JPH0213035B2 - - Google Patents

Info

Publication number
JPH0213035B2
JPH0213035B2 JP30545286A JP30545286A JPH0213035B2 JP H0213035 B2 JPH0213035 B2 JP H0213035B2 JP 30545286 A JP30545286 A JP 30545286A JP 30545286 A JP30545286 A JP 30545286A JP H0213035 B2 JPH0213035 B2 JP H0213035B2
Authority
JP
Japan
Prior art keywords
cathode
lithium
aluminum
alloy
master alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30545286A
Other languages
Japanese (ja)
Other versions
JPS63161181A (en
Inventor
Masayasu Toyoshima
Yoshiaki Watanabe
Yoshiaki Orito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP30545286A priority Critical patent/JPS63161181A/en
Publication of JPS63161181A publication Critical patent/JPS63161181A/en
Publication of JPH0213035B2 publication Critical patent/JPH0213035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高純度のアルミニウム−リチウム母
合金の製造方法に関する。詳しくはナトリウム、
カリウム等のリチウム以外のアルカリ金属とカル
シウムを実質上含まないアルミニウム−リチウム
母合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high purity aluminum-lithium master alloy. For details, see sodium,
The present invention relates to a method for producing an aluminum-lithium mother alloy substantially free of calcium and an alkali metal other than lithium such as potassium.

[従来の技術] 従来方法によるアルミニウム−リチウム母合金
の製造は、大要次の2工程で行われている。
[Prior Art] The production of an aluminum-lithium master alloy by a conventional method is generally carried out in the following two steps.

金属リチウムの電解採取工程 溶解・鋳造工程、 の工程は、塩化リチウムと塩化カリウムの混
合溶融塩の電解による金属リチウムの製造工程で
あり、の工程は、の工程により製造された金
属リチウムを母合金の組成に所要な量でアルミニ
ウムに加えて共に溶解して母合金の鋳塊を得る工
程である。
Electrolytic extraction process of metallic lithium Melting/casting process The process of is a manufacturing process of metallic lithium by electrolysis of a mixed molten salt of lithium chloride and potassium chloride, and the process of is a process of manufacturing metallic lithium by electrolysis of a mixed molten salt of lithium chloride and potassium chloride. In this process, aluminum is added to aluminum in the amount required for the composition and melted together to obtain a master alloy ingot.

実用上価値のある高純度のアルミニウム−リチ
ウム母合金としては、Li含有量が10重量%以上で
あり、またNa、Kの含有量がそれぞれ5ppm以下
であり、かつCaの含有量が10ppm以下である必
要がある。
A high-purity aluminum-lithium master alloy with practical value has a Li content of 10% by weight or more, a Na content of 5ppm or less, a K content of 5ppm or less, and a Ca content of 10ppm or less. There needs to be.

現在、市販されている高純度電解リチウム
(99.9%)は、Na、KおよびCaの含有量がそれぞ
れ200ppm、100ppmおよび200ppm程度であつて、
これを用いて高純度のアルミニウム−リチウム母
合金を製造することは不可能である。また超高純
度電解リチウム(Na≦50ppm)を製造するには、
リチウムの電解採取工程に対して、リチウム塩や
金属リチウムの精製工程の追加が必要となる。
Currently, commercially available high-purity electrolytic lithium (99.9%) has Na, K, and Ca contents of about 200ppm, 100ppm, and 200ppm, respectively.
It is impossible to produce a high purity aluminum-lithium master alloy using this. In addition, to produce ultra-high purity electrolytic lithium (Na≦50ppm),
In addition to the lithium electrowinning process, it is necessary to add a lithium salt and metal lithium purification process.

[発明が解決しようとする問題点] リチウムの精製をガスによる溶湯処理によつて
行なう場合には、リチウムの損失が大きい障害が
ある。更に従来方法の金属リチウム電解における
電流効率は比較的低く、例えば70%から90%どま
りである。
[Problems to be Solved by the Invention] When lithium is purified by molten metal treatment using gas, there is a problem in that the loss of lithium is large. Furthermore, the current efficiency in conventional metal lithium electrolysis is relatively low, for example, only 70% to 90%.

