front-rear direction of the bottom plate of the transfer gutter 6 and below the supply port for supplying the transfer kernels to the storage chamber 8, so that the kernels are evenly diffused into the storage chamber 8. Is being reduced. The grain raising machine 26 is provided outside the front side of the machine wall 5 and has a belt with a bucket conveyor 27 stretched inside. The upper end is provided with a discharge cylinder 28 between the transfer gutter 6 and the start end. The lower end portion is provided with a supply gutter 29 between the end portion of the grain collecting gutter 13 and communicates therewith.

【0014】30は昇穀機モータで、該バケットコンベ
ア27付ベルト、前記移送樋6内の前記移送螺旋、前記
拡散盤25及び前記集穀樋13内の前記移動螺旋等を回
転駆動させている。前記水分センサ2は、前記昇穀機2
6の上下方向ほぼ中央部に設け、この水分センサ2は、
前記操作装置15からの電気的測定信号の発信により、
水分モータ31が回転してこの水分センサ2の各部が回
転駆動され、前記バケットコンベア27で上部へ搬送中
に落下する穀粒を受け、繰込ロール32で一粒づつ繰込
み検出ロール33,33間で、例えば32粒の穀粒を挾
圧粉砕しながら、この粉砕穀粒32粒の平均値を算出さ
せて一回の平均穀粒水分とし、この検出を3回繰返して
この3回の平均穀粒水分を算出させ、この算出の3回の
平均値を検出穀粒水分として表示させている。
Numeral 30 is a grain raising motor, which rotationally drives the belt with the bucket conveyor 27, the transfer spiral in the transfer gutter 6, the moving spiral in the diffusion plate 25 and the grain collecting gutter 13, and the like. . The moisture sensor 2 includes the grain raising machine 2
6 is provided substantially at the center in the vertical direction, and the moisture sensor 2
By transmitting the electrical measurement signal from the operating device 15,
The moisture motor 31 rotates to rotate the respective parts of the moisture sensor 2, and receives the grains falling during the transport to the upper part by the bucket conveyor 27, and the feeding rolls 32 detect the feeding drops 33, 33 one by one. In the meantime, for example, while nipping and crushing 32 grains, the average value of the 32 crushed grains is calculated as one average grain moisture. This detection is repeated three times, and the average of the three grains is calculated. The grain moisture is calculated, and the average value of the three calculations is displayed as the detected grain moisture.

【0015】前記操作装置15は、箱形状でこの箱体の
表面板には、前記乾燥機1、前記水分センサ2及び前記
バーナ4等を張込、乾燥及び排出の各作業別に始動操作
する各始動スイッチ34、停止操作する停止スイッチ3
5、穀粒の仕上目標水分を操作位置によって設定する水
分設定抓み36、前記バーナ4から発生する熱風温度を
操作位置によって設定する穀物種類設定抓み37及び張
込量設定抓み38、各種表示項目をデジタル表示する表
示部39及びモニタ表示等を設けている。
The operating device 15 has a box shape, and the dryer 1, the moisture sensor 2, the burner 4 and the like are mounted on the surface plate of the box body, and the starting operation is performed for each operation of drying and discharging. Start switch 34, stop switch 3 for stopping operation
5. Moisture setting knob 36 for setting the finishing target moisture of the grain according to the operation position, grain type setting knob 37 for setting the hot air temperature generated from the burner 4 according to the operation position, and inset amount setting knob 38. A display unit 39 for digitally displaying display items, a monitor display, and the like are provided.

