JPS61261491A - Manufacture of high purity aluminum-lithium alloy powder - Google Patents

Manufacture of high purity aluminum-lithium alloy powder

Info

Publication number
JPS61261491A
JPS61261491A JP10053885A JP10053885A JPS61261491A JP S61261491 A JPS61261491 A JP S61261491A JP 10053885 A JP10053885 A JP 10053885A JP 10053885 A JP10053885 A JP 10053885A JP S61261491 A JPS61261491 A JP S61261491A
Authority
JP
Japan
Prior art keywords
cathode
alloy
high purity
lithium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10053885A
Other languages
Japanese (ja)
Inventor
Yoshiaki Watanabe
吉章 渡辺
Masayasu Toyoshima
豊嶋 雅康
Yoshiaki Orito
折戸 吉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10053885A priority Critical patent/JPS61261491A/en
Publication of JPS61261491A publication Critical patent/JPS61261491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To stably manufacture high purity Al-Li alloy powder by electrolyzing a mixed molten salt obtd. by adding a specified amount of NaCl to LiCl and KCl with a solid Al cathode and by pulverizing the resulting Al-Si alloy. CONSTITUTION:A mixed molten salt consisting of 34-64wt% LiCl and 66-36wt% KCl or further contg. 1-20wt% NaCl is electrolyzed with a solid Al cathode at 0.005-1A/cm<2> cathode current density to produce a high purity Al-Li alloy not contg. practically Na or Ca. This Al-Li alloy is pulverized. By this method, high purity Al-Li alloy powder is obtd. in a high yield without requiring any special apparatus.

Description

【発明の詳細な説明】 東上の利  野 本発明は、高純度のアルミニウム−リチウム合金粉末の
製造方法に関する。詳しくはナトリウムとカルシウムを
実質上含まないアルミニウム−リチウム合金粉末の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity aluminum-lithium alloy powder. Specifically, the present invention relates to a method for producing an aluminum-lithium alloy powder that is substantially free of sodium and calcium.

鼠迷ぶ口LL 従来方法によるアルミニウム−リチウム合金の製造は、
大要法の3工程で行なわれている。
Nezumomeguchi LL The production of aluminum-lithium alloy by the conventional method is as follows:
The process is carried out in three steps.

■ 金属リチウムの電解採取工程 ■ 溶解・鋳造工程 ■ 粉砕工程 ■の工程は、塩化リチウムと塩化カリウムの混合溶融塩
の電解による金属リチウムの製造工程であり、■の工程
は、■の工程により製造された金属リチウムを目的の合
金粉末の組成に所要の量でアルミニウムに加えて共に溶
融して合金の鋳塊を得る工程である。
■ Electrolytic extraction process of metallic lithium ■ Melting/casting process ■ Grinding process The process of ■ is the manufacturing process of metallic lithium by electrolysis of a mixed molten salt of lithium chloride and potassium chloride. In this process, the lithium metal is added to aluminum in the amount required for the composition of the desired alloy powder and melted together to obtain an alloy ingot.

明が °しようとする  点 実用上価値のある高純度のアルミニウム−リチウム合金
としては、li含有量が10重量%以上であり、またN
aの含有量が5ppm以下であり、かつCaの含有量が
10ppm以下である必要がある。
A high-purity aluminum-lithium alloy that has practical value has a lithium content of 10% by weight or more and a nitrogen content of 10% by weight or more.
The content of a needs to be 5 ppm or less, and the content of Ca needs to be 10 ppm or less.

しかし、現在、市販されている高純度電解リチウム(9
9,9%)は、Na 、Caの含有量はそれぞれ200
p1)11程度であって、これを用いて高純度のアルミ
ニウム−リチウム合金を製造することは不可能である。
However, currently commercially available high-purity electrolytic lithium (9
9.9%), the content of Na and Ca is 200% each.
p1) It is about 11, and it is impossible to manufacture a high purity aluminum-lithium alloy using this.

そこで、従来方法によって、製品におけるNa 、 C
aの含有を抑制するには、電解浴原料である1iC1に
、Na 、 Caの少ない高純度のものが要求される。
Therefore, conventional methods are used to reduce Na and C in the product.
In order to suppress the content of a, 1iC1, which is the raw material for the electrolytic bath, is required to have high purity and low content of Na and Ca.