以上の他、従来のアルミニウム−リチウム母合
金の製造方法では、前記の工程によつて、電解
リチウムとアルミニウムの再溶解が不可欠であ
り、その際に高活性であるリチウムは変質し劣化
を起こしやすい。これを防ぐには希ガスによる溶
解雰囲気の調整が必要となる。更に、低融点で比
重が小さいためリチウムは凝固過程で偏析を起こ
しやすい。したがつて、従来方法によつて常に安
定して一定組成の母合金を製造することは不可能
である。
In addition to the above, in the conventional manufacturing method of aluminum-lithium mother alloy, it is essential to re-melt the electrolytic lithium and aluminum through the above process, and at that time, highly active lithium is easily altered and deteriorated. . To prevent this, it is necessary to adjust the dissolution atmosphere using a rare gas. Furthermore, due to its low melting point and low specific gravity, lithium is prone to segregation during the solidification process. Therefore, it is impossible to consistently produce a master alloy having a constant composition using conventional methods.

本出願人はこれらの問題点を解決する方法とし
てさきに特願昭58−215989号を開発した。この方
法はアルミニウム−リチウム母合金の電解製造に
おいて、陰極に固体アルミニウムを用いることを
骨子とする方法である。この場合、電解が進行す
ると、アルミニウム陰極の表面層から中心部に向
つて合金化が進むとともに膨脹する。そして膨脹
が進むにつれて、合金層に亀裂が生じ、その亀裂
は徐々に大きくなる。亀裂が大きくなるにつれて
以下の問題が生じる。
The present applicant previously developed Japanese Patent Application No. 1982-215989 as a method to solve these problems. This method is a method in which solid aluminum is used as a cathode in the electrolytic production of an aluminum-lithium master alloy. In this case, as electrolysis progresses, alloying progresses from the surface layer of the aluminum cathode toward the center, and the aluminum cathode expands. As the expansion progresses, cracks occur in the alloy layer, and the cracks gradually become larger. As the crack grows larger, the following problems arise.

合金取出時に亀裂内に電解浴が取り込まれ
る。
Electrolytic bath is drawn into the crack when the alloy is removed.

陰極電流密度が変動する。 Cathode current density fluctuates.

合金の欠落の恐れがある。 There is a risk of alloy chipping.

陰極装入部の占有面積が大きくなる。 The area occupied by the cathode charging section increases.

[問題点を解決するための手段] 本発明は、上記問題点を解決するもので、塩化
リチウムと塩化カリウムからなる混合溶融塩を陰
極に中空筒状固体アルミニウムを用いて電解し、
該陰極にアルミニウム−リチウム合金を生成させ
ることを特徴とする高純度アルミニウム−リチウ
ム母合金の製造方法である。
[Means for Solving the Problems] The present invention solves the above problems by electrolyzing a mixed molten salt of lithium chloride and potassium chloride using a hollow cylindrical solid aluminum as a cathode,
This is a method for producing a high-purity aluminum-lithium mother alloy, characterized in that an aluminum-lithium alloy is produced in the cathode.

以下、本発明について詳しく説明する。 The present invention will be explained in detail below.

本発明者らはLiClとKClとの混合溶融塩の電解
において、陰極に中空固体アルミニウムを用いて
電解を行なえば、析出Liを電解浴面に浮上させる
ことなく、かつ、Na、KおよびCaを析出させる
ことなしにAl陰極に高純度のAl−Li合金を生成
させることができる。しかもそのAl−Li合金の
生成は、理由は定かではないが、中空固体アルミ
ニウムカソードを用いた場合には、中空部分に向
けてのストレス方向となり、膨脹も同方向に生じ
ると思われ、さらに、Al棒の場合と異なり、ス
トレスが開放されるために亀裂の発生、合金の欠
落等の問題が少ないものと考えられる。
The present inventors have found that by electrolyzing a mixed molten salt of LiCl and KCl using a hollow solid aluminum cathode, the precipitated Li will not float to the surface of the electrolytic bath, and Na, K, and Ca can be removed. High purity Al-Li alloy can be produced on the Al cathode without precipitation. Moreover, although the reason for the formation of the Al-Li alloy is not clear, when a hollow solid aluminum cathode is used, the stress is directed toward the hollow part, and expansion is thought to occur in the same direction. Unlike the case of Al rods, stress is released, so it is thought that there are fewer problems such as cracking and missing alloy.