【0016】制御装置40は、前記操作装置15内に設
けられ、前記水分センサ2及び前記熱風温センサ11′
が検出する検出値、水分センサ2の検出値にもとづく水
分ばらつき、該各スイッチ34,35の操作及び該各設
定抓み36,37,38の操作等が入力され、これらの
入力を算術論理演算及び比較演算するCPU41等より
なり、該CPU40内にはファジィ推論を行うファジィ
制御器を有し、又このCPU41で前記各モータ19,
20,24,30,31、前記燃料バルブ及び前記燃料
ポンプ21等を始動、停止及び制御等を行う構成であ
る。該各設定抓み36,37,38はロータリースイッ
チ方式とし、操作位置によって所定の数値及び種類等が
設定される。
The control device 40 is provided in the operation device 15 and includes the moisture sensor 2 and the hot air temperature sensor 11 '.
, An operation of each of the switches 34 and 35, an operation of each of the setting knobs 36, 37 and 38, and the like are input. And a fuzzy controller for performing fuzzy inference. The CPU 41 controls the motors 19 and
20, 24, 30, 31, the fuel valve, the fuel pump 21 and the like are started, stopped, controlled, and the like. Each of the setting knobs 36, 37, and 38 is a rotary switch type, and predetermined numerical values, types, and the like are set according to operation positions.

【0017】前記制御装置40による熱風温度の補正は
下記の如く行われる。即ち、前記水分センサ2の前記検
出ロール33,33間で穀粒を1回に、例えば32粒挾
圧粉砕のときの1粒ごとの電圧値が検出されて該CPU
41へ入力されて穀粒水分値に置換され、この入力から
32粒の穀粒水分の平均値が算出され、この検出が3回
繰返し行われ、この3回の平均穀粒水分値が算出され、
この3回の平均穀粒水分値が1回の検出穀粒水分として
前記表示部39へ表示される。
The correction of the hot air temperature by the controller 40 is performed as follows. That is, the voltage value of each grain is detected between the detection rolls 33, 33 of the moisture sensor 2 at one time, for example, at the time of pressing and grinding of 32 grains.
It is input to 41 and replaced with the grain moisture value. From this input, the average value of the grain moisture of 32 grains is calculated. This detection is repeated three times, and the three average grain moisture values are calculated. ,
These three average grain moisture values are displayed on the display unit 39 as one detected grain moisture value.

【0018】前記穀物種類設定抓み37と前記張込量設
定抓み38の操作とで設定された前記熱風装置3の前記
バーナ4から発生する設定熱風温度は、下記の如く補正
される。 設定熱風温度=f(穀物種類、張込量)+熱風温度補正
量(T) すなわち、設定熱風温度は、穀物種類と張込量により設
定される基準となる熱風温度f(穀物種類,張込量)に
熱風温度補正量(T)を加えた温度である。
The set hot air temperature generated from the burner 4 of the hot air device 3 set by the operation of the grain type setting knob 37 and the inset amount setting knob 38 is corrected as follows. Set hot air temperature = f (grain type, stake amount) + hot air temperature correction amount (T) That is, the set hot air temperature is a hot air temperature f (grain type, stake amount) which is a reference set by the grain type and the stake amount Volume) to the hot air temperature correction amount (T).

【0019】ところで、乾燥中における穀物の水分の安
定化要因として、穀粒の水分値、水分のばらつき、及び
平均乾燥速度がある。このため、前記3要因を変数とし
て下記のごとくファジィルールを設定し、熱風温度補正
量(T)に前記3要因の相互の影響が加味されるように
する。
Factors for stabilizing the water content of a grain during drying include a water value of the grain, a variation in the water content, and an average drying speed. For this reason, a fuzzy rule is set as follows using the three factors as variables so that the mutual influence of the three factors is added to the hot air temperature correction amount (T).