他方、Na5Caを多く含む LiClを使用する場合には、蒸留等でこれら成分を除
かなければならない。したがって高価なLiC1を使用
せざるをえない。
On the other hand, when using LiCl containing a large amount of Na5Ca, these components must be removed by distillation or the like. Therefore, expensive LiC1 must be used.

以上の他、従来のアルミニウム−リチウム合金の製造方
法では、前記の■工程によって、電解リチウムとアルミ
ニウムの再溶解が不可欠であり、その際に高活性である
リチウムは変質し劣化を起こしやすい。これを防ぐには
希ガスによる溶解雰囲気の調整が必要となる。
In addition to the above, in the conventional method for producing an aluminum-lithium alloy, it is essential to re-dissolve the electrolytic lithium and aluminum in the above-mentioned step (1), and at this time, highly active lithium is likely to change in quality and cause deterioration. To prevent this, it is necessary to adjust the dissolution atmosphere using a rare gas.

また、溶融リチウムは容器を侵すので、容器材料を選択
する必要がある。更に、低融点で比重が小さいためリチ
ウムは凝固過程で偏析を起こしやすい。したがって、従
来方法によって常に安定して一定組成の合金粉末を製造
することは不可能である。
Furthermore, since molten lithium corrodes the container, it is necessary to select the material for the container. Furthermore, due to its low melting point and low specific gravity, lithium is prone to segregation during the solidification process. Therefore, it is impossible to always stably produce an alloy powder having a constant composition by the conventional method.

本発明の目的は、ナトリウムとカルシウムを実質上含有
しないアルミニウム−リチウム合金粉末を上記従来方法
における欠点を伴なうことなく製造することができる方
法を提供することである。
An object of the present invention is to provide a method by which an aluminum-lithium alloy powder substantially free of sodium and calcium can be produced without the drawbacks of the conventional methods described above.

問題点を解決するための手段 前記目的を達成させるため、本発明は、次に記載すると
おりに構成される。
Means for Solving the Problems In order to achieve the above object, the present invention is constructed as described below.

すなわち、本発明は、高純度アルミニウム−リチウム合
金粉末の製造方法として、塩化リチウム34〜64重量
%と塩化カリウム66〜36重量%から成るか、又は前
記両成分の混合物に対して塩化ナトリウムを1〜20重
量%添加して成る混合溶融塩を、陰極に固体アルミニウ
ムを用いて、0.005〜1A/C1の陰極電流密度で
電解し、アルミニウム−リチウム合金を生成させ、次い
でこれを粉砕するものである。
That is, the present invention provides a method for producing a high-purity aluminum-lithium alloy powder consisting of 34-64% by weight of lithium chloride and 66-36% by weight of potassium chloride, or by adding 1% of sodium chloride to a mixture of both components. A mixed molten salt containing ~20% by weight is electrolyzed using solid aluminum as a cathode at a cathode current density of 0.005 to 1 A/C1 to produce an aluminum-lithium alloy, which is then pulverized. It is.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明者は、LiClとKCI との混合溶融塩の電解
において陰極を固体AIとして、陰極電流密度を0.0
05〜1A/c1として電解を行なえば、析出L1を電
解浴面に浮上させ・ることなく、かつNaおよびCaを
析出させることなしに、A1陰極に高純度のAl−1−
i合金を生成させることを知見した。その際の電流効率
はほぼ100%に達した。このようにして高純度のAl
−Li合金が生成する理由については、電解によって陰
極面に析出したLlが固体A1内に拡散してLi −A
I化合物を生成し、この生成化合物によって陰極の分極
が減少する減極作用によって、1−iClの分解電圧が
低下するのに対し、Naにはこのような減極作用がない
ので、Na Clの分解電圧は変らず、また、Caは合
金化しても拡散が遅れ、結果としてLiだけが析出し、
陰極材にNaおよびCaの混入が起らないことによるも
のと考察される。
The present inventor used solid AI as the cathode in the electrolysis of a mixed molten salt of LiCl and KCI, and set the cathode current density to 0.0.
If electrolysis is carried out at 05 to 1 A/c1, high purity Al-1- will be applied to the A1 cathode without causing the precipitate L1 to float to the surface of the electrolytic bath and without precipitating Na and Ca.
It was found that the i-alloy was produced. The current efficiency at that time reached almost 100%. In this way, high purity Al
The reason why -Li alloy is formed is that Ll deposited on the cathode surface by electrolysis diffuses into the solid A1 and Li -A
The decomposition voltage of 1-iCl decreases due to the depolarization effect in which an I compound is generated and the polarization of the cathode is reduced by this product compound, whereas Na does not have such a depolarization effect. The decomposition voltage does not change, and even if Ca is alloyed, diffusion is delayed, and as a result, only Li precipitates.
This is considered to be due to the fact that Na and Ca do not mix into the cathode material.