第1図は本発明を実施するための基本的な説明
図で、1は電解槽であり、内部にLiClとKClの混
合溶融塩4を収容し、これに黒鉛等からなる陽極
5と中空筒状固体アルミニウムの陰極2とを対置
浸漬する。3は陰極リード、6は陽極リードであ
り、7は陽極に発生する塩素ガス捕集排出管であ
る。
FIG. 1 is a basic explanatory diagram for carrying out the present invention, and 1 is an electrolytic cell, which houses a mixed molten salt 4 of LiCl and KCl, and an anode 5 made of graphite or the like and a hollow tube. The solid aluminum cathode 2 is dipped oppositely. 3 is a cathode lead, 6 is an anode lead, and 7 is a collection and discharge pipe for chlorine gas generated at the anode.

この場合陰極電流密度は0.005〜1A/cm2の範囲
とする。0.005A/cm2より小さいとLiの析出量が
少なく、結果としてAl−Li合金の生成量が少な
くなつて生産性が極めて低く、非工業的であり、
又、1A/cm2より大きいとLi単味が陰極に析出し
合金化の歩留りが低下するので好ましくない。
In this case, the cathode current density is in the range of 0.005 to 1 A/cm 2 . If it is smaller than 0.005A/cm 2 , the amount of Li precipitated will be small, and as a result, the amount of Al-Li alloy produced will be small, resulting in extremely low productivity and non-industrial use.
Moreover, if it is larger than 1 A/cm 2 , Li alone precipitates on the cathode and the yield of alloying decreases, which is not preferable.

又、高純度Al−Li合金が生成する理由につい
ては、電解によつて陰極面に析出したLiが固体
Al内に拡散してLi−Al化合物を生成し、この生
成化合物によつて陰極の分極が減少する減極作用
によつて、LiClの分解電圧が低下するのに対し、
Naにはこのように減極作用がないので、NaClの
分解電圧は変らず、Caは合金化による減極効果
でCaCl2の分解電圧は低下するが、Caの合金内拡
散はLiに比較して相当遅れるので、結果として分
解電圧が変らない。また、KClの分解電圧はもと
もとLiClより大きいので、Liの減極効果によつて
その差は拡大し、結果としてLiだけが析出し、陰
極材にNa、KおよびCaの混入が起らないことに
よるものと考察される。
Furthermore, the reason why a high-purity Al-Li alloy is formed is that the Li deposited on the cathode surface by electrolysis is solid.
While the decomposition voltage of LiCl decreases due to the depolarization effect of diffusing into Al to generate Li-Al compounds and reducing the polarization of the cathode due to this generated compound,
Since Na has no depolarization effect in this way, the decomposition voltage of NaCl does not change, and the decomposition voltage of CaCl 2 decreases due to the depolarization effect of Ca due to alloying, but the diffusion of Ca in the alloy is less than that of Li. As a result, the decomposition voltage does not change. In addition, since the decomposition voltage of KCl is originally higher than that of LiCl, the difference increases due to the depolarization effect of Li, and as a result, only Li is precipitated, and Na, K, and Ca are not mixed into the cathode material. It is considered that this is due to

[実施例] 次に実施例について比較例と共に説明する。[Example] Next, examples will be described together with comparative examples.

前記第1図に示した如き電解槽1に45wt%
LiClと55wt%KClよりなる混合溶融塩4を入れ、
これに黒鉛からなる陽極5とその対極として第2
図ないし第4図に示す形状の各種陰極2を吊下げ
る。
45wt% in the electrolytic cell 1 as shown in Fig. 1 above.
Add mixed molten salt 4 consisting of LiCl and 55wt% KCl,
This has an anode 5 made of graphite and a second electrode as its counter electrode.
Various cathodes 2 having shapes shown in the figures to FIG. 4 are suspended.