【0020】穀粒が高水分の場合は、外皮(籾殻)に水
分が多量に分布しており、乾燥を促進するためにはこの
外皮の水分を除去し、玄米中の水分を表面に移流させる
必要がある。一方、乾燥が進み外皮が乾燥し、玄米表面
の水分も少ない水分分布状態では熱風温度を高くして
も、玄米表面と玄米中心部との水分勾配が急激になるだ
けで乾燥が促進されるわけではない。このため、熱風温
度と水分の関係は高水分ほど熱風温度を高くし、低水分
ほど熱風温度を低くした方が乾燥効率がよいことになる
が、水分の高低を基準である仕上目標水分からの値とし
た方が処理し易い。
When the grain has a high moisture content, a large amount of moisture is distributed in the hull (rice hull). In order to promote drying, the moisture in the hull is removed and the moisture in brown rice is transferred to the surface. There is a need. On the other hand, in a moisture distribution state where the outer skin is dried and the brown rice surface has less moisture, even if the hot air temperature is increased, the drying is promoted only by a sharp water gradient between the brown rice surface and the central part of brown rice. is not. For this reason, the relationship between hot air temperature and moisture is such that the higher the moisture, the higher the hot air temperature, and the lower the temperature, the lower the hot air temperature, the better the drying efficiency. The value is easier to process.

【0021】従って、第一のファジィルールは穀粒の測
定水分と仕上目標水分との差(水分差)が大きいほど熱
風温度を高く設定する。また、第一のファジィルールで
は、水分のばらつきが加味されておらず、穀粒の測定水
分値は多粒の測定値を平均化処理するため、水分のばら
つきが大きいと、低水分側の穀粒に対しては、熱風温度
が高く、乾燥効率が低い制御となる。従って、第二のフ
ァジィルールでは、水分のばらつきが大きいほど熱風温
度を低くする。
Therefore, the first fuzzy rule sets the hot air temperature higher as the difference (moisture difference) between the measured moisture of the grain and the finish target moisture is larger. In addition, in the first fuzzy rule, the variation in moisture is not taken into account, and the measured moisture value of the grain averages the measured value of multiple grains. For the grains, the control is such that the hot air temperature is high and the drying efficiency is low. Therefore, in the second fuzzy rule, the hot air temperature is lowered as the variation in moisture is larger.

【0022】さらに、前記ファジィルールだけでは、熱
風温度の補正の拮抗が生じ、熱風温度補正が有効に作用
しない可能性があり、また、前記第一のファジィルール
では乾燥が進むにつれて熱風温度を下げる制御になるた
め平均乾燥速度が低下する。これを補うために、平均乾
燥速度を使い、熱風温度補正の安定化を図る。従って、
第三のファジィルールでは、それまでの平均乾燥速度が
速いほど、穀粒への熱障害を防止するため熱風温度を低
くし、平均乾燥速度が遅いほど、熱風温度を高くする。
Further, with the fuzzy rule alone, there is a possibility that the correction of the hot air temperature may be antagonized and the hot air temperature correction may not work effectively. In the first fuzzy rule, the hot air temperature is lowered as drying proceeds. The average drying speed decreases because of the control. To compensate for this, the average drying speed is used to stabilize the hot air temperature correction. Therefore,
In the third fuzzy rule, the hot air temperature is lowered to prevent heat damage to the grains as the average drying speed up to that time is increased, and the hot air temperature is raised as the average drying speed is slower.

【0023】次に、ファジィ推論で用いる前記穀粒の水
分差、水分のばらつき、及び平均乾燥速度の3変数及び
補正温度に対するメンバーシップ関数を図2、図3、図
4及び図6に夫々示す。横軸は夫々の入出力値、縦軸は
入出力値に対する度合い(グレード)である。穀粒の水
分差に関するファジィ集合は1.5%ごとの5段階と
し、水分のばらつきのファジィ集合は0.02%ごとの
5段階とし、平均乾燥速度のファジィ集合は0.2%/
hrごとの5段階とし、熱風温度の温度補正量のファジ
ィ集合は基準となる熱風温度の補正量を0として、正負
に1.3度ごとの3段階のファジィ集合としている。
Next, FIG. 2, FIG. 3, FIG. 4, and FIG. 6 show the three variables of the moisture difference of the grain, the variation of the moisture, the average drying rate, and the correction temperature used in the fuzzy inference, respectively. . The horizontal axis indicates the input / output values, and the vertical axis indicates the degree (grade) with respect to the input / output values. The fuzzy set relating to the moisture difference of the grain has five steps of 1.5%, the fuzzy set of the variation in water has five steps of 0.02%, and the fuzzy set of the average drying rate is 0.2% /
There are five stages for each hr, and the fuzzy set of the temperature correction amount of the hot air temperature is a three-stage fuzzy set of 1.3 degrees for each of the positive and negative 1.3 degrees with the reference correction amount of the hot air temperature as 0.