本発明−は、上記の知見及び考察に基づくものであって
、金属1−iの電解採取工程と製出合金の粉砕工程のみ
で高純度Al−Li合金粉末を製造することができる方
法である。
The present invention is based on the above findings and considerations, and is a method that can produce high-purity Al-Li alloy powder only by the electrowinning process of metal 1-i and the pulverizing process of the produced alloy. .

本発明において電解浴成分は、1−iCl:34〜64
重伍%と型口I:66〜36重世%から成り、同成分範
囲において所期の効果が得られるが、更にNa Clを
上記両成分の混合物に対し、その1〜20重量%添加す
ることができる。Na C1の添加は、LiCl−KC
l混合塩の融点を下げ、電解浴の電気抵抗を低くするこ
とができるので、電解工程の消費電力を低減する点で有
利である。上記範囲内では、電解浴中のNa Cl濃度
が高くなっても、Naの析出は起こらない。しかし、N
a Clの添加量が20重量%を超えると、逆に浴の電
気抵抗が高くなる。また1重M%より少ないと、融点低
下は著しくない。
In the present invention, the electrolytic bath components are 1-iCl: 34 to 64
It consists of 66% to 36% by weight of mold mouth I, and the desired effect can be obtained within the same range of ingredients, but NaCl is further added to the mixture of both components in an amount of 1 to 20% by weight. be able to. Addition of NaCl is LiCl-KC
Since the melting point of the mixed salt can be lowered and the electrical resistance of the electrolytic bath can be lowered, it is advantageous in terms of reducing power consumption in the electrolytic process. Within the above range, no precipitation of Na occurs even if the Na Cl concentration in the electrolytic bath becomes high. However, N
a If the amount of Cl added exceeds 20% by weight, the electrical resistance of the bath will conversely increase. Moreover, when it is less than 1% by weight, the melting point does not decrease significantly.

本発明において陰極電流密度は0.005〜1A/cm
2とする。陰極電流密度を1A/c1を超えて高くする
と、析出したLiは陰極のAIに拡散する量よりも、陰
極付近の浴面上に浮上する量が多くなり、陰極AIへの
liの合金化歩留りが低くなる。他方、陰極電流密度が
0.005A / clより少ないと、l−iの析出量
が少なく、結果としてAl−Li合金の生成量が少なく
なって、目的製品の生産性が低下する。
In the present invention, the cathode current density is 0.005 to 1 A/cm.
Set it to 2. When the cathode current density is increased beyond 1 A/c1, the amount of precipitated Li floating on the bath surface near the cathode is greater than the amount that diffuses into the cathode AI, and the alloying yield of Li to the cathode AI is reduced. becomes lower. On the other hand, when the cathode current density is less than 0.005 A/cl, the amount of l-i precipitated is small, resulting in a small amount of Al-Li alloy produced, and the productivity of the target product is reduced.

また、前記成分から成る溶融塩を、陰極に固体AIを用
いて電解するのに際して、照合電極を用い、陰極と照合
電極との電位差を連続して測定し、これから電位差の時
間に対する微分値を求めながら電解を行なって、微分値
が急変する時点(A)又は急変してから変化が急に小さ
くなった時点(B)で電解を終了すると生成するAl−
1−i合金の組成は常に一定であること、また、その時
点(B)以降電解を続けると陰極に析出する金属L1は
電解浴面に浮上して、このためl−iの合金化歩留りは
低下することが知見された。
In addition, when electrolyzing a molten salt consisting of the above components using solid AI as a cathode, a reference electrode is used to continuously measure the potential difference between the cathode and the reference electrode, and from this, the differential value of the potential difference with respect to time is calculated. Al-
The composition of the 1-i alloy is always constant, and if the electrolysis continues after that point (B), the metal L1 deposited on the cathode will float to the surface of the electrolytic bath, so the alloying yield of 1-i will be was found to decrease.