第2図aは実施例の陰極材で、外径80mm、内径
50mmよりなる99.7%Al、Na<5ppmなる組成の円
筒状のものである。第3図aは他の実施例の陰極
材で、外径80mm、内径60mmのもので、同じく99.7
%Alの円筒状のものである。第4図aは比較例
の陰極材で、直径80mmの円柱状のものである。
Figure 2 a shows the cathode material of the example, with an outer diameter of 80 mm and an inner diameter.
It has a cylindrical shape of 50 mm with a composition of 99.7% Al and Na < 5 ppm. Figure 3a shows a cathode material of another example, with an outer diameter of 80 mm and an inner diameter of 60 mm, which also has a 99.7
%Al in a cylindrical shape. Figure 4a shows a comparative example of a cathode material, which has a cylindrical shape with a diameter of 80 mm.

実施例 1 第2図aに示す陰極材を用い、電流密度
0.07A/cm2で電解した。結果的に陰極材の膨脹は
第2図bに示す程度、すなわち外径82mm、内径35
mmとなり、亀裂は発生しなかつた。母合金の組成
は11.4wt%Liで、Na濃度は5ppm以下であつた。
Example 1 Using the cathode material shown in Figure 2a, the current density
Electrolysis was performed at 0.07A/cm 2 . As a result, the expansion of the cathode material was as shown in Figure 2b, that is, the outer diameter was 82 mm and the inner diameter was 35 mm.
mm, and no cracks occurred. The composition of the master alloy was 11.4 wt% Li, and the Na concentration was 5 ppm or less.

実施例 2 第3図aに示す陰極材を用い、電流密度
0.10A/cm2で電解した。結果的に第3図bに示す
ように外径84mm、内径40mmとなつて亀裂は僅少で
無視し得る程度であつた。母合金の組成は20wt
%Liで、Na濃度は5ppm以下であつた。
Example 2 Using the cathode material shown in Figure 3a, the current density
Electrolysis was performed at 0.10A/cm 2 . As a result, as shown in Fig. 3b, the outer diameter was 84 mm and the inner diameter was 40 mm, and the cracks were slight and could be ignored. The composition of the master alloy is 20wt
%Li and Na concentration was below 5ppm.

比較例 第4図aに示す陰極材を用い、電流密度
0.7A/cm2で電解したところ、陰極材の外面から
合金化が進行し、第4図bに示すように外径95〜
105mmと膨脹し、亀裂が多数発生した。母合金の
組成は11wt%Liで、Na濃度は5ppm以下であつ
た。
Comparative example: Using the cathode material shown in Figure 4a, the current density was
When electrolyzed at 0.7 A/cm 2 , alloying progressed from the outer surface of the cathode material, and as shown in Figure 4b, the outer diameter was 95 ~
It expanded to 105mm and many cracks appeared. The composition of the master alloy was 11 wt% Li, and the Na concentration was 5 ppm or less.

[発明の効果] 本発明の方法によれれば下記のような効果が得
られる。
[Effects of the Invention] According to the method of the present invention, the following effects can be obtained.

(1) 陰極の外径がほとんど変らず、すなわち外側
へ向つての膨脹が小さいので、表面亀裂が入り
にくい。
(1) Since the outer diameter of the cathode hardly changes, that is, the outward expansion is small, surface cracks are less likely to occur.

(2) 外径変化が小さいため、電解槽の陰極部をコ
ンパクトにすることができる。
(2) Since the outer diameter change is small, the cathode part of the electrolytic cell can be made compact.

(3) 陰極表面の亀裂が少ないため、取出時の付着
浴量が少なく、浴汚染が少ない。
(3) Since there are few cracks on the cathode surface, the amount of bath adhering to the cathode when taken out is small, resulting in less bath contamination.

(4) 陰極の外径変化が僅少であるため陰極電流変
動が無視でき、操業が安定する。
(4) Since the change in the outer diameter of the cathode is small, cathode current fluctuations can be ignored, resulting in stable operation.