【0024】そして、前記穀粒の水分差、水分のばらつ
き、平均乾燥速度及び熱風温度補正量に対するメンバー
シップ関数を前記ファジィルールに当てはめて、図5の
ように設定する。図5において、ルール(R)はルール
番号を示し、例えば、 R=1,M=PL,B=NL,K=NL,T=PL では、以下を意味する。(穀粒の水分差が大)で、且つ
(水分のばらつきが小)で、且つ(平均乾燥速度が小)
の場合は(熱風温度補正量を大)にする。
Then, the membership functions for the moisture difference of the grains, the variation of the moisture, the average drying speed, and the hot air temperature correction amount are applied to the fuzzy rules and set as shown in FIG. In FIG. 5, a rule (R) indicates a rule number. For example, R = 1, M = PL, B = NL, K = NL, T = PL means the following. (Water difference in grain is large) and (Water variation is small) and (Average drying speed is small)
In the case of (1), the amount of hot air temperature correction is increased.

【0025】図7は、穀粒の水分差(M)が7%、水分
のばらつき(B)が0.025%、平均乾燥速度(K)
が0.3%のときの熱風温度補正量(T)の決定方法を
しめす。前記穀粒の水分差に当てはまるファジィ集合は
(PL,PS)であり、前記水分のばらつきに当てはま
るファジィ集合は(NL,NS)であり,前記平均乾燥
速度に当てはまるファジィ集合は(NL,NS)であ
る。これらのファジィ集合のうち、3つの変数が同時に
作用しているルールはR=1、2、および4である。
FIG. 7 shows that the moisture difference (M) of the grain is 7%, the variation (B) of the moisture is 0.025%, and the average drying speed (K).
Is determined when the hot air temperature correction amount (T) is 0.3%. The fuzzy set that applies to the moisture difference of the grain is (PL, PS), the fuzzy set that applies to the variation in moisture is (NL, NS), and the fuzzy set that applies to the average drying rate is (NL, NS). It is. Of these fuzzy sets, the rules in which three variables act simultaneously are R = 1, 2, and 4.

【0026】この選択されたルールにおいて、夫々の変
数のファジィ集合のグレード値のうち、最小のグレード
値を採用し、熱風温度補正量(T)に関するメンバーシ
ップ関数(PM,PL)に前記グレード値を掛け合わせ
る。(図7斜線部)つぎに、選択されたルールごとに掛
け合わされた熱風温度補正量(T)に関するメンバーシ
ップ関数を重ね合わせることにより、前記3変数が影響
している熱風温度補正量(T)の新たなメンバーシップ
関数が作成され、このメンバーシップ関数の重心位置を
算出し、0(Z0)から重心位置(XA)までの距離に
よって熱風温度補正量(T)が決定される。
In the selected rule, the minimum grade value among the grade values of the fuzzy set of each variable is adopted, and the grade value is added to the membership function (PM, PL) relating to the hot air temperature correction amount (T). Multiply by (The hatched portion in FIG. 7) Next, by superimposing the membership function on the hot air temperature correction amount (T) multiplied for each selected rule, the hot air temperature correction amount (T) affected by the three variables is superimposed. Is calculated, the position of the center of gravity of this membership function is calculated, and the hot air temperature correction amount (T) is determined based on the distance from 0 (Z0) to the position of the center of gravity (XA).