そこで、本発明の実施に当っては、電解温度で(α+β
)組織となる組成のAI −1−i合金、又は表面に該
合金を形成したもの、或いは電解浴中で安定した電位を
示すもの、例えば、Pt  (n)電極、Ag (I)
電極、C1zガス電極或いは単味の金属1i等を照合電
極として陰極電位を計測しながら電解を行ない、前記の
時点(A>あるいは(B)を検知し、その時点で電解を
終了させるように実施するのが好ましい。別の手段とし
て、摺電圧を計測しながら電解を行なって、摺電圧の時
間に対する微分値を求め、これが急変する時点又は急変
した後、変化が小さくなった時点を検知し、この時点で
電解を終了させるように実施させてもよい。更に他の手
段として、陰極の周辺の浴面に溶融1−iの浮遊が認め
られた時点で電解を終了させることもできる。
Therefore, in carrying out the present invention, the electrolysis temperature is (α+β
) an AI-1-i alloy with a composition that forms a structure, or one on which the alloy is formed on the surface, or one that shows a stable potential in an electrolytic bath, such as a Pt (n) electrode, an Ag (I)
Electrolysis is carried out while measuring the cathode potential using an electrode, C1z gas electrode or simple metal 1i, etc. as a reference electrode, and the above-mentioned point (A>or (B)) is detected and the electrolysis is terminated at that point. Another method is to perform electrolysis while measuring the sliding voltage, find the differential value of the sliding voltage with respect to time, and detect the point at which the sliding voltage suddenly changes or the point at which the change becomes small after the sudden change. The electrolysis may be terminated at this point.As another method, the electrolysis may be terminated when the floating molten 1-i is observed on the bath surface around the cathode.

前記(B)点では、Li Cl−KClの浴の場合には
、Na 1Caを不純物として含んだLiが析出し、L
iC1−KCI− Na C1浴の場合にはNaが主に析出する。
At point (B) above, in the case of a Li Cl-KCl bath, Li containing Na 1Ca as an impurity precipitates, and L
iC1-KCI-Na In the case of C1 bath, Na is mainly precipitated.

したがって(B)点の検知が遅れると、陰極のアルミニ
ウム−リチウム合金表面にNaやCaが偏析している可
能性はあるが、陰極表相のみにとどまっており、表相を
削り落とした陰極合金においては高純化が得られている
Therefore, if the detection of point (B) is delayed, there is a possibility that Na and Ca are segregated on the surface of the aluminum-lithium alloy of the cathode, but they remain only in the surface phase of the cathode, and the surface phase of the cathode alloy has been scraped off. High purity was obtained.

しかしながら、(B)点以降電解を続けると、前記のと
おり、析出したljが陰極に拡散することなく、浴上に
浮上するので合金化歩留りが著しく低下することになる
However, if electrolysis is continued after point (B), as described above, the precipitated lj will float above the bath without diffusing into the cathode, resulting in a significant decrease in alloying yield.

本発明の実施に用いる電解炉の1例を模式的に第1図に
示す。1は電解炉の外筒であり、2は焼結アルミナ等か
ら成るルツボであって、内部にLi CI−KO+溶融
塩3が入れられる。陽極4は黒鉛からなり、生成する塩
素ガスを捕集し排出させるた姓の管5内にリード棒6で
上方からつり下げられ、固体アルミニウムからなる陰極
7がリード棒8により上方からつり下げられている。以
下に、本発明の実施例を挙げる。
An example of an electrolytic furnace used for carrying out the present invention is schematically shown in FIG. 1 is an outer cylinder of an electrolytic furnace, and 2 is a crucible made of sintered alumina or the like, into which Li CI-KO+molten salt 3 is placed. An anode 4 made of graphite is suspended from above by a lead rod 6 in a tube 5 for collecting and discharging generated chlorine gas, and a cathode 7 made of solid aluminum is suspended from above by a lead rod 8. ing. Examples of the present invention are listed below.

実施例 各例共通事項 固体アルミニウム陰極 : 99,99%Al  12φIIIIl浴温:45
0℃ 表面付着浴除去法 :旋盤により表面から 0.5Il1m除去 なお、陰極表面に付着した浴を除去しない場合には、L
i ClやKCIが微量ではある 4゜が、陰極合金に
混入する。ただし陰極径が大きいほどこれら混入による
影響は少なくなって、これは無視できる。
Items common to each example Solid aluminum cathode: 99,99% Al 12φIIIl Bath temperature: 45
0℃ Surface adhesion bath removal method: 0.5Il1m removed from the surface using a lathe. Note that if the bath adhering to the cathode surface is not removed, L
i A trace amount of Cl and KCI mixes into the cathode alloy. However, the larger the cathode diameter, the less the influence of these contaminations, and this can be ignored.