(5) 陰極の表面に亀裂が発生することが少ないの
で、小塊の欠落の恐れが少ない。
(5) Since cracks are less likely to occur on the surface of the cathode, there is less risk of missing small lumps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施と説明するための説明
図、第2図a,b、第3図a,bは本発明の実施
に用いる陰極材とその電解後の断面図、第4図
a,bは比較例の陰極材とその電解後の断面図で
ある。 1…電解槽、2…陰極、3…陰極リード、4…
混合溶融塩、5…陽極、6…陽極リード、7…塩
素ガス排出管。
Fig. 1 is an explanatory diagram for explaining the implementation of the present invention, Fig. 2 a, b, Fig. 3 a, b are cross-sectional views of the cathode material used in carrying out the invention and its post-electrolysis, Fig. 4 a , b are cross-sectional views of a comparative example of a cathode material and its electrolyzed state. 1... Electrolytic cell, 2... Cathode, 3... Cathode lead, 4...
Mixed molten salt, 5...Anode, 6...Anode lead, 7...Chlorine gas discharge pipe.

Claims (1)

【特許請求の範囲】 1 塩化リチウムと塩化カリウムからなる混合溶
融塩を陰極に中空筒状固体アルミニウムを用いて
電解し、該陰極にアルミニウム−リチウム合金を
生成させることを特徴とする高純度アルミニウム
−リチウム母合金の製造方法。 2 陰極電流密度を0.005〜1A/cm2として電解す
る特許請求の範囲第1項記載の高純度アルミニウ
ム−リチウム母合金の製造方法。
[Scope of Claims] 1. High purity aluminum, characterized in that a mixed molten salt consisting of lithium chloride and potassium chloride is electrolyzed using hollow cylindrical solid aluminum as a cathode to form an aluminum-lithium alloy on the cathode. A method for producing lithium master alloy. 2. The method for producing a high-purity aluminum-lithium master alloy according to claim 1, wherein electrolysis is carried out at a cathode current density of 0.005 to 1 A/cm 2 .
JP30545286A 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy Granted JPS63161181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30545286A JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30545286A JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Publications (2)

Publication Number Publication Date
JPS63161181A JPS63161181A (en) 1988-07-04
JPH0213035B2 true JPH0213035B2 (en) 1990-04-03

Family

ID=17945315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30545286A Granted JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Country Status (1)

Country Link
JP (1) JPS63161181A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness
CN103060851A (en) * 2013-01-18 2013-04-24 哈尔滨工程大学 Method for preparing erbium-thulium alloy containing reinforced aluminum-lithium through molten salt electrolysis co-reduction

Also Published As

Publication number Publication date
JPS63161181A (en) 1988-07-04

Similar Documents

Publication Publication Date Title
SU1416060A3 (en) Method of producing metals
KR102004920B1 (en) Metal refining method by using liquid metal cathode
KR101793471B1 (en) Refining Method of Metal Using Electroreduction and Electrorefining process
JP5183498B2 (en) Electrolytic production of silicon and scouring method
US2741588A (en) Electrolytic production of titanium metal
US4738759A (en) Method for producing calcium or calcium alloys and silicon of high purity
RU2145646C1 (en) Method of production of metallic silicon, silumin and aluminium and technological plant for realization of this method
US4533442A (en) Lithium metal/alloy recovery from multi-component molten salt
JPS63134686A (en) Method for refining lithium-containing aluminum scrap
US4292145A (en) Electrodeposition of molten silicon
JPS5942079B2 (en) Aluminum refining method
CA1251162A (en) Method of producing a high purity aluminum-lithium mother alloy
JPH0541712B2 (en)
JPH0213035B2 (en)
US20230392273A1 (en) Method for manufacturing recycled aluminum, manufacturing equipment, manufacturing system, recycled aluminum, and processed aluminum product
US2939823A (en) Electrorefining metallic titanium
Withers et al. The electrolytic production of Ti from a TiO2 feed (the DARPA sponsored program)
JPH0213031B2 (en)
JPS61261491A (en) Manufacture of high purity aluminum-lithium alloy powder
JP3214836B2 (en) Manufacturing method of high purity silicon and high purity titanium
US2813069A (en) Porous anode
JPH0213032B2 (en)
US4139428A (en) Preparation of alkali metals
RU2087570C1 (en) Method for production of titanium having high degree of purity
JPS59104441A (en) Preparation of ca-al alloy