【0027】なお、0(Z0)位置よりX軸方向の重心
位置(XA)が(イ)方向側であれば+側への設定熱風
温度の補正となり、(ロ)方向側であれば−側への設定
熱風温度の補正となる。このようにすると、穀粒水分
差、水分のばらつき、平均乾燥速度夫々の相互の影響を
熱風温度に反映することができ、その時点における穀粒
に最も適した熱風温度を自動的に設定できる。
If the position of the center of gravity (XA) in the X-axis direction from the 0 (Z0) position is in the (a) direction, the set hot air temperature is corrected to the + side. The hot air temperature setting is corrected. In this way, the mutual influence of each of the grain moisture difference, the variation in moisture, and the average drying speed can be reflected on the hot air temperature, and the hot air temperature most suitable for the grain at that time can be automatically set.

【0028】例えば基準となる熱風温度が45℃に設定
され乾燥されていたとすると、図7より算出された補正
量は、0(Z0)位置から重心位置(XA)までの距離
である+側の2.9℃になり、45℃+2.9℃で設定
熱風温度は47.9℃に補正され、この補正された設定
熱風温度の47.9℃により熱風装置3は制御されて穀
粒は乾燥される。
For example, assuming that the reference hot air temperature is set to 45 ° C. and drying is performed, the correction amount calculated from FIG. 7 is the + side which is the distance from the 0 (Z0) position to the center of gravity position (XA). At 2.9 ° C, the set hot air temperature is corrected to 47.9 ° C at 45 ° C + 2.9 ° C, and the hot air device 3 is controlled by the corrected set hot air temperature of 47.9 ° C to dry the grains. Is done.

【0029】なお、図7は、MAX−MIN法によって
メンバーシップ関数のうち、一番低いグレードが採用さ
れて、熱風温度補正量が決定される例であり、穀粒水分
差、水分ばらつき及び平均乾燥速度共に、各ファジィ集
合の範囲内にないと検出されたときは、データなしと処
理される。併せて、前記制御装置40は乾燥運転中、前
記補正されて設定された熱風温度と前記熱風温センサ1
1′が検出する検出熱風温度とが比較され、相違してい
るとこれら設定熱風温度と同じ温度になるように、前記
燃料バルブの開閉回数が増減制御され、前記燃料ポンプ
21で吸入して前記バーナ4へ供給する燃料量が増減制
御される。
FIG. 7 shows an example in which the hot air temperature correction amount is determined by adopting the lowest grade among the membership functions according to the MAX-MIN method. When it is detected that the drying speed is not within the range of each fuzzy set, it is determined that there is no data. At the same time, during the drying operation, the control device 40 controls the corrected hot air temperature and the hot air temperature sensor 1.
The detected hot air temperature detected by 1 ′ is compared, and if they are different, the number of times of opening and closing the fuel valve is controlled to increase or decrease so that the temperature becomes the same as the set hot air temperature. The amount of fuel supplied to the burner 4 is controlled to increase or decrease.

【0030】又前記水分センサ2が前記水分設定抓み3
6を操作して設定した仕上目標水分と同じ穀粒水分を検
出すると、穀粒の乾燥が終了したとして、前記乾燥機1
を自動停止して穀粒の乾燥が停止される。
The moisture sensor 2 is connected to the moisture setting knob 3
6, when the same grain moisture as the finish target moisture set is detected, it is determined that the drying of the grain has been completed.
Is automatically stopped to stop the drying of the grain.

【図面の簡単な説明】[Brief description of the drawings]

図は、この発明の一実施例を示す。 The figure shows an embodiment of the present invention.

【図1】ブロック図。FIG. 1 is a block diagram.

【図2】穀粒水分差のメンバーシップ関数を表す図。FIG. 2 is a diagram showing a membership function of a grain moisture difference.

【図3】穀粒水分ばらつきのメンバーシップ関数を表す
図。
FIG. 3 is a diagram showing a membership function of grain moisture variation.

【図4】穀粒乾燥速度のメンバーシップ関数を表す図。FIG. 4 is a diagram showing a membership function of a grain drying rate.

【図5】穀粒水分差、穀粒水分ばらつき及び平均穀粒乾
燥速度と熱風温度補正量とのファジィルール。
FIG. 5 is a fuzzy rule of grain moisture difference, grain moisture variation, average grain drying rate, and hot air temperature correction amount.