及J!111 本発明によれば、ナトリウム、カルシウムを実質上含ま
ない、高純度のアルミニウム−リチウム合金を電解工程
のみによって直接製造することが可能であり、この製造
による1iの合金化歩留りは、はぼ100%である。
And J! 111 According to the present invention, it is possible to directly produce a high-purity aluminum-lithium alloy that is substantially free of sodium and calcium by only an electrolytic process, and the alloying yield of 1i by this production is approximately 100%. %.

したがって製品コストを低減することができる。更に次
のような効果が得られる。
Therefore, product costs can be reduced. Furthermore, the following effects can be obtained.

(1)、従来方法のように、活性なリチウムを再溶解す
ることがないので、特殊な装置を必要としない。
(1) Unlike conventional methods, active lithium is not redissolved, so special equipment is not required.

(2)、製造されたアルミニウム−リチウム合金が常に
β相組織(1−i:17.8〜23wt%)であり、こ
の組織のものはもろいので、機械的粉砕処理により容易
に粉末にすることができる。
(2) The manufactured aluminum-lithium alloy always has a β-phase structure (1-i: 17.8 to 23 wt%), and since this structure is brittle, it cannot be easily powdered by mechanical crushing. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に用いる電解炉の構造の1例を
模式的に説明する図である。 1・・・電解炉の外筒、2・・・ルツボ、3・・・電解
浴、4・・・黒鉛陽極、 5・・・塩素ガスの捕集・排出用管、 7・・・アルミニウム陰極、8・・・リード棒。 第1図 手続ネ甫正書 (自発) 昭和60年9月4日 許庁長官 宇賀道部 殿 1、事件の表示    昭和60年特許願第10053
8号2゜ 事件との関係  特許出願人 名  称    (227)住友軽金属工業株式会社代
理人  〒107(電話586−8854)住  所 
   東京都港区赤坂4丁目13番5号補正命令の日付
  (自 発) 補正の対象 明細書中、発明の詳細な説明及び図面の簡単な説明の欄
。 補正の内容 第2頁第4〜5行の「合金」を「合金粉末」と訂正する
。 第3頁第11行および第13行rLi CI Jを「リ
チウム」と訂正する。
FIG. 1 is a diagram schematically illustrating an example of the structure of an electrolytic furnace used for carrying out the present invention. 1... Outer cylinder of electrolytic furnace, 2... Crucible, 3... Electrolytic bath, 4... Graphite anode, 5... Chlorine gas collection/discharge tube, 7... Aluminum cathode , 8... Lead rod. Figure 1 Procedures Neho Seisho (Spontaneous) September 4, 1985 Director General of the License Agency Michibu Uga 1, Incident Indication Patent Application No. 10053 of 1985
Relationship to Case No. 8 2゜ Patent Applicant Name (227) Sumitomo Light Metal Industries Co., Ltd. Agent Address: 107 (Telephone: 586-8854)
Date of amendment order, 4-13-5 Akasaka, Minato-ku, Tokyo (voluntary) Columns for detailed explanation of the invention and brief explanation of drawings in the specification subject to amendment. Contents of the amendment: "Alloy" in lines 4-5 of page 2 is corrected to "alloy powder." Page 3, lines 11 and 13, rLi CI J are corrected to "lithium".

Claims (1)

【特許請求の範囲】[Claims] (1)塩化リチウム34〜64重量%と塩化カリウム6
6〜36重量%から成るか、又は前記両成分の混合物に
対して塩化ナトリウムを1〜20重量%添加して成る混
合溶融塩を、陰極に固体アルミニウムを用いて、0.0
05〜1A/cm^2の陰極電流密度で電解し、ナトリ
ウムとカルシウムを実質上含まないアルミニウム−リチ
ウム合金を生成させ、次いでこれを粉砕することを特徴
とする高純度アルミニウム−リチウム合金粉末の製造方
法。
(1) Lithium chloride 34-64% by weight and potassium chloride 6
A mixed molten salt consisting of 6 to 36% by weight or with addition of 1 to 20% by weight of sodium chloride to the mixture of both of the above-mentioned components was heated to 0.0% by weight using solid aluminum as the cathode.
Production of high-purity aluminum-lithium alloy powder, characterized by electrolyzing at a cathode current density of 0.05 to 1 A/cm^2 to produce an aluminum-lithium alloy substantially free of sodium and calcium, and then pulverizing this. Method.
JP10053885A 1985-05-14 1985-05-14 Manufacture of high purity aluminum-lithium alloy powder Pending JPS61261491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10053885A JPS61261491A (en) 1985-05-14 1985-05-14 Manufacture of high purity aluminum-lithium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10053885A JPS61261491A (en) 1985-05-14 1985-05-14 Manufacture of high purity aluminum-lithium alloy powder

Publications (1)

Publication Number Publication Date
JPS61261491A true JPS61261491A (en) 1986-11-19

Family

ID=14276727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10053885A Pending JPS61261491A (en) 1985-05-14 1985-05-14 Manufacture of high purity aluminum-lithium alloy powder

Country Status (1)

Country Link
JP (1) JPS61261491A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126808A1 (en) * 2005-05-23 2006-11-30 Ncmetal Inc. A manufacturing method of metal-micro particles using pulse-type energy
KR100736812B1 (en) * 2005-11-04 2007-07-10 주식회사 나노리더 The manufacturing method of metal-micro particles used of electric energy
CN108138343A (en) * 2016-07-20 2018-06-08 忠南大学校产学协力团 Utilize electroreduction and the method for refining metal of electrorefining process
CN110846689A (en) * 2019-11-05 2020-02-28 东北大学 Method for preparing aluminum powder by taking aluminum/aluminum alloy as raw material
WO2024053275A1 (en) * 2022-09-07 2024-03-14 株式会社豊田中央研究所 Method for manufacturing aluminum substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146557A (en) * 1984-08-13 1986-03-06 Nec Corp Speech word processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146557A (en) * 1984-08-13 1986-03-06 Nec Corp Speech word processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126808A1 (en) * 2005-05-23 2006-11-30 Ncmetal Inc. A manufacturing method of metal-micro particles using pulse-type energy
KR100736812B1 (en) * 2005-11-04 2007-07-10 주식회사 나노리더 The manufacturing method of metal-micro particles used of electric energy
CN108138343A (en) * 2016-07-20 2018-06-08 忠南大学校产学协力团 Utilize electroreduction and the method for refining metal of electrorefining process
CN110846689A (en) * 2019-11-05 2020-02-28 东北大学 Method for preparing aluminum powder by taking aluminum/aluminum alloy as raw material
WO2024053275A1 (en) * 2022-09-07 2024-03-14 株式会社豊田中央研究所 Method for manufacturing aluminum substrate

Similar Documents

Publication Publication Date Title
US6783611B2 (en) Phosphorized copper anode for electroplating
Juneja et al. A study of the purification of metallurgical grade silicon
Elwell et al. Electrodeposition of solar silicon
KR102004920B1 (en) Metal refining method by using liquid metal cathode
US4738759A (en) Method for producing calcium or calcium alloys and silicon of high purity
JP3528532B2 (en) Low alpha dose tin production method
Haarberg et al. Electrodeposition of iron from molten mixed chloride/fluoride electrolytes
CA1251162A (en) Method of producing a high purity aluminum-lithium mother alloy
JPH0653632B2 (en) Method for producing single crystal metal particles
JPS61261491A (en) Manufacture of high purity aluminum-lithium alloy powder
JP2937518B2 (en) Materials for sacrificial electrodes for corrosion protection with excellent corrosion resistance
CA1332370C (en) Method of producing a high purity aluminum-lithium mother alloy
JP2000282165A (en) Lithium-containing magnesium alloy, and crucible for its smelting
Withers et al. The electrolytic production of Ti from a TiO2 feed (the DARPA sponsored program)
US6309529B1 (en) Method for producing sputtering target material
Oishi et al. Electrorefining of silicon using molten salt and liquid alloy electrodes
JPH07118784A (en) Aluminum alloy for corrosion protection of steel structure
Takenaka et al. Electrorefining of magnesium in molten salt and its application for recycling
JP3526983B2 (en) Method for recovering active components from nickel-hydrogen storage alloy secondary batteries
JPH0213031B2 (en)
JPS63161181A (en) Production of high-purity aluminum-lithium mother alloy
Moteki et al. Electrodeposition of Crystalline Si Using a Liquid Zn Electrode in Molten KF–KCl–K2SiF6
JP2998623B2 (en) Method for producing low alpha ray lead
RU2278183C2 (en) Method for refining of noble metals
JP3809558B2 (en) Aluminum alloy for cathode