【図6】熱風温度補正量のメンバーシップ関数を表す
図。
FIG. 6 is a diagram illustrating a membership function of a hot air temperature correction amount.

【図7】熱風温度補正量がファジィ推論により決定され
る手順を示す説明図。
FIG. 7 is an explanatory diagram showing a procedure in which a hot air temperature correction amount is determined by fuzzy inference.

【図8】穀粒乾燥機の一部破断せる全体側面図。FIG. 8 is a partially broken whole side view of the grain dryer.

【図9】図8のA−A拡大断面図。FIG. 9 is an enlarged sectional view taken along line AA of FIG. 8;

【図10】穀粒乾燥機の一部の一部破断せる拡大正面
図。
FIG. 10 is an enlarged front view in which a part of the grain dryer is partially broken.

【図11】水分センサの拡大側断面図。FIG. 11 is an enlarged side sectional view of the moisture sensor.

【図12】水分センサの拡大背面図。FIG. 12 is an enlarged rear view of the moisture sensor.

【符号の説明】[Explanation of symbols]

2 水分センサ 3 熱風装置 8 穀粒貯留室 9 穀粒乾燥室 2 Moisture sensor 3 Hot air device 8 Grain storage room 9 Grain drying room

フロントページの続き (56)参考文献 特開 昭61−246580(JP,A) 特開 昭62−19680(JP,A) 特開 昭62−178878(JP,A) 特開 平3−271690(JP,A) 特開 平5−231775(JP,A) 特開 昭63−217185(JP,A) 特開 昭61−49983(JP,A) 特開 昭62−252882(JP,A) 特開 昭62−175578(JP,A) 実開 平1−13491(JP,U) (58)調査した分野(Int.Cl.7,DB名) F26B 21/06 - 21/10 F26B 25/22,17/14,25/00 Continuation of the front page (56) References JP-A-61-246580 (JP, A) JP-A-62-19680 (JP, A) JP-A-62-178878 (JP, A) JP-A-3-271690 (JP) JP-A-5-231775 (JP, A) JP-A-63-217185 (JP, A) JP-A-61-49983 (JP, A) JP-A-62-252882 (JP, A) 62-175578 (JP, A) JP-A 1-113491 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F26B 21/06-21/10 F26B 25 / 22,17 / 14,25 / 00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 乾燥室へ熱風を通風する熱風装置と、循
環する穀粒の水分を検出する水分センサ、該水分のばら
つきを算出する水分ばらつき算出手段、熱風温度を検出
する熱風温度検出手段、仕上目標水分を設定する設定手
段、および穀粒の平均乾燥速度を算出する乾燥速度算出
手段を有す穀粒乾燥機において、水分センサにより検出
した穀粒の水分と設定手段により設定した仕上目標水分
との水分差、水分ばらつき算出手段により算出した水分
のばらつき、及び乾燥速度算出手段により算出した穀粒
の平均乾燥速度と熱風温度の補正量との関係をあらわす
ファジィルールを予め記憶する記憶手段を設け、前記検
出した水分差、水分のばらつき、及び穀粒の平均乾燥速
度を入力として、前記記憶手段に記憶されたファジィル
ールに基づいて、熱風温度の補正量に対するファジィ推
論を行い、該ファジィ推論により決定された補正量によ
り熱風温度を設定し、該設定された熱風温度により前記
熱風装置が制御されることを特徴とする穀粒乾燥機にお
ける熱風温度補正方法。
A hot air device for blowing hot air to a drying chamber;
Moisture sensor for detecting moisture of ringing grain, rose of the moisture
Moisture variation calculating means to calculate the temperature, detect hot air temperature
Hot air temperature detecting means to set the target moisture content
Drying speed calculation to calculate the average drying speed of tiers and grains
Detected by moisture sensor in grain dryer with means
Moisture of finished grain and finish target moisture set by setting means
And the moisture calculated by the moisture variation calculation means
And grain calculated by the drying speed calculation means
The relationship between the average drying speed and the amount of hot air temperature correction
A storage means for storing fuzzy rules in advance is provided,
Discharged water difference, water dispersion, and average drying speed of grain
Fuzzy file stored in the storage means with the degree as an input
Fuzzy inference for hot air temperature correction based on
And the correction amount determined by the fuzzy inference.
The hot air temperature is set, and the hot air temperature is set according to the set hot air temperature.
The grain dryer is characterized in that the hot air device is controlled.
Hot air temperature correction method.
JP02771492A 1992-02-14 1992-02-14 Hot air temperature correction method for grain dryer Expired - Fee Related JP3243819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02771492A JP3243819B2 (en) 1992-02-14 1992-02-14 Hot air temperature correction method for grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02771492A JP3243819B2 (en) 1992-02-14 1992-02-14 Hot air temperature correction method for grain dryer

Publications (2)

Publication Number Publication Date
JPH05223456A JPH05223456A (en) 1993-08-31
JP3243819B2 true JP3243819B2 (en) 2002-01-07

Family

ID=12228674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02771492A Expired - Fee Related JP3243819B2 (en) 1992-02-14 1992-02-14 Hot air temperature correction method for grain dryer

Country Status (1)

Country Link
JP (1) JP3243819B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445069B (en) * 2011-12-12 2013-12-25 中联重科股份有限公司 Drying roller control method, device and system and drying device
CN102706112A (en) * 2012-05-14 2012-10-03 鄂尔多斯市中誉能源股份有限公司 Drying device and drying method for preventing coal from regaining moisture
CN104101200B (en) * 2014-07-23 2016-01-20 北京科技大学 A kind of thick-layer grain drying system of be coupled alternating temperature alternation air-flow and vibration and method
CN104180635B (en) * 2014-08-26 2016-04-27 北京科技大学 A kind of thick-layer Chinese medicine drying system of alternating temperature alternation air-flow and method
CN108534491B (en) * 2018-06-15 2024-05-07 吉林大学 Transverse ventilation static bed grain dryer and control method thereof
CN112577294B (en) * 2020-12-16 2023-04-07 中南林业科技大学 Heat pump heat source camellia seed partition drying self-adaptive control method and device

Also Published As

Publication number Publication date
JPH05223456A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP3243819B2 (en) Hot air temperature correction method for grain dryer
JPH05106966A (en) Drying control system of grain dryer
JPH05322444A (en) Grain drying control method for grain dryer
JP3526465B2 (en) Display of scheduled drying time of grain dryer
JPH05106967A (en) Grain moisture detection system of grain dryer
JP3178057B2 (en) Display method of grain moisture detected by grain dryer
JP3116567B2 (en) Grain moisture detection method of grain dryer
JPH07180966A (en) Crop particle moisture sensing and controlling device in crop particle drying machine
JP2973537B2 (en) Fuel supply control system such as grain dryer
JPH0658667A (en) Operation control system for crop particle drying machine
JPH06273048A (en) Operation display system for grain dryer
JPH06273039A (en) Grain drying control method for grain dryer
JPH05106965A (en) Drying control system of grain dryer
JPH0566087A (en) Combustion control system for grain dryer
JPH07120153A (en) Operation device for grain drier
JPH0712463A (en) Under abnormal condition of moisture sensor thereof handling system for operation of grain dryer
JPH0861851A (en) Drying control device for crop particle drying machine
JPH06273044A (en) Grain drying control system for grain dryer
JPH07120158A (en) Grain dryer
JPH07294125A (en) Grain temperature detecting device for grain drier
JPH05260643A (en) Overload detection control system for motor
JPH0545058A (en) Dry control system for cereals dryer
JPH0350487A (en) Control system for grain drier
JPH05256578A (en) Displaying system for grain drying time of grain drier
JPH07103657A (en) Grain drying control device for grain drying machